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Abstract. We introduce a new non-Riemannian quantity named mean
stretch curvature. A Finsler metric with vanishing mean stretch curvature
is called weakly stretch metric. We prove that every complete P-reducible
weakly stretch metric with bounded Cartan torsion is a Landsberg met-
ric. Then, we classify complete weakly stretch surfaces and show that
every complete weakly stretch surface is Riemannian or Landsbergian.
This provides a natural extension of Szabó’s rigidity theorem on Berwald
surfaces.
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1 Introduction

In Finsler geometry, the first non-Riemannian quantity called by Cartan torsion C,
was first introduced by Finsler and emphasized by Cartan. Other than the Cartan
torsion, there are several important non-Riemannian quantities: the Berwald curva-
ture B, the Landsberg curvature L, the mean Landsberg curvature J, the stretch
curvature Σ, etc. Recently, some new interesting and meaningful non-Riemannian
quantities H-curvature, Ξ-curvature, χ-curvature and Ĉ-curvature have been intro-
duced in Finsler geometry (see [3], [8], [9]). They all vanish for Riemannian metrics,
hence they are said to be non-Riemannian. These non-Riemannian geometric quan-
tities describe the difference between Finsler geometry and Riemann geometry. The
study of these quantities is benefit for us to make out their distinction and the nature
of Finsler geometry.

Let (M,F ) be a Finsler manifold. There are two basic tensors on Finsler manifolds:
fundamental metric tensor gy and the Cartan torsion Cy, which are the second and
the third order derivatives of 1

2F
2
x at y ∈ TxM0, respectively. The rate of change of

the Cartan torsion along geodesics, Ly is said to be Landsberg curvature. Taking
trace with respect to gy in first and second variables of Cy and Ly gives rise to the
mean Cartan torsion Iy and to the mean Landsberg curvature Jy, respectively. The
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mean Landsberg curvature is the rate of change of the mean Cartan torsion along
geodesics.

In [2], L. Berwald introduced a non-Riemannian curvature, so-called stretch cur-
vature and denoted this by Σy. He showed that this tensor vanishes if and only
if the length of a vector remains unchanged under the parallel displacement along
an infinitesimal parallelogram. This curvature has been investigated by Shibata and
Matsumoto [6]. A Finsler metric is said to be stretch metric if Σ = 0. Taking trace
with respect to gy in the first and second variables of Σy gives rise to the mean stretch
curvature Σ̄y. A Finsler metric is said to be weakly stretch metric if Σ̄ = 0. A Finsler
metric F is called P -reducible if its Landsberg curvature is given by following

Lijk =
1

n+ 1

{
hijJk + hjkJi + hkiJj

}
,

where hij := FFij is the angular metric. Every Randers metric F = α + β and
Kropina metric F = α2/β are P -reducible [7]. Then, we get the following.

Theorem 1.1. Every complete P -reducible weakly stretch metric with bounded Cartan
torsion is a Landsberg metric.

In [10], Szabó considered Berwald surfaces and proved a rigidity theorem: any
Berwald surface is either Riemannian. or locally Minkowskian. Berwald spaces have
been classified by Szabó in [10] and explicitly constructed in [11] (for more details,
see Chapter 10 in [1]). On the other hand, the class of Berwald metrics is a subclass
of the class of weakly stretch metrics [12]. One might wonder if there exists non-
Riemmannian and non-locally Minkowskian weakly stretch surfaces for which the
Finsler structure is smooth and strongly convex on the slit tangent bundle. This
motivates us to consider weakly stretch surfaces.

Theorem 1.2. Every complete weakly stretch surface is Riemannian or Landsbergian.

Throughout this paper, we use the Berwald connection on Finsler manifolds. The
h- and v- covariant derivatives of a Finsler tensor field are denoted by “ | ” and “, ”
respectively.

2 Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space at
x ∈ M , and by TM = ∪x∈MTxM the tangent bundle of M . A Finsler metric on M
is a function F : TM → [0,∞) which has the following properties: (i) F is C∞ on
TM0 := TM \ {0}; (ii) F is positively 1-homogeneous on the fibers of tangent bundle
TM , and (iii) for each y ∈ TxM , the following quadratic form gy on TxM is positive
definite,

gy(u, v) :=
1

2

∂2

∂s∂t

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx, define
Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt
[gy+tw(u, v)] |t=0, u, v, w ∈ TxM.
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The family C := {Cy}y∈TM0 is called the Cartan torsion. It is well known that
C = 0 if and only if F is Riemannian. For y ∈ TxM0, define mean Cartan torsion
Iy by Iy(u) := Ii(y)ui, where Ii := gjkCijk. By Diecke Theorem, F is Riemannian if
and only if Iy = 0.

The horizontal covariant derivatives of C along geodesics give rise to the Landsberg
curvature Ly : TxM × TxM × TxM → R defined by Ly(u, v, w) := Lijk(y)uivjwk,
where Lijk := Cijk|sy

s. The family L := {Ly}y∈TM0 is called the Landsberg cur-
vature. A Finsler metric is called a Landsberg metric if L = 0 [4]. The horizontal
covariant derivatives of I along geodesics give rise to the mean Landsberg curvature
Jy(u) := Ji(y)ui, where Ji := gjkLijk. A Finsler metric is said to be weakly Lands-
bergian if J = 0.

Define the stretch curvature Σy : TxM⊗TxM⊗TxM⊗TxM → R by Σy(u, v, w, z) :=
Σijkl(y)uivjwkzl, where

Σijkl := 2(Lijk|l − Lijl|k).

A Finsler metric is said to be stretch metric if Σ = 0 [2]. Every Landsberg metric
is a stretch metric. It is well known that Σ = 0 if and only if the length of a vector
remains unchanged under the parallel displacement along an infinitesimal parallelo-
gram. Taking an average on two first indices of the stretch curvature, we get a new
non-Riemannian curvature mean stretch curvature.

For a non-zero vector y ∈ TxM0, define Σ̄y : TxM ⊗ TxM → R by Σ̄y(u, v) :=
Σ̄ij(y)uivj , where Σ̄ij := gklΣklij . A Finsler metric is said to be weakly stretch metric
if Σ̄ = 0. It is easy to see that every Landsberg metric or stretch Finsler metric is a
weakly stretch metric.

Given a Finsler manifold (M,F ), a global vector field G is induced by F on slit
tangent bundle TM0, which in a standard coordinate (xi, yi) for TM0 is given by
G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi , where

Gi(x, y) :=
1

4
gil
{
∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

}
.

G is called the associated spray to (M,F ). In local coordinates, a curve c(t) is a
geodesic if and only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0.

3 Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. First, we prove the following.

Lemma 3.1. Let (M,F ) be P-reducible manifold. Suppose that F is weakly stretch
metric. Then for any geodesic c(t) and any parallel vector field V(t) along c, the
function C(t) := Cċ(V (t)) must be in the following form

(3.1) C(t) = t L(0) + C(0).
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Proof. F is P-reducible

(3.2) Lijk =
1

n+ 1

{
hijJk + hjkJi + hkiJj

}
.

Taking a horizontal derivative of (3.2) along Finslerian geodesics implies that

(3.3) Lijk|sy
s =

1

n+ 1

{
hijJk|sy

s + hjkJi|sy
s + hkiJj|sy

s
}
.

Since F is weakly stretch metric Ji|j = Jj|i, then by contracting it with yj we get

(3.4) Ji|jy
j = 0.

By (3.3) and (3.4), we get

(3.5) Lijk|sy
s = 0.

Let

(3.6) C(t) := Cċ(V (t)), L(t) := Lċ(V (t)).

From our definition of Ly, we have L(t) = C
′
(t). Then by (3.5) and (3.6), we obtain

(3.7) C
′′
(t) = L

′
(t) = Li|l(ċ(t))ċ

l(t)V i(t) = 0.

Then (3.1) follows. �

Remark 3.1. Let (M,F ) be a Finsler space and c : [a, b]→M be a geodesic. For a
parallel vector field V (t) along c,

(3.8) gċ(V (t), V (t)) = constant.

Proof of Theorem 1.1: Let (M,F ) be a complete Finsler manifold. Take an
arbitrary unit vector y ∈ TxM and an arbitrary vector v ∈ TxM . Let c(t) be the
geodesic with c(0) = x and ċ(0) = y and V (t) be the parallel vector field along c with
V (0) = v. Then by Lemma 3.1, we get

(3.9) C(t) = t L(0) + C(0).

Suppose that Cy is bounded, i.e., there is a constant B <∞ such that

(3.10) ||C||x := sup
y∈TxM0

sup
v∈TxM

Cy(v)

[gy(v, v)]
3
2

≤ B

By Remark 3.1, we have |C(t)| ≤ BT
3
2 < ∞ for some constant T . Therefore, C(t)

is a bounded function on [0,∞). (3.9) implies that Ly(v) = L(0) = 0. Hence, F is a
Landsberg metric. �

It is proved that every C-reducible metric with vanishing Landsberg curvature is
a Berwald metric [5][6]. Then by the Theorem 1.1, we get the following.

Corollary 3.2. Every complete C-reducible weakly stretch metric with bounded Car-
tan torsion is a Berwald metric.
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4 Finsler surfaces

Let (M,F ) be a two-dimensional Finsler manifold. We refer to the Berwald’s frame
(`i,mi) where `i = yi/F (y), mi is the unit vector with `im

i = 0 and `i = gij`
i.

Theorem 4.1. Every two-dimensional Finsler metric is a stretch metric if and only
if it is a weakly stretch metric if and only if I|1|1 = 0.

Proof. Since the Cartan torsion has no components in the direction `i, i.e., Cijky
i = 0,

then it can be written in the frame (`,m) as follows

(4.1) FCijk = Imimjmk,

where the scalar field I is called the main scalar of F . By taking a horizontal derivation
of (4.1), we get

(4.2) FCijk|l = (I|1`l + I|2ml)mimjmk.

Contracting (4.2) with yl yields

(4.3) Lijk = I|1mimjmk.

Taking a horizontal derivation of (4.3) implies that

Σijkl = 2
[
Lijk|l − Lijl|k

]
= 2

[
(I|1|1`l + I|1|2ml)mk − (I|1|1`k + I|1|2mk)ml

]
mimj

= 2I|1|1(`lmk − `kml)mimj .(4.4)

Since gijmimj = mjmj = 1, then by multiplying (4.4) with gij , we have

(4.5) Σ̄kl = 2I|1|1(`lmk − `kml).

By (4.4) and (4.5), we get the proof. �

Proof of Theorem 1.2: It follows that the Berwald curvature is given by

Bi
jkl = F−1(−2I,1`

i + I2m
i)mjmkml,

where I is the 0-homogeneous function called the main scalar of F and I2 = I,2+I,1|2.
Since the Cartan tensor of F is given by Cijk = F−1Imimjmk, then the Berwald
curvature can be written as

(4.6) Bi
jkl = µCjkl`

i + λ(hijhkl + hikhjl + hilhjk),

where hij := mimj is the angular metric, µ = −2I,1/I, and λ = I2/3. Contracting
(4.6) with yi, we infer

(4.7) Lijk = −1

2
µFCijk.
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Taking the trace of (4.7) yields

(4.8) Ji = −1

2
µFIi.

Thus

(4.9) Ji|j = −1

2
F (µjIi + µIi|j),

where µi := µ|j . Therefore

(4.10) Σ̄ij = −F
[
µjIi − µiIj + µ(Ii|j − Ij|i)

]
.

By the assumption and (4.10), we get

(4.11) µjIi − µiIj = µ(Ij|i − Ii|j).

Multiplying (4.11) with yj yields

(4.12) µ′Ii = −µJi.

Putting (4.8) in (4.12) implies that

(4.13) [2µ′ − µ2F ]Ii = 0.

If Ii = 0, then F reduces to a Riemannian metric. Suppose that F is a non-
Riemannian metric. Then we have

(4.14) 2µ′ − µ2F = 0.

On a Finslerian geodesics, we have

(4.15) 2µ′ = µ2

which its general solution is

(4.16) µ(t) =
µ(0)

1− tµ(0)
.

By considering ||µ(0)|| < ∞, and letting t → +∞ implies that µ = 0. By putting it
in (4.7), it follows that F is a Landsberg metric.
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