On the existence of convex functions
on Finsler manifolds

S. V. Sabau and P. Chansangiam

Abstract. We show that a non-compact (forward) complete Finsler mani-
fold whose Holmes-Thompson volume is finite admits no non-trivial convex
functions. We apply this result to some Finsler manifolds whose Busemann
function is convex.
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1 Introduction

Finsler manifolds are a natural generalization of Riemannian ones in the sense that the
metric depends not only on the point, but on the direction as well. This generalization
implies the non-reversibility of geodesics, the difficulty of defining angles and many
other particular features that distinguish them from Riemannian manifolds. Even
though classical Finsler geometry was mainly concerned with the local aspects of the
theory, recently a great deal of effort was made to obtain global results in the geometry
of Finsler manifolds ([3], [13], [15], [17] and many others).

In a previous paper [16], by extending the results in [9], we have studied the
geometry and topology of Finsler manifolds that admit convex functions, showing
that such manifolds are subject to some topological restrictions. We recall that a
function f : (M, F) — R, defined on a (forward) complete Finsler manifold (M, F), is
called convez if and only if along every geodesic v : [a, b] — M, the composed function
p:= fory:[a,b] = R is convex, that is

(1.1) fov[I=Na+X] <1 =XN)foy(a)+Afory(®d), 0<A<LI.

If the above inequality is strict for all geodesics 7y, the function f is called strictly
conver, and if the equality holds good for all geodesics vy, then f is called linear.
A function f : M — R is called locally non-constant if it is non-constant on any
open subset U of M, and locally constant otherwise. We are interested in locally
non-constant convex functions on M.
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It can be easily seen that any non-compact smooth manifold M always admits a
complete Riemannian or Finsler metric and a non-trivial smooth function which is
convex with respect to this metric (see [9] for the Riemannian case and [16] for the
Finsler case).

On the other hand, it was shown by Yau (see [20]) that in the case of a non-
compact manifold M, endowed with an a priori given complete Riemannian metric g,
there is no non-trivial continuous convex function on (M, g) if the Riemannian volume
of M is finite.

In the present paper, we are going to generalize Yau’s result to the case of Finsler
manifolds, namely, if the non-compact manifold M is endowed with an a priori given
(forward) complete Finsler metric, what are the conditions on (M, F) for the existence
of non-trivial convex functions.

Recall that in the case of a Finsler manifold (we do not assume our Finsler norms
to be absolute homogeneous), the induced volume is not unique as in the Riemannian
case and hence several choices are available (see Section 3). The Busemann-Hausdorff
and Holmes-Thompson volumes are the most well known ones.

Here is our main result.

Theorem 1.1. Let (M, F) be a (forward) complete non-compact Finsler manifold
with finite Holmes-Thompson volume. Then any convez function f : (M, F) — R
must be constant.

Since all volume forms are bi-Lipschitz equivalent in the absolute homogeneous
case (see for instance [4]), then the result above holds good for any Finslerian volume,
that is we have

Corollary 1.2. Let (M, F) be an absolute homogeneous complete non-compact Finsler
manifold endowed with a Finslerian volume measure.

If the Finsler volume of (M, F) is finite, then any convex function f : (M, F) — R
must be constant.

Our present results show that there are many topological restrictions on (forward)
complete non-copmact Finsler manifolds with infinite Holmes-Thompson volume. In-
deed, the topology of Finsler manifolds admitting convex functions was studied in
detail in [16], hence the topological structure stated in the main three theorems in
[16] hold good for (forward) complete non-copmact Finsler manifolds with infinite
Holmes-Thompson volume.

Here is the structure of the paper.

In Section 2 we recall the basic setting of Finsler manifolds (M, F'). In special, we
present here the properties of the Riemannian volume of the indicatrix SM and the
invariance of this volume under the geodesic flow of F'.

In Section 3 we introduce the Busemann-Hausdorff and the Holmes-Thompson
volumes of a Finsler manifold (M, F'), respectively, and point out the relation with
the volume of the indicatrix. In particular, if the Holmes-Thompson volume of (M, F')
is finite, then the total measure of the indicatrix SM is also finite (Proposition 3.2).

Section 4 is where we prove Theorem 1.1 by making use of Lemmas 4.1, 4.2, 4.3.
In the proof of Lemma 4.3 we use the Poincaré recurrence theorem ([14]).

Finally, in Section 5, we apply Theorem 1.1 to the case of complete Berwald spaces
of non-negative flag curvature and obtain that these kind of spaces must have infi-
nite Holmes-Thompson volume (Corollary 5.1). More generaly, a (forward) complete
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Finsler manifold of non-negative flag curvature whose Finsler-Minkowski norm F, is
2-uniformly smooth, at each point x € M, must also have infinite Holmes-Thompson
volume (Corollary 5.2).

2 Finsler manifolds

Let (M, F) be a (connected) n-dimensional Finsler manifold (see [3] for basics of
Finsler geometry).

The fundamental function F' of a Finsler structure (M, F') determines and it is
determined by the (tangent) indicatriz, or the total space of the unit tangent bundle
of F', namely

SM:={ueTM:F(u) =1} = Ugep S: M

which is a smooth hypersurface of the tangent space TM. At each x € M we also
have the indicatriz at

SeM:={veT, M| F(z,v)=1} =XpNT, M

which is a smooth, closed, strictly convex hypersurface in T, M.

To give a Finsler structure (M, F) is therefore equivalent to giving a smooth
hypersurface SM C TM for which the canonical projection # : SM — M is a
surjective submersion and having the property that for each z € M, the w-fiber
S, M = 7=1(z) is strictly convex including the origin O, € T, M.

Recall that the geodesic spray of (M, F) is the vector field S, on the tangent space
TM, given by

B 0

where G* : TM — R are the spray coefficients of (M, F). For any u = (x,y) € TM,
the geodesic flow of (M, F) is the one parameter group of S, i.e.

S =y

¢:(—e,e) xU =TM, ur di(u).
The following result is well known.
Lemma 2.1 ([18]). We have
1.
%F(@(y)) = dF(S4,y»)) =0,
that is F(¢p:(y)) is constant.

2. For any t, we have
d * _ 1 * 2
= 6] = za|(enF?),
where w = g;;(z,y)y’ dz’ is the Hilbert form of (M, F).

It follows
(¢7)dw = dw.
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3 Finslerian volumes

In order to fix notations, we recall that the FEuclidean volume form in R™, with the

coordinates (z!,2?%,...,2"), is the n-form

dVn = dztdz? ... dz",

and the FEuclidean volume of a bounded open set {2 C R™ is given by

(3.1) Vol() = Volgn (Q) = /

dVgn = / dztdz? ... dz™.
Q Q

More generally, let us consider a Riemannian manifold (M, g) with the Riemannian
volume form

dVy = \/gdz*da? ... dz",
and hence the Riemannian volume of (M, g) can be computed as
Vol(M, g) = / dV, = / Vodrtda? ... da" = / 016%...0m,
M M M

where {6,602, ...,6"} is a g-orthonormal co-frame on M.
We remark that this Riemannian volume is uniquely determined by the following
two properties:

1. The Riemannian volume in R™ is the standard Euclidean volume (3.1).
2. The volume is monotone with the metric.

On the other hand, in the Finslerian case, this is not true anymore. Indeed, even if
we ask for the Finslerian volume to satisfy the same two properties above, the volume
is not uniquely defined, but depends on the choice of a positive function on M. More
precisely, a volume form dp on an n-dimensional Finsler manifold (M, F) is a global

defined, non-degenerate n-form on M written in the local coordinates (z!,z2,..., ™)
of M as
(3.2) dp = o(x)dz A - Adx™,

where o is a positive function on M (see [4] for details in the absolute homogeneous
case).

Depending on the choice of o several different volume forms are known: the Buse-
mann volume, the Holmes-Thompson volume, etc.

The Busemann-Hausdorff volume form is defined as

(3.3) dVpy := opy(x)dz' A--- A da™,
where

~ Vol(B"(1))
(3.4) OBH (a:) = 7\/01(3;1]\4) s

here B"(1) is the Euclidean unit n-ball, BXM = {y : F(z,y) = 1} is the Finslerian
ball and Vol the canonical Euclidean volume.
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The Busemann-Hausdorff volume of the Finsler manifold (M, F') is defined by

VOIBH(M,F):/ dVBH.
M

Using the Brunn-Minkowski theory, Busemann showed in [5] that the Busemann-
Hausdorff volume of an n-dimensional normed space equals its n-dimensional Haus-
dorff volume, hence the naming.

However, we point out that except for the case of absolute homogeneous Finsler
manifolds, the Busemann-Hausdorff volume does not have the expected geometrical
properties, and hence it is not suitable for the study of Finsler manifolds (see [1] for
a description of these properties and the main issues that appear; see also [7] for the
Berwald case when the Busemann-Hausdorff volume has some special properties).

Remark 3.1. Observe that the n-ball Euclidean volume is

1 1 T
Vol(B"(1)) = —Vol(S™™!) = —Vol(S"?) / sin” 2 (t)dt.
n n 0
Another volume form naturally associated to a Finsler structure is the Holmes-
Thompson volume defined by

_ Vol(ByM,g.) 1

and the Holmes-Thompson volume of the Finsler manifold (M, F) is defined as

VOlHT(M, F) = / dVHT
M
This volume was introduced by Holmes and Thompson in [10] from geometrical
reasons as the dual functor of Busemann-Hausdorff volume. It has better geometrical
properties than the Busemann-Hausdorff volume and hence we consider it appropiate
for the study of Finsler manifolds.

Remark 3.2. 1. If (M, F) is an absolute homogeneous Finsler manifold, then the
Busemann-Hausdorff volume is a Hausdorff measure of M, and we have

VOIHT(M, F) S VOIBH(M7 F)
(see [8)]).

2. If (M, F) is not absolute homogeneous, then the inequality above is not true
anymore. Indeed, for instance let (M, F = «a + ) be a Randers space. Then,
one can easily see that

volpy (M, F) = / (1= B2(2))dVi, < vol(M, a) = voln(M, F),
M

where b*(x) = a;;(z)b'b?, and vol(M, ) is the Riemannian volume of M (see

[18]).
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In the case of a smooth surface endowed with a positive defined slope metric
(M,F = W) we have

volpu (M, F) < volyr (M, F) < vol(M, a),

where a and § are the same as above (see [6]).

More generally, in the case of an («, 3), one can compute explicitly the Finslerian
volume in terms of the Riemannian volume (see [2]). Indeed, if (M, F(a, B)) is
an («, 8) metric on an n-dimensional manifold M, one denotes

1(b) = Jo sin" 2 (t)dt

T sin”~2(t)
(36) f b( bcos(t))"dt

o sin" T2 ()T (beos t)dt
9(b) == Josin" A ()dt

where F = ad(s), s = 8/a, and
T(s) = ¢(¢ — 5¢')"2[(¢ — 5¢') + (b* — %)¢"].

Then the Busemann-Hausdorff and Holmes-Thompson volume forms are given
by
dVey = f(b)dV,, and dVyr = g(b)dV,,

respectively, where f and g are given by (3.6).

It is remarkable that if the function T'(s) — 1 is an odd function of s, then
dVyr = dV,. This is the case of Randers metrics.

We will consider now the volume induced by the Hilbert form
w = gij(z,y)y da’ = p;da’

of the Finsler manifold (M, F).
It follows

dw = %gjf Rzt A da? — gijdx' A dy’,

and hence, we have

n(n+1)

(dw)* =dw - ANdw=(=1)"=2 nldetg;(z,y) de" A...dz" Ndy' A...dy"

The Hilbert form w induces a volume form on T'M \ {0} defined by

7L(71.+1) 1

v, := (-1) (dw) = det |g(z,y)| dx A dy,

where det |g(x,y)| is the determinant of the matrix g;;(z,y).
Observe that the volume of (M, F') defined as
o
Vol(B"(1))
where BM := {(z,y) € TM : F(z,y) < 1} C TM, is in fact the same as the

HT-volume of the Finsler manifold (M, F).
The following lemma is elementary.

vol, (M, F) := / dV,, = volgr (M, F),
BM
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Lemma 3.1. The following formula holds good

1
(37) VOIHT(M, F) = (277, — 1) VOZ(B"(l)) LM de

Indeed, it is useful to observe first that

1
3.8 / dV, = 7/ dVy,.
(3.8) BoM (2n—1) Jo,m

To see this, it is easy to see that, due to homogeneity, we can identify T, M \ {0}
with (0,00) x S, M, by

It follows that
G = (dt)? @ £*G,
where t € (0,00), G is the Riemannian metric of T,,M \ {0}, that is the Sasakian
metric, and G is the restriction of G to S, M.
Then
det |G| = t>" 2 det |G,

1
/ de:/ det|G|dy:/ tQ”’th/ Vs,
B, M B, M 0 Se M

x

and hence

therefore (3.8) follows. By integrating this formula over M we get the formula in
Lemma 3.1.
From Lemma 3.1 we obtain

Proposition 3.2. Let (M, F) be a Finsler metric whose Holmes-Thompson volume
is finite. Then the symplectic volume vol,,(SM) = fSM dV,, of SM is also finite.

We recall for later use the folowing Liouville-type theorem.
Theorem 3.3. The volume form dV,, is invariant under the geodesic flow of (M, Q).

The proof is trivial taking into account Lemma 2.1.

4 The proof of Theorem 1.1

In the following, let (M, F') be a non-compact (forward) complete Finsler manifold
with bounded Holmes-Thompson volume, and let f : (M, F) — R be a convex func-
tion on M. We denote again by ¢ the geodesic flow of F' on SM.

Taking into account that a convex function cannot be bounded, from the convexity
of f it is elementary to see that

Lemma 4.1. If vy : [0,00) = M is any F-geodesic on M such that lim;_, o y(t;) =
~v(0) for some divergent numerical sequence {t;}, lim;_, o t; = oo, then fovy:[0,00) —
R must be constant.

Moreover, we have
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Lemma 4.2. For any open set U C SM, there is an infinite sequence t;, lim; . t; =
oo such that

¢t1(U)mU7é@/7 fOT‘ all ti?
where ¢y is the one parameter group generated by the geodesic flow of (M, g).

Indeed, if we assume the contrary, then there are infinitely many pairwise disjoint
open sets with equal measure, which contradicts the fact that SM has finite symplectic
volume.

Lemma 4.3. The set of points

L:={ueSM : tlim ¢1,(u) = u, for some sequence t; — 0o}
i—> 00

is dense in SM.

Proof. The result follows from the more general Poincare recurrence theorem ([14]),
that is, the set of recurrent points, of a measure preserving flow on a measure space
with bounded measure, is a full measure set.

Finally, observe that, being of full measure, the set of recurrent vectors must be
in fact dense subset of SM. The proof is complete. ]

Remark 4.1. In the proof above we have used the fact that a full measure subset X,
of a space F with measure, is dense in E. Observe that the inverse is not true because
one can easily construct examples of dense subsets that are not of full measure.

Now the main theorem can be proved.

Proof of the Theorem 1.1. Consider any point u = (p,v) € SM. Since L is dense (see
Lemma 4.3), there always exists a sequence of points u; € SM converging to u, i.e.
hIIlz_>oo U; = U.

Let 7, and 7,, be the geodesics on (M, g) determined by u and u;.

Observe that Lemma 4.1 implies that f o ,, must be constant for any i. By
continuity it follows that f o~ must also be constant.

Therefore, f is locally constant, thus must be constant on M. O

5 Corollaries

Recall that a function f: (M, F) — R defined on a non-compact (forward) complete
Finsler manifold is called convex if f o~ :[0,1] — R is a convex function in the usual
sense, for any Finsler geodesic v : [0,1] — M. To be non-compact is a necessary
condition for the existence of non-trivial convex functions. Indeed, it is trivial to see
that if M is compact, then f must be bounded and hence constant.

Let (M, F) be a forward complete boundaryless Finsler manifold. A unit speed
globally minimizing geodesic v : [0, 00) — M is called a (forward) ray. A ray ~ is called
maximal if it is not a proper sub-ray of another ray, i.e. for any £ > 0 its extension
to [—&,00) is not a ray anymore. Moreover, let us assume that (M, F) is bi-complete,
i.e. forward and backward complete. A Finslerian unit speed globally minimizing
geodesic v : R — M is called a straight line. We point out that, even though for
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defining rays and straight lines we do not need any completeness hypothesis, without
completeness, introducing rays and straight lines would be meaningless.

Let (M, F) be a forward complete boundaryless non-compact Finsler manifold
(see [3], [18] for details on the completeness of Finsler manifolds). In Riemannian
geometry, the forward and backward completeness are equivalent, hence the words
“forward” and “backward” are superfluous, but in Finsler geometry these are not
equivalent anymore.

Definition 5.1. If v : [0,00) — M is a ray in a forward complete boundaryless
non-compact Finsler manifold (M, F'), then the function

(5.1) by: M =R, by(x):= lim {t - d(z,7(t)}

is called the Busemann function with respect to -y, where d is the Finsler distance
function.

See [13] and [15] for basic results on Busemann function for Finsler manifolds.

It is known that the Busemann function of a non-compact complete Riemannian
manifold of non-negative sectional curvature is convex. However, in the Finslerian
case, due to the different behaviour of geodesics and the dependence of the metric
on direction, bounded conditions on the flag curvature are not enough to assure the
convexity of the Busemann function b,,.

The case of Berwald spaces is well understood. Indeed, the Busemann function of
any Berwald space of non-negative flag curvature is convex (see [12], [13], [11]).

From our Main Theorem it follows

Corollary 5.1. The Holmes-Thompson volume of a Berwald space of non-negative
flag curvature is infinite.

Remark 5.2. If (M, F) is a Berwald space of non-negative flag curvature, then
Corollary 5.1 can be also proved exactly as in the Riemannian case (see [19] for an
elementary proof of the Riemannian case). Indeed, the specific features of Berwald
spaces, like the reversibility of geodesics, the vanishing of the tangent curvature and
the formula for the second variation of the arc length (see [3] or [18]), make the
Riemannian arguments working.

Remark 5.3. Let us also observe that in the Berwald case, the volume conditions
obtained above also holds good for the Busemann-Hausdorff volume. Even though
we have pointed out that the Busemann-Hausdorff volume is not quite suitable for
the study of arbitrary Finsler manifolds, in the Berwald case it has some special
properties that make it more useful than in the general case. Indeed, if (M, F) is a
Berwald space, then by averaging over the indicatrices, one can obtain a Riemannian
metric (actually several Riemannian metrics depending on the averaging formula, see
[7]) whose volume is proportional with the Busemann-Hausdorff volume. The details
follow easily.

Observe that the papers [11], [12], [13] link the notion of uniform smoothness with
the convexity of Busemann function. Indeed, the essential result is that if (M, F') is
a non-compact connected (forward) complet Finsler manifold such that

1. it is of non-negative flag curvature,
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2. for all x € M, the Finsler-Minkowski norms F}, are 2-uniformly smooth,

then for any reversible ray v : [0,00) — M, the Busemann function b, is convex (see
[11] Lemma 3.11, Corollary 3.12).
By combinig this result with Theorem 1.1 it results

Corollary 5.2. The Finsler manifolds with the properties 1, 2 above must have infi-
nite Holmes-Thompson volume.
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