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Abstract. The main aim of this paper is to generalize the mixed affine
quermassintegrals to Orlicz space. Under the framework of Orlicz-Brunn-
Minkowski theory, we introduce a new affine geometric quantity by cal-
culating the Orlicz first order variation of the mixed affine quermassinte-
grals, and call it Orlicz mixed affine quermassintegrals. The fundamental
notions and conclusions of the mixed affine quermassintegrals and the re-
lated isoperimetric inequalities are extended to an Orlicz setting. The
concepts and inequalities for Orlicz quermassintegrals of convex bodies
are also included in our conclusions. The new Orlicz isperimetric inequal-
ities in special case which yield the Orlicz Minkowski inequalities and
Orlicz Brunn-Minkowski inequalities for the quermassintegrals, the affine
quermassintegrals and the Orlicz affine quermassintegrals.
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1 Introduction

One of the most important operations in geometry is vector addition. As an
operation between sets K and L, defined by

K + L = {x+ y : x ∈ K, y ∈ L},

it is usually called Minkowski addition and, combined with volume, plays an important
role in the Brunn-Minkowski theory. During the last few decades, the theory has been
extended to Lp-Brunn-Minkowski theory. The set, called Lp addition, was introduced
by Firey in [6] and [7]. The operation, denoted by +p, for 1 ≤ p ≤ ∞, is defined by

h(K +p L, x)p = h(K,x)p + h(L, x)p, (1.1)

for all x ∈ Rn and for K and L, being compact convex sets in Rn containing
the origin. When p = ∞, the above equality is interpreted as h(K +∞ L, x) =
max{h(K,x), h(L, x)}, as is customary. Here the functions are the support functions.
If K is a nonempty closed (not necessarily bounded) convex set in Rn, then

h(K,x) = max{x · y : y ∈ K},
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for x ∈ Rn, defines the support function h(K,x) of K. A nonempty closed convex set
is uniquely determined by its support function. Lp addition and inequalities are the
fundamental and core content in the Lp Brunn-Minkowski theory. For recent impor-
tant results and more information from this theory, we refer to [11], [12], [13], [14],
[20], [22], [25], [26], [27], [28], [29], [32], [33], [37], [38], [39] and the references therein.
In recent years, a new extension of Lp-Brunn-Minkowski theory is to Orlicz-Brunn-
Minkowski theory, initiated by Lutwak, Yang, and Zhang [30] and [31]. Gardner, Hug
and Weil [9] constructed a general framework for the Orlicz-Brunn-Minkowski theory,
and made clear for the first time the relation to Orlicz spaces and norms. The Orlicz
addition of convex bodies was introduced, and the Orlicz-Brunn-Minkowski inequality
was obtained (see [40]). The Orlicz centroid inequality for star bodies was introduced
in [49] which is an extension from convex to star bodies. Advances in the theory can
be found in [10], [16], [17], [19], [34], [42], [43], [44], [45], [46], [47], [48] and [50]. In
2014, Gardner, Hug and Weil ([9]) introduced the Orlicz addition K+ϕL of compact
convex sets K and L in Rn containing the origin, implicitly, by

h(K +ϕ L, u)) = inf

{
λ > 0 : ϕ

(
h(K,u)

λ

)
+ ϕ

(
h(L, u)

λ

)
≤ 1

}
, (1.2)

where ϕ : [0,∞) → (0,∞) is a convex and increasing function such that ϕ(1) = 1
and ϕ(0) = 0. Let Φ denote the set of convex functions ϕ : [0,∞) → [0,∞) that is
increasing and satisfies ϕ(0) = 0 and ϕ(1) = 1. When p ≥ 1 and ϕ(t) = tp, the Orlicz
addition K +ϕ L becomes the Lp-addition K +p L. Orlicz mixed quermassintegrals
with respect to the Orlicz addition, Wϕ,i(K,L), defined by

Wϕ,i(K,L) :=
ϕ′−(1)

n− i
lim
ε→0+

Wi(K +ϕ ε · L)−Wi(K)

ε

=
1

n

∫
Sn−1

ϕ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u), (1.3)

for ϕ ∈ Φ, 0 ≤ i ≤ n and K and L and are convex bodies containing the origin in
their interiors in Rn, and Wi(K) is the usual quermassintegral of a convex body K,
and Si(K,u) denotes the ith mixed surface area measure of K, and ϕ′−(1) denotes
the value of the left derivative of convex function ϕ at point 1 (see [41] and [43]).

Lutwak [23] proposed to define the affine quermassintegrals for a convex body
K, Φ0(K), Φ1(K), . . . , Φn(K), by taking Φ0(K) := V (K),Φn(K) := ωn and for
0 < j < n,

Φn−j(K) := ωn

[∫
Gn,j

(
volj(K|ξ)

ωj

)−n
dµj(ξ)

]−1/n

, (1.4)

where Gn,j denotes the Grassman manifold of j-dimensional subspaces in Rn, and µj
denotes the gauge Haar measure on Gn,j , and volj(K|ξ) denotes the j-dimensional
volume of the positive projection of K on j-dimensional subspace ξ ⊂ Rn and ωj
denotes the volume of j-dimensional unit ball. Lutwak showed the Brunn-Minkowski
inequality for the affine quermassintegrals. If K and L are convex bodies and 0 <
j < n, then

Φj(K + L)1/(n−j) ≥ Φj(K)1/(n−j) + Φj(L)1/(n−j). (1.5)
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Lutwak [24] conjectured that

ωjnΦi(K)n−j ≤ ωinΦj(K)n−i,

for 0 ≤ i < j < n and K is a convex body. In analogy to (1.4), one may also define
mixed affine quermassintegrals, Φn−j,i(K), by (see Section 3)

Φn−j,i(K) := ωn

∫
Gn,j

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)

−1/(n−i)

, (1.6)

where 0 ≤ i < j ≤ n, and vol
(j)
i (K|ξ) denotes the j-dimensional mixed volume

V (j)(K|ξ, . . . ,K|ξ︸ ︷︷ ︸
j−i

, Bj , . . . , Bj︸ ︷︷ ︸
i

) and Bj denotes the j-dimensional unit ball, and by

letting Φ0,i(K) := Wi(K), Obviously, when i = 0, vol
(j)
i (K|ξ) becomes the above

j-dimensional volume volj(K|ξ).
In the paper, our main aim is to generalize the mixed affine quermassintegrals to

Orlicz space. Under the framework of Orlicz-Brunn-Minkowski theory, we introduce
a new affine geometric quantity call it Orlicz mixed affine quermassintegrals. The
fundamental notions and conclusions of the mixed affine quermassintegrals and the
Minkoswki and Brunn-Minkowski inequalities for the mixed affine quermassintegrals
are extended to an Orlicz setting. The new Orlicz Minkowski and Brunn-Minkowski
inequalities in special case which yield the Orlicz Minkowski inequalities and Orlicz
Brunn-Minkowski inequalities for the quermassintegrals, the affine quermassintegrals
and the Orlicz affine quermassintegrals, and yield also the Lp Minkowski inequality
and Brunn-Minkowski inequalities for the affine quermassintegrals.

Comply with the basic spirit of Aleksandrov [2], Fenchel and Jensen [5] introduc-
tion of mixed quermassintegrals, and introduction of Lutwak’s Lp-mixed quermassin-
tegrals (see [21]), we are based on the study of the first order Orlicz variational of the
mixed affine quermassintegrals. We prove that the Orlicz first order variation of the
mixed affine quermassintegrals can be expressed as: If K and L are convex bodies
containing the origin in their interiors, ϕ ∈ Φ, ε > 0 and 0 ≤ i < j ≤ n, then

d

dε

∣∣∣∣
ε=0+

Φn−j,i(K +ϕ ε · L) =
j − i
ϕ′−(1)

Φn−j,i(K)1+n−iΦϕ,n−j,i(K,L)i−n. (1.7)

For j = n, (1.7) becomes the well-known result about Orlicz quermassintegral of K
and L.

lim
ε→0+

Wi(K +ϕ ε · L)−Wi(K)

ε
=

n− i
ϕ′−(1)

Wϕ,i(K,L).

In this first order variational equation (1.7), we find a new geometric quantity. Based
on this, we extract the required geometric quantity, denotes Φϕ,n−j,i(K,L) and call it
Orlicz mixed affine quermassintegral of convex bodies K and L containing the origin
in their interiors, defined by

Φϕ,n−j,i(K,L) :=

(
ϕ′−(1)

(j − i) · Φn−j,i(K)1+n−i
· d
dε

∣∣∣∣
ε=0+

Φn−j,i(K +ϕ ε · L)

)1/(i−n)

,

(1.8)
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where ϕ ∈ Φ and 0 ≤ i < j ≤ n. We prove the new affine geometric quantity,
Φϕ,n−j,i(K,L), has an integral representation.

Φϕ,n−j,i(K,L) = ωn

∫
Gn,j

W
(j)
ϕ,i (K|ξ, L|ξ)
vol

(j)
i (K|ξ)

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)

−1/(n−i)

, (1.9)

where W
(j)
ϕ,i (K|ξ, L|ξ) denotes the j-dimensional Orlicz mixed quermassintegral of

K|ξ and L|ξ. We apply the integral geometry technique on Grassmann manifolds to
prove the affine invariance of the Orlicz mixed affine quermassintegrals.

Φϕ,n−j,i(gK, gL) = Φϕ,n−j,i(K,L), (1.10)

where K,L are convex bodies containing the origin in their interiors, 0 ≤ i < j ≤ n,
ϕ ∈ Φ and g ∈ SL(n).

Because the Orlicz mixed affine quermassintegrals is an extension of the affine
quermassintegrals, a very natural question is raised: is there a Minkowski type isoperi-
metric inequality for the Orlicz mixed affine quermassintegrals? in the Section 4, we
give a positive answer to this question and establish the Orlicz Minkoswki inequal-
ity for the new affine geometric quantity. If K and L are convex bodies containing
the origin in their interiors, ϕ ∈ Φ and 0 ≤ i < j ≤ n, then the Orlicz Minkowski
inequality for the Orlicz mixed affine quermassintegrals is established.(

Φn−j,i(K)

Φϕ,n−j,i(K,L)

)n−i
≥ ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
. (1.11)

If ϕ is strictly convex, equality holds if and only if K and L are homothetic. For j = n,
(1.11) becomes the following Orlicz Minkoswki inequality for the quermassintegrals
of convex bodies (see [41] and [43]).

Wϕ,i(K,L) ≥Wi(K) · ϕ

((
Wi(L)

Wi(K)

)1/(n−i)
)
. (1.12)

If ϕ is strictly convex, equality holds if and only if K and L are homothetic. It is
worth mentioning here that Zou [50] established the following inequality, which is the
special case of (1.11). If K and L are convex bodies containing the origin in their
interiors, ϕ ∈ Φ and 0 < j ≤ n, then(

Φϕ,n−j(K,L)

Φn−j(K)

)−n
≥ ϕ

((
Φn−j(L)

Φn−j(K)

)1/j
)
.

If ϕ is strictly convex, equality holds if and only if K and L are homothetic. Unfor-
tunately, inequality (1.12) cannot be obtained from Zou’s result.

In the Section 5, on the basis of the Minkoswki inequality for the Orlicz mixed
affine quermassintegrals, we establish an Orlicz-Brunn-Minkoswki inequality for the
mixed affine quermassintegrals. If K,L are convex bodies containing the origin in
their interiors, 0 ≤ i < j ≤ n and ϕ ∈ Φ, then for nay ε > 0

1 ≥ ϕ

((
Φn−j,i(K)

Φn−j,i(K +ϕ ε · L)

)1/(j−i)
)

+ ε · ϕ

((
Φn−j,i(L)

Φn−j,i(K +ϕ ε · L)

)1/(j−i)
)
. (1.13)
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If ϕ is strictly convex, equality holds if and only if K and L are homothetic. For
j = n and ε = 1, (1.13) becomes the following Orlicz-Brunn-Minkoswki inequality for
quermassintegrals (see [41] and [43]). If K,L are convex bodies containing the origin
in their interiors, 0 ≤ i < n and ϕ ∈ Φ, then

1 ≥ ϕ

((
Wi(K)

Wi(K +ϕ L)

)1/(n−i)
)

+ ϕ

((
Wi(L)

Wi(K +ϕ L)

)1/(n−i)
)
. (1.14)

If ϕ is strictly convex, equality holds with if and only if K and L are homothetic.
It is worth mentioning here that Zou [50] established the following inequality, which
is the special case of (1.13). If K,L are convex bodies containing the origin in their
interiors, 0 < j ≤ n and ϕ ∈ Φ, then

1 ≥ ϕ

((
Φn−j(K)

Φn−j(K +ϕ L)

)1/j
)

+ ϕ

((
Φn−j(L)

Φn−j(K +ϕ L)

)1/j
)
.

If ϕ is strictly convex, equality holds if and only if K and L are homothetic. Unfor-
tunately, inequality (1.14) cannot be obtained from Zou’s result. Moreover, putting
ε = 1 and ϕ(t) = tp in (1.13), where 1 ≤ p <∞, (1.13) becomes the Lp-Minkoswki in-
equality for the mixed affine quermassintegrals. If K,L are convex bodies containing
the origin in their interiors, 0 ≤ i < j ≤ n and 1 ≤ p <∞, then

Φn−j,i(K +p L)p/(j−i) ≥ Φn−j,i(K)p/(j−i) + Φn−j,i(L)p/(j−i), (1.15)

with equality if and only if K and L are homothetic.

2 Preliminaries

The setting for this paper is n-dimensional Euclidean space Rn. A body in Rn is
a compact set equal to the closure of its interior. A set K is called a convex body, if
it is compact and convex subsets with non-empty interiors. Let Kn denote the class
of convex bodies containing the origin in their interiors in Rn. We reserve the letter
u ∈ Sn−1 for unit vectors, and the letter B for the unit ball centered at the origin. The
surface of B is Sn−1. For a compact set K, we write V (K) for the (n-dimensional)
Lebesgue measure of K and call this the volume of K. If K is a nonempty closed
(not necessarily bounded) convex set, then

h(K,x) = sup{x · y : y ∈ K},

for x ∈ Rn, defines the support function of K, where x · y denotes the usual inner
product x and y in Rn. A nonempty closed convex set is uniquely determined by its
support function. The support function is homogeneous of degree 1, that is,

h(K, rx) = rh(K,x),

for all x ∈ Rn and r ≥ 0 (see e.g. [3]). Let d denote the Hausdorff metric on Kn, i.e.,
for K,L ∈ Kn,

d(K,L) = |h(K,u)− h(L, u)|∞,
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where | · |∞ denotes the sup-norm on the space of continuous functions C(Sn−1). Let
K ⊂ Rn be a nonempty closed convex set. If ξ is a subspace of Rn, then it is easy to
show that

h(K|ξ, x) = h(K,x|ξ),

for x ∈ Rn. The formula

h(AK, x) = h(K,Atx), (2.1)

for x ∈ Rn (see [8, p.18]), and a linear transformation A : Rn → Rn, gives the change
in a support function under A, where At denotes the transpose of A. Equation (2.1)
is proved in [8, p.18] for compact sets and A ∈ GL(n), but the proof is the same if K
is unbounded or A is singular.

2.1 Quermassintegrals

If Ki ∈ Kn (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real num-
bers, then of fundamental importance is the fact that the volume of

∑r
i=1 λiKi is a

homogeneous polynomial in λi given by (see e.g. [35])

V (λ1K1 + · · ·+ λnKn) =
∑

i1,...,in

λi1 . . . λinVi1...in , (2.2)

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not exceeding
r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . ,Kin and is uniquely
determined by (2.2), it is called the mixed volume of Ki, . . . ,Kin , and is written as
V (Ki1 , . . . ,Kin). Let K1 = . . . = Kn−i = K and Kn−i+1 = . . . = Kn = L, then the
mixed volume V (K1, . . . ,Kn) is written as V (K[n−i], L[i]). If K1 = · · · = Kn−i = K,
Kn−i+1 = · · · = Kn = B The mixed volumes Vi(K[n−i], B[i]) is written asWi(K) and
called as quermassintegrals (or ith mixed quermassintegrals) of K. We write Wi(K,L)
for the mixed volume V (K[n− i− 1], B[i], L[1]) and call as mixed quermassintegrals.
Aleksandrov [1] and Fenchel and Jessen [5] (also see Busemann [4] and Schneider
[35]) have shown that for K ∈ Kn, and i = 0, 1, . . . , n− 1, there exists a regular Borel
measure Si(K, ·) on Sn−1, such that the mixed quermassintegrals, Wi(K,L), has the
following representation:

Wi(K,L) =
1

n− i
lim
ε→0+

Wi(K + ε · L)−Wi(K)

ε
=

1

n

∫
Sn−1

h(L, u)dSi(K,u). (2.3)

Associated with K1, . . . ,Kn ∈ Kn is a Borel measure S(K1, . . . ,Kn−1, ·) on Sn−1,
called the mixed surface area measure of K1, . . . ,Kn−1, which has the property that
for each K ∈ Kn (see e.g. [8], p.353),

V (K1, . . . ,Kn−1,K) =
1

n

∫
Sn−1

h(K,u)dS(K1, . . . ,Kn−1, u). (2.4)

In fact, the measure S(K1, . . . ,Kn−1, ·) can be defined by the propter that (2.4) holds
for all K ∈ Kn. Let K1 = . . . = Kn−i−1 = K and Kn−i = . . . = Kn−1 = L, then
the mixed surface area measure S(K1, . . . ,Kn−1, ·) is written as S(K[n − i], L[i], ·).
When L = B, S(K[n− i], L[i], ·) is written as Si(K, ·) and called as ith mixed surface



82 Chang-Jian Zhao and Wing-Sum Cheung

area measure. A fundamental inequality for mixed quermassintegrals states that: If
K,L ∈ Kn and 0 ≤ i < n− 1, then

Wi(K,L)n−i ≥Wi(K)n−i−1Wi(L), (2.5)

with equality if and only if K and L are homothetic and L = {o}. Good general
references for this material are [4] and [19].

2.2 p-mixed quermassintegrals

Mixed quermassintegrals are the first variation of the ordinary quermassintegrals,
with respect to Minkowski addition. The p-mixed quermassintegrals Wp,0(K,L),
Wp,1(K,L), . . . ,Wp,n−1(K,L), as the first variation of the ordinary quermassinte-
grals, with respect to Firey addition: For K,L ∈ Kn, and real p ≥ 1, defined by (see
e.g. [21])

Wp,i(K,L) =
p

n− i
lim
ε→0+

Wi(K +p ε · L)−Wi(K)

ε
. (2.6)

The mixed p-quermassintegrals Wp,i(K,L), for all K,L ∈ Kn, has the following inte-
gral representation:

Wp,i(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp,i(K,u), (2.7)

where Sp,i(K, ·) denotes the Boel measure on Sn−1. The measure Sp,i(K, ·) is abso-
lutely continuous with respect to Si(K, ·), and has Radon-Nikodym derivative

dSp,i(K, ·)
dSi(K, ·)

= h(K, ·)1−p, (2.8)

where Si(K, ·) is a regular Boel measure on Sn−1. The measure Sn−1(K, ·) is inde-
pendent of the body K, and is just ordinary Lebesgue measure, S, on Sn−1. Si(B, ·)
denotes the i-th surface area measure of the unit ball in Rn. In fact, Si(B, ·) = S
for all i. The surface area measure S0(K, ·) just is S(K, ·). When i = 0, Sp,i(K, ·)
is written as Sp(K, ·) (see [26] and [27]). A fundamental inequality for mixed p-
quermassintegrals stats that: For K,L ∈ Kn, p > 1 and 0 ≤ i < n− 1,

Wp,i(K,L)n−i ≥Wi(K)n−i−pWi(L)p, (2.9)

with equality if and only if K and L are homothetic. Lp-Brunn-Minkowski inequality
for the quermassintegrals established by Lutwak [21]. If K,L ∈ Kn and p ≥ 1 and
0 ≤ i ≤ n, then

Wi(K +p L)p/(n−i) ≥Wi(K)p/(n−i) +Wi(L)p/(n−i), (2.10)

with equality if and only if K and L are homothetic or L = {o}. Obviously, putting
i = 0 in (2.7), the mixed p-quermassintegrals Wp,i(K,L) become the well-known
Lp-mixed volume Vp(K,L), defined by (see e.g. [27])

Vp(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp(K,u). (2.11)



Orlicz mixed affine quermassintegrals 83

2.3 Orlicz addition and Orlicz linear combination

Definition 2.1 Let m ≥ 2, ϕ ∈ Φ, Kj ∈ Kn and j = 1, . . . ,m, define the Orlicz
addition of K1, . . . ,Km, denoted by K1 +ϕ · · ·+ϕ Km, defined by

h(K1 +ϕ · · ·+ϕ Km, u) = inf

λ > 0 :

m∑
j=1

ϕ

(
h(Kj , x)

λ

)
≤ 1

 , (2.12)

for all x ∈ Rn (see [9] and [40]).
Equivalently, the Orlicz addition K1 +ϕ · · ·+ϕ Km can be defined implicitly by

ϕ

(
h(K1, x)

h(K1 +ϕ · · ·+ϕ Km, x)

)
+ · · ·+ ϕ

(
h(Km, x)

h(K1 +ϕ · · ·+ϕ Km, x)

)
= 1, (2.13)

for all x ∈ Rn.
The Orlicz linear combination on the case m = 2 is defined.
Definition 2.2 Orlicz linear combination +ϕ(K,L, α, β) for K,L ∈ Kn, ϕ ∈ Φ,

and α, β ≥ 0 (not both zero), defined by

α · ϕ
(

h(K,x)

h(+ϕ(K,L, α, β), x)

)
+ β · ϕ

(
h(L, x)

h(+ϕ(K,L, α, β), x)

)
= 1, (2.14)

for all x ∈ Rn (see [9] and [40]).
When ϕ(t) = tp and p ≥ 1, then the Orlicz linear combination +ϕ(K,L, α, β)

changes to the Lp linear combination α ·K+pβ ·L. Moreover, we shall write K+ϕ ε ·L
instead of +ϕ(K,L, 1, ε), for ε ≥ 0 and assume throughout that this is defined by
(2.14), where α = 1, β = ε and ϕ ∈ Φ. It is easy that +ϕ(K,L, 1, 1) = K +ϕ L.

3 Orlicz mixed affine querlmassintegrals

In order to define the Orlicz mixed affine querlmassintegrals, we need define the
mixed affine quermassintegrals and recall the Orlicz quermassintegrals.

Definition 3.1 For K,L ∈ Kn, ϕ ∈ Φ and 0 ≤ i < n, the Orlicz quermassintegral
of K and L, Wϕ,i(K,L), defined by

Wϕ,i(K,L) :=
1

n

∫
Sn−1

ϕ

(
h(L, u)

h(K,u)

)
h(K,u)dSi(K,u). (3.1)

The definition is introduced in the literatures [41] and [43].

Lemma 3.1 If K,L ∈ Kn, 0 ≤ i < n, ε > 0 and ϕ ∈ Φ, then

Wi(K +ϕ ε · L) = Wϕ,i(K +ϕ ε · L,K) + ε ·Wϕ,i(K +ϕ ε · L,L). (3.2)

Proof From (2.3), (3.1) and (2.14), we have for any Q ∈ Kn

Wϕ,i(Q,K) + ε ·Wϕ,i(Q,L)

=
1

n

∫
Sn−1

(
ϕ

(
h(K,u)

h(Q, u)

)
+ ε · ϕ

(
h(L, u)

h(Q, u)

))
h(Q, u)dSi(Q, u)



84 Chang-Jian Zhao and Wing-Sum Cheung

=
1

n

∫
Sn−1

h(Q, u)dSi(Q, u)

= Wi(Q). (3.3)

Putting Q = K +ϕ ε · L in (3.3), (3.2) easy follows. �

Lemma 3.2 If K,L ∈ Kn and ϕ ∈ Φ, then for ε > 0

K +ϕ ε · L→ K, (3.4)

in the Hausdorff metric as ε→ 0+.
In [9], Lemma 3.2 is first given. Next, we give a direct proof.

Proof From (2.14), we have

h(K +ϕ ε · L, u) =
h(K,u)

ϕ−1

(
1− εϕ

(
h(L, u)

h(K +ϕ ε · L, u)

)) .
Since ϕ−1 is continuous, ϕ is bounded and in view of ϕ−1(1) = 1, we have

ϕ−1

(
1− εϕ

(
h(L, u)

h(K +ϕ ε · L, u)

))
→ 1,

as ε→ 0+.
This yields

h(K +ϕ ε · L, u)→ h(K,u)

as ε→ 0+. �

Lemma 3.3 If ϕ ∈ Φ, 0 ≤ i < n and K,L ∈ Kn, then for ε > 0

ϕ′−(1)

n− i
· d
dε

∣∣∣∣
ε=0+

Wi(K +ϕ ε · L) =
1

n

∫
Sn−1

ϕ

(
h(L, u)

h(K,u)

)
h(K,u)n−idSi(K,u). (3.5)

Lemma 3.3 is proved in the literatures [41] and [43].

Definition 3.2 (Mixed affine querlmassintegrals) The mixed affine quermassinte-
gral of convex body K, Φn−j,i(K), defined by

Φn−j,i(K) := ωn

∫
Gn,j

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)

−1/(n−i)

, (3.6)

where 0 ≤ i < j ≤ n and by letting Φ0,i(K) := Wi(K) and Φn,0(K) = Φn(K) = ωn.

When i = 0, vol
(j)
i (K|ξ) becomes the well-known j-dimensional volume volj(K|ξ).

Obviously, when i = 0, Φn−j,i(K) = Φn−j,0(K) = Φn−j(K), when i = 0 and j = n,
Φn−j,i(K) = Φ0,0(K) = V (K).

Lemma 3.4 [9] If K,L ∈ Kn, ε > 0 and ϕ ∈ Φ, then

(K +ϕ ε · L)|ξ = K|ξ +ϕ ε · L|ξ. (3.7)
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In order to define the Orlicz mixed affine querlmassintegrals, we still need calculate
the first order variation of the mixed affine querlmassintegrals.

Lemma 3.5 If ϕ ∈ Φ, 0 ≤ i < j ≤ n and K,L ∈ Kn, then for any ε > 0

d

dε

∣∣∣∣
ε=0+

Φn−j,i(K +ϕ ε · L) =
j − i
ϕ′−(1)

Φn−j,i(K)1+n−iΦϕ,n−j,i(K,L)i−n. (3.8)

Proof On the one hand, from Lemma 3.3, we have

d

dε

∣∣∣∣
ε=0+

∫
Gn,j

vol
(j)
i ((K+ϕ ε ·L)|ξ)i−ndµj(ξ)

= lim
ε→0+

∫
Gn,j

vol
(j)
i ((K +ϕ ε · L)|ξ)i−n − vol

(j)
i (K|ξ)i−n

ε
dµj(ξ)

= (i−n)

∫
Gn,j

(
volj(K|ξ)i−n−1 · d

dε

∣∣∣∣
ε=0+

∫
Gn,j

vol
(j)
i ((K +ϕ ε · L)|ξ)dµj(ξ)

)
dµj(ξ)

=
(i− n)(j − i)

ϕ′−(1)

∫
Gn,j

volji (K|ξ)
i−n−1W

(j)
ϕ,i (K|ξ, L|ξ)dµj(ξ). (3.9)

and on the other hand, from (1.9), (3.6) and (3.9), we obtain

d

dε

∣∣∣∣
ε=0+

Φn−j,i(K+ϕε·L) =
ωn
ωj
· d
dε

∣∣∣∣
ε=0+

[∫
Gn,j

vol
(j)
i ((K +ϕ ε · L)|ξ)i−ndµj(ξ)

]1/(i−n)

=
ωn

(i− n)ωj

(∫
Gn,j

vol
(j)
i (K|ξ)i−ndµj(ξ)

)(1+n−i)/(i−n)

× d

dε

∣∣∣∣
ε=0+

∫
Gn,j

vol
(j)
i ((K +ϕ ε · L)|ξ)i−ndµj(ξ)

=
j − i
ϕ′−(1)

ωn
ωj

(∫
Gn,j

vol
(j)
i (K|ξ)i−ndµj(ξ)

)(1+n−i)/(i−n)

×
∫
Gn,j

W
(j)
ϕ,i (K|ξ, L|ξ)

vol
(j)
i (K|ξ)

vol
(j)
i (K|ξ)i−ndµj(ξ)

=
j − i
ϕ′−(1)

Φn−j,i(K)1+n−iΦϕ,n−j,i(K,L)i−n. �

From the proof of Lemma 3.5, we find a new affine geometric quantity, which is
defined by:
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Definition 3.3 If ϕ ∈ Φ, 0 ≤ i < j < n and K,L ∈ Kn, then Orlicz mixed affine
querlmassintegral of K and L, Φϕ,n−j,i(K,L), defined by

Φϕ,n−j,i(K,L) := ωn

∫
Gn,j

W
(j)
ϕ,i (K|ξ, L|ξ)

vol
(j)
i (K|ξ)

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)

−1/(n−i)

.

(3.10)
Specifically, for j = n, we agreed:

Φϕ,0,i(K,L) =

(
Wi(K)

Wϕ,i(K,L)

)1/(n−i)

Wi(K).

Lemma 3.6 If K,L ∈ Kn, 0 ≤ i < j ≤ n and ϕ ∈ Φ, then

Φϕ,n−j,i(K,K) =
1

ϕ(1)1/(n−i) Φn−j,i(K). (3.11)

Proof The definition of the Orlicz mixed affine quermassintegrals, together with
(3.6) and (3.10), (3.11) easy follows. �

Remark 3.1 When ϕ(t) = tp, 1 < p <∞, we write Φϕ,n−j,i(K,L) as Φp,n−j,i(K,L),
and call it Lp mixed affine quermassintegral of K and L, and

Φp,n−j,i(K,L) = ωn

∫
Gn,j

W
(j)
p,i (K|ξ, L|ξ)

vol
(j)
i (K|ξ)

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)

−1/(n−i)

.

When i = 0, write Φp,n−j,i(K,L) as Φp,n−j,0(K,L) = Φp,n−j(K,L) and call it Lp
affine quermassintegral of K and L, and

Φp,n−j(K,L) = ωn

[∫
Gn,j

V
(j)
p (K|ξ, L|ξ)
volj(K|ξ)

(
volj(K|ξ)

ωj

)−n
dµj(ξ)

]−1/n

,

where V
(j)
p (K|ξ, L|ξ) denotes the j-dimensional Lp mixed volumne of K|ξ and L|ξ.

When ϕ(t) = t, write Φϕ,n−j,i(K,L) as Φ1,n−j,i(K,L), and call the i-th mixed affine
quermassintegral of K and L, and

Φ1,n−j,i(K,L) = ωn

∫
Gn,j

W
(j)
i (K|ξ, L|ξ)
vol

(j)
i (K|ξ)

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)

−1/(n−i)

,

where W
(j)
i (K|ξ, L|ξ) denotes the j-dimensional mixed quermassintegral of K|ξ and

L|ξ. Obviously, when K = L, Φ1,n−j,i(K,L) becomes the mixed affine quermassinte-
grals Φn−j,i(K).

Lemma 3.7 [9] If K,L ∈ Kn, ϕ ∈ Φ and any g ∈ SL(n), then for ε > 0

g(K +ϕ ε · L) = (gK) +ϕ ε · (gL). (3.12)
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In the following, we will prove that Orlicz mixed affine querlmassintegral Φϕ,n−j,i(K,L)
is invariant under simultaneous unimodular centro-affine transformation.

Lemma 3.8 If K,L ∈ Kn, 0 ≤ i < j ≤ n, ϕ ∈ Φ and any g ∈ SL(n), then

Φϕ,n−j,i(gK, gL) = Φϕ,n−j,i(K,L).

Proof Suppose ξ ∈ Gn,j and Sj−1 = Sn−1|ξ. For any g ∈ SL(n), u ∈ Sj−1 and
Q ∈ Sn−1, we have

h(gQ, u) = h(gQ|ξ, u). (3.13)

From (2.1), (3.13) and the Definition 3.1, we obtain

W
(j)
ϕ,i (gK|ξ, gL|ξ)

=
1

j

∫
Sn−1|ξ

ϕ

(
h(gL|ξ, u)

h(gK|ξ, u)

)
h(gK|ξ, u)dSi(gK|ξ, u)

=
1

j

∫
Sn−1

ϕ

(
h(L, gtu)

h(K, gtu)

)
h(K, gtu)dSi(K, g

tu)

=
1

j

∫
Sn−1|ξ

ϕ

(
h(L|ξ, gtu)

h(K|ξ, gtu)

)
h(K|ξ, gtu)dSi(K|ξ, gtu)

= W
(j)
ϕ,i (K|ξ, L|ξ). (3.14)

On the other hand, from (3.10) and (3.14), we have

Φϕ,n−j,i(gK, gL)

= ωn

∫
Gn,j

W
(j)
ϕ,i (gK|ξ, gL|ξ)

vol
(j)
i (gK|ξ)

(
vol

(j)
i (gK|ξ)
ωj

)−(n−i)

dµj(ξ)

−1/(n−i)

= ωn

∫
Gn,j

W
(j)
ϕ,i (K|ξ, L|ξ)

vol
(j)
i (K|ξ)

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)

−1/(n−i)

= Φϕ,n−j,i(K,L). �

Next, we give another direct proof of Lemma 3.8.

Second proof From Lemma 3.5 and Lemma 3.7, we have for g ∈ SL(n),

Φϕ,n−j,i(gK, gL)

=

(
ϕ′−(1)

(j − i)Φn−j,i(gK)1+n−i ·
d

dε

∣∣∣∣
ε=0+

Φn−j,i(gK +ϕ ε · gL)

)−1/(n−i)

=

(
ϕ′−(1)

(j − i)Φn−j,i(gK)1+n−i ·
d

dε

∣∣∣∣
ε=0+

Φn−j,i(g(K +ϕ ε · L))

)−1/(n−i)
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=

(
ϕ′−(1)

(j − i)Φn−j,i(K)1+n−i ·
d

dε

∣∣∣∣
ε=0+

Φn−j,i(K +ϕ ε · L)

)−1/(n−i)

= Φϕ,n−j,i(K,L). �

We need also the following Lemma to prove our main results.

Lemma 3.9 (Jensen’s inequality) Let µ be a probability measure on a space X
and g : X → I ⊂ R is a µ-integrable function, where I is a possibly infinite interval.
If φ : I → R is a convex function, then∫

X

φ(g(x))dµ(x) ≥ φ
(∫

X

g(x)dµ(x)

)
. (3.15)

If φ is strictly convex, equality holds if and only if g(x) is constant for µ-almost all
x ∈ X (see [15, p.165]).

4 Orlicz Minkowski inequality for the Orlicz mixed affine
quermassintegrals

Theorem 4.1 (Orlicz-Minkowski inequality) If ϕ ∈ Φ, 0 ≤ i < j ≤ n and
K,L ∈ Kn, then(

Φn−j,i(K)

Φϕ,n−j,i(K,L)

)n−i
≥ ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
. (4.1)

If ϕ is strictly convex, equality holds if and only if K and L are homothetic.

Proof When j = n, (4.1) becomes the Orlicz Minkowski inequality (1.12) for the
Orlicz quermassintegrals, hence we assume 0 ≤ i < j < n. Since∫

Gn,j

dν(ξ) =

∫
Gn,j

volji (K|ξ)−(n−i)∫
Gn,j

volji (K|ξ)−(n−i)dµj(ξ)
dµj(ξ) = 1,

so the above equation defines a Borel probability measure ν on Gn,j , nemely:

dν(ξ) =
volji (K|ξ)−(n−i)∫

Gn,j
volji (K|ξ)−(n−i)dµj(ξ)

dµj(ξ). (4.2)

From (1.12), (3.6), (3.10), (4.2), Jensen integral inequality and Hölder integral in-
equality, we obtain

(
Φn−j,i(K)

Φϕ,n−j,i(K,L)

)n−i
=

∫
Gn,j

W
(j)
ϕ,i (K|ξ, L|ξ)

vol
(j)
i (K|ξ)

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)

∫
Gn,j

(
vol

(j)
i (K|ξ)
ωj

)−(n−i)

dµj(ξ)
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=
∫
Gn,j

W
(j)
ϕ,i(K|ξ,L|ξ)
vol

(j)
i (K|ξ)

dν

≥
∫
Gn,j

ϕ

((
vol

(j)
i (L|ξ)

vol
(j)
i (K|ξ)

)1/(j−i)
)
dν ≥ ϕ

(∫
Gn,j

(
volj(L|ξ)
volj(K|ξ)

)1/(j−i)
dν

)
= ϕ

( ∫
Gn,j

vol
(j)
i (K|ξ)(−(j−i)(n−i)−1)/(j−i)vol

(j)
i (L|ξ)1/(j−i)dµj(ξ)∫

Gn,j
vol

(j)
i (K|ξ)−(n−i)dµj(ξ)

)
≥ ϕ

 (∫
Gn,j

vol
(j)
i (K|ξ)i−ndµj(ξ)

) (j−i)(n−i)+1
(j−i)(n−i)

∫
Gn,j

volj(K|ξ)i−ndµj(ξ)
(∫

Gn,j
vol

(j)
i (L|ξ)i−ndµj(ξ)

) 1
(j−i)(n−i)


= ϕ

((
Φn−j,i(L)
Φn−j,i(K)

)1/(j−i)
)
.

Next, we discuss the equal condition of (4.1). If ϕ is strictly convex, suppose that K
and L are homothetic, i. e. there exist λ > 0 such that L = λK. Hence(

Φn−j,i(K)

Φϕ,n−j,i(K,L)

)n−i
=

(
Φϕ,n−j,i(K,λK)

Φn−j,i(K)

)−(n−i)

=

(
ϕ(λ)−1/(n−i)Φn−j,i(K)

Φn−j,i(K)

)−(n−i)

= ϕ(λ)

= ϕ

((
Φn−j,i(λK)

Φn−j,i(K)

)1/(j−i)
)

= ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
.

This implies the equality in (4.1) holds.
On the other hand, suppose the equality holds in (4.1), then these three inequalities

in the above proof must satisfy the equal sign. Since the first inequality in the above
proof is following:

W
(j)
ϕ,i (K|ξ, L|ξ)

vol
(j)
i (K|ξ)

≥ ϕ

(vol
(j)
i (L|ξ)

volji (K|ξ)

)1/(j−i)
 .

When ϕ is strictly convex, if the equality holds, form the equality condition of Orlicz-
Minkowski inequality (1.12), yields that K|ξ and L|ξ must be homothetic. The second
inequality in the above proof is following:

∫
Gn,j

ϕ

( vol
(j)
i (L|ξ)

vol
(j)
i (K|ξ)

)1/(j−i)
 dν ≥ ϕ

∫
Gn,j

(
vol

(j)
i (L|ξ)

vol
(j)
i (K|ξ)

)1/(j−i)

dν

 .

When ϕ is strictly convex, if the equality holds, form the equality condition of Jensen

inequality (3.15), then
vol

(j)
i (L|ξ)

vol
(j)
i (K|ξ)

must be a constant, this yields that K|ξ and L|ξ must

be homothetic. In this proof, the third inequality is obtained by applying the Hölder
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inequality. Form the equality condition of Hölder inequality, yields that equality holds

vol
(j)
i (K|ξ) and vol

(j)
i (L|ξ) must be proportional, namely K|ξ and L|ξ be homothetic.

Combinations of these equal conditions, it follows that equality in (4.1) holds, if
ϕ is strictly convex, equality holds if and only if K and L are homothetic. �

Corollary 4.1 (Lp Minkowski inequality) If K,L ∈ Kn, 1 ≤ p <∞ and 0 ≤ i <
j ≤ n, then (

Φn−j,i(K)

Φp,n−j,i(K,L)

)n−i
≥
(

Φn−j,i(L)

Φn−j,i(K)

)p/(j−i)
. (4.3)

If ϕ is strictly convex, equality holds if and only if K and L are homothetic.

Proof This follows immediately from (4.1) with ϕ(t) = tp, 1 ≤ p <∞. �
Putting j = n in (4.3), (4.3) becomes the Lp Minkowski inequality (2.9) for the

quermassintegrals. Putting i = 0 and j = n in (4.3), (4.3) becomes the well-known
Lp Minkowski inequality for volumes.

Corollary 4.2 (Orlicz Minkowski inequality) If K,L ∈ Kn and ϕ ∈ Φ, then

Vϕ(K,L) ≥ V (K)ϕ

((
V (L)

V (K)

)1/n
)
. (4.4)

If ϕ is strictly convex, equality holds if and only if K and L are homothetic (see [9]
and [40]).

Proof This follows immediately from (4.1) with i = 0 and j = n. �

The following uniqueness is a direct consequence of the Orlicz-Minkoswki inequal-
ity for the Orlicz mixed affine quermassintegrals.

Theorem 4.2 If ϕ ∈ Φ and is strictly convex, 0 ≤ i < j ≤ n and M⊂ Kn such
that K,L ∈M. If

Φϕ,n−j,i(M,K) = Φϕ,n−j,i(M,L), for all M ∈M (4.5)

or
Φϕ,n−j,i(K,M)

Φn−j,i(K)
=

Φϕ,n−j,i(L,M)

Φn−j,i(L)
, for all M ∈M (4.6)

then K = L.

Proof Suppose (4.5) hold. Taking K for M , then from Lemma 3.6 and Theorem
4.1, we obtain

ϕ(1)Φn−j,i(K)−(n−i) = Φϕ,n−j,i(K,L)−(n−i) ≥ Φn−j,i(K)−(n−i)ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
,

with equality if and only if K and L are homothetic. Hence

ϕ(1) ≥ ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
,

with equality if and only if K and L are homothetic. Since ϕ is increasing function on (0,∞),
this follows that

Φn−j,i(K) ≥ Φn−j,i(L),
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with equality if and only if K and L are homothetic. On the other hand, if taking L for M ,
we similar get Φn−j,i(K) ≤ Φn−j,i(L), with equality if and only if K and L are homothetic.
Hence Φn−j,i(K) = Φn−j,i(L), and K and L are homothetic, it follows that K and L must
be equal.

Suppose (4.6) hold. Taking L for M , then from Lemma 3.6 and Theorem 4.1, we obtain

ϕ(1) =
Φn−j,i(K)n−i

Φϕ,n−j,i(K,L)n−i
≥ ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
,

with equality if and only if K and L are homothetic. Hence

ϕ(1) ≥ ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
,

with equality if and only if K and L are homothetic. Since ϕ is decreasing function on
(0,∞), this follows that

Φn−j,i(K) ≥ Φn−j,i(L),

with equality if and only if K and L are homothetic. On the other hand, if taking L for M ,
we similar get Φn−j,i(K) ≤ Φn−j,i(L), with equality if and only if K and L are homothetic.
Hence Φn−j,i(K) = Φn−j,i(L), and K and L are homothetic, it follows that K and L must
be equal. �

Corollary 4.3 If ϕ ∈ Φ and is strictly convex, 0 < j ≤ n and M ⊂ Kn such that
K,L ∈M. If

Φϕ,n−j(M,K) = Φϕ,n−j(M,L), for all M ∈M

or
Φϕ,n−j(K,M)

Φn−j(K)
=

Φϕ,n−j(L,M)

Φn−j(L)
, for all M ∈M

then K = L.

Proof This follows immediately from Theorem 4.2 with i = 0. �

Corollary 4.4 If ϕ ∈ Φ and is strictly convex, 0 ≤ i ≤ n and M ⊂ Kn such that
K,L ∈M. If

Wϕ,i(M,K) = Wϕ,i(M,L), for all M ∈M

or
Wϕ,i(K,M)

Wi(K)
=
Wϕ,i(L,M)

Wi(L)
, for all M ∈M

then K = L.

Proof This follows immediately from Theorem 4.2 with j = n. �

Corollary 4.5 If ϕ ∈ Φ and is strictly convex and M⊂ Kn such that K,L ∈M. If

Vϕ(M,K) = Vϕ(M,L), for all M ∈M

or
Vϕ(K,M)

V (K)
=
Vϕ(L,M)

V (L)
, for all M ∈M

then K = L.

Proof This follows immediately from Theorem 4.2 with j = n and i = 0. �
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5 Orlicz-Brunn-Minkoswki inequality for the Orlicz mixed
affine quermassintegrals

Lemma 5.1 If K,L ∈ Kn, 0 ≤ i < j ≤ n and ϕ ∈ Φ, then for any ε > 0

1 =

(
Φn−j,i(K +ϕ ε · L)

Φϕ,n−j,i(K +ϕ ε · L,K)

)n−i

+ ε ·
(

Φn−j,i(K +ϕ ε · L)

Φϕ,n−j,i(K +ϕ ε · L,L)

)n−i

. (5.1)

Proof From (3.1), Lemma 3.1 and Lemma 3.4, we have

W
(j)
ϕ,i ((K +ϕ ε · L)|ξ,K|ξ) + εW

(j)
ϕ,i ((K +ϕ ε · L)|ξ, L|ξ)

= W
(j)
ϕ,i ((K|ξ) +ϕ ε · (L|ξ),K|ξ) + εW

(j)
ϕ,i ((K|ξ) +ϕ ε · (L|ξ), L|ξ)

= W
(j)
ϕ,i ((K|ξ) +ϕ ε · (L|ξ), (K|ξ) +ϕ ε · (L|ξ))

= vol
(j)
i ((K|ξ) +ϕ ε · (L|ξ))

= vol
(j)
i ((K +ϕ ε · L)|ξ). (5.2)

Let Q = K +ϕ ε · L, from (3.6), (3.10) and (5.2), we have

Φϕ,n−j,i(Q,K)−(n−i)+ε ·Φϕ,n−j,i(Q,L)−(n−i)

=
1

ωn−i
n

∫
Gn,j

W
(j)
ϕ,i (Q|ξ,K|ξ) + ε ·W (j)

ϕ,i (Q|ξ, L|ξ)
vol

(j)
i (Q|ξ)

(
vol

(j)
i (Q|ξ)
ωj

)−(n−i)

dµj(ξ)

=
1

ωn−i
n

∫
Gn,j

(
volji (Q|ξ)

ωj

)−(n−i)

dµj(ξ)

= Φn−j,i(Q)−(n−i).

The proof is complete. �

Lemma 5.2 [50] Let K,L ∈ Kn, ε > 0 and ϕ ∈ Φ.
(1) If K and L are homothetic, then K and K +ϕ ε · L are homothetic.
(2) If K and K +ϕ ε · L are homothetic, then K and L are homothetic.

Theorem 5.1 (Orlicz-Brunn-Minkowski inequality) If K,L ∈ Kn, ε > 0, 0 ≤ i < j ≤ n
and ϕ ∈ Φ, then

1 ≥ ϕ

((
Φn−j,i(K)

Φn−j,i(K +ϕ ε · L)

)1/(j−i)
)

+ ε · ϕ

((
Φn−j,i(L)

Φn−j,i(K +ϕ ε · L)

)1/(j−i)
)
. (5.3)

If ϕ is strictly convex, equality holds if and only if K and L are homothetic.

Proof From Lemma 5.1 and Theorem 4.1, we obtain

1 =

(
Φn−j,i(K +ϕ ε · L)

Φϕ,n−j,i(K +ϕ ε · L,K)

)n−i

+ ε ·
(

Φn−j,i(K +ϕ ε · L)

Φϕ,n−j,i(K +ϕ ε · L,L)

)n−i

≥ ϕ

((
Φn−j,i(K)

Φn−j,i(K +ϕ ε · L)

)1/(j−i)
)

+ ε · ϕ

((
Φn−j,i(L)

Φn−j,i(K +ϕ ε · L)

)1/(j−i)
)
.

If ϕ is strictly convex, from equality condition of the Orlicz-Minkowski inequality, the equality
holds if and only if K and K +ϕ ε · L are homothetic, and L and K +ϕ ε · L are homothetic
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and combine with Lemma 5.2, this yields that if ϕ is strictly convex, equality holds in (5.3)
if and only if K and L are homothetic. �

Corollary 5.1 (Lp- Brunn-Minkowski inequality) If K,L ∈ Kn, 1 ≤ p <∞, ε > 0 and
0 ≤ i < j ≤ n, then

Φn−j,i(K +p ε · L)p/(j−i) ≥ Φn−j,i(K)p/(j−i) + ε · Φn−j,i(L)p/(j−i), (5.4)

with equality if and only if K and L are homothetic.

Proof This follows immediately from (5.3) with ϕ(t) = tp, 1 ≤ p <∞. �
Putting j = n, i = 0 and ε = 1 in (5.4), (5.4) becomes Lutwak’s Lp dual Brunn-

Minkowski inequality (see [21])

V (K +p L)p/n ≥ V (K)p/n + V (L)p/n, (5.5)

with equality if and only if K and L are homothetic.

Corollary 5.2 (Orlicz Brunn-Minkowski inequality) If K,L ∈ Kn and ϕ ∈ Φ, then

1 ≥ ϕ

((
V (K)

V (K +ϕ L)

)1/n
)

+

((
V (L)

V (K+̂ϕL)

)1/n
)
. (5.6)

If ϕ is strictly convex, equality holds if and only if K and L are homothetic (see [9]and [40]).

Proof This follows immediately from (5.3) with ε = 1, i = 0 and j = n. �

Corollary 5.3 If ϕ ∈ Φ, 0 ≤ i < j ≤ n and K,L ∈ Kn, then(
Φn−j,i(K)

Φϕ,n−j,i(K,L)

)n−i

≥ ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
. (5.7)

If ϕ is strictly convex, equality holds if and only if K and L are homothetic.

Proof Let
Kε = K +ϕ ε · L.

From Lemma 3.2, Lemma 3.5 and (5.3), we obtain

j − i
ϕ′−(1)

Φn−j,i(K)1+n−iΦϕ,n−j,i(K,L)−(n−i) =
d

dε

∣∣∣∣
ε=0+

Φn−j,i(Kε)

= lim
ε→0+

Φn−j,i(Kε)− Φn−j,i(K)

ε

= lim
ε→0+

1− Φn−j,i(K)

Φn−j,i(Kε)

ϕ(1)− ϕ

((
Φn−j,i(K)

Φn−j,i(Kε)

)1/(j−i)
) · 1− ϕ

((
Φn−j,i(K)

Φn−j,i(Kε)

)1/(j−i)
)

ε
· Φn−j,i(Kε)

= lim
ε→0+

1− t
ϕ(1)− ϕ

(
t1/(j−i)

) · lim
ε→0+

1− ϕ

((
Φn−j,i(K)

Φn−j,i(Kε)

)1/(j−i)
)

ε
· lim
ε→0+

Φn−j,i(Kε)

≥ j − i
ϕ′−(1)

· lim
ε→0+

ϕ

((
Φn−j,i(L)

Φn−j,i(Kε)

)1/(j−i)
)
· lim
ε→0+

Φn−j,i(Kε)
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=
j − i
ϕ′−(1)

· ϕ

((
Φn−j,i(L)

Φn−j,i(K)

)1/(j−i)
)
· Φn−j,i(K). (5.8)

From (5.8), (5.7) easy follows.

Corollary 5.4 If ϕ ∈ Φ, 0 < j ≤ n and K,L ∈ Kn, then(
Φn−j(K)

Φϕ,n−j(K,L)

)n

≥ ϕ

((
Φn−j(L)

Φn−j(K)

)1/j
)

⇔ 1 ≥ ϕ

((
Φn−j(K)

Φn−j(K +ϕ L)

)1/j
)

+ ϕ

((
Φn−j(L)

Φn−j(K +ϕ L)

)1/j
)
.

If ϕ is strictly convex, equality holds if and only if K and L are homothetic.

Corollary 5.5 If ϕ ∈ Φ, 0 ≤ i ≤ n and K,L ∈ Kn, then

Wϕ,i(K,L)

Wi(K)
≥ ϕ

((
Wi(L)

Wi(K)

)1/(n−i)
)

⇔ 1 ≥ ϕ

((
Wi(K)

Wi(K +ϕ L)

)1/(n−i)
)

+ ϕ

((
Wi(L)

Wi(K +ϕ L)

)1/(n−i)
)
.

If ϕ is strictly convex, equality holds if and only if K and L are homothetic.
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ometry, Birkhäuser, Basel, 1979, 13-59.
[36] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University

Press, 1993.
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