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Abstract. In this paper, we define lightlike submanifolds of statistical
manifolds. We prove that induced connections from statistical connections
on a lightlike submanifold are not statistical, in spite of the Riemannian
case. Necessary and sufficient conditions that the induced connections
to be statistical are obtained. Moreover, we investigate curvature tensor
for tangential and transversal vector fields when the submanifold is to-
tally umbilical. Finally, non-trivial examples of lightlike submanifolds of
statistical manifolds are given.
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1 Introduction

Lightlike submanifolds of semi-Riemannian manifolds were introduced by Duggal and
Bejancu [3]. A submanifold (M, g) of semi-Riemannian manifold M̄ is called a light-
like submanifold if g is degenerate. It means that in lightlike submanifolds the normal
vector bundle intersects with the tangent bundle, so the investigation of these subman-
ifolds are different from non-degenerate case. In [3], they defined a non-degenerate
screen distribution of tangent bundle that has not intersection with the transversal
vector bundle and studied the classical submanifolds theory, induced connections and
integrability of these distributions. Lightlike hypersurfaces have many applications
in general relativity particularly in black hole theory and electromagnetism ([3].ch.8).
So, many authors have studied the lightlike submanifolds from different view points
and for various structures [4, 6, 8].

On the other hand, the semi-Riemannian manifold M̄ with an affine and torsion-
free conjugate connections (∇,∇∗) is a statistical manifold if∇g and∇∗g are symmet-
ric [1]. Conjugate and statistical structures are interesting for various fields [2, 7, 9].
In motivated of applications of these two types of structures, here we define lightlike
submanifolds of statistical manifolds.

The paper is organized as follows. In Section 2 we provide a review of statisti-
cal manifolds and lightlike submanifolds. In Section 3 by using the approach of [4]
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and [11], the corresponding Gauss and Weingarten fundamental formulas for light-
like statistical submanifolds are obtained. In Riemannian case, a submanifold of a
statistical manifold is also statistical with the induced connection. But in this paper
we prove that a lightlike submanifold of a statistical manifold is not statistical in
general and we obtain necessary and sufficient conditions that the submanifold to be
statistical. Moreover, we show the induced connections of a lightlike submanifold on
the screen distribution are statistical and lightlike second fundamental forms on the
null distribution are not equal to zero, in spite of Levi-Civita case. In Section 4 we
obtain some equations for curvature tensor of these submanifolds like the Gauss and
Codazzi equations. Specially these equations for curvature tensor of totally umbilical
submanifolds are investigated.

2 Preliminaries

Let (M̄, ḡ) be a semi-Riemannian manifold. In all of the paper we assume (M̄, ḡ) be an
(m+n)-dimensional manifold of constant index q such thatm,n ≥ 1, 1 ≤ q ≤ m+n−1
and ∇̂ be the Levi-Civita connection on M̄ .

A pair (∇̄, ḡ) is called a statistical structure on M̄ if ∇̄ is an affine and torsion-free
connection and for all X,Y, Z ∈ Γ(TM̄)

(2.1) (∇̄X ḡ)(Y, Z) = (∇̄Y ḡ)(X,Z).

Also (M̄, ḡ, ∇̄) is said to be a statistical manifold.
Moreover, an affine connection ∇̄∗ is called a dual connection of ∇̄ with respect

to ḡ if [5]

(2.2) Xḡ(Y, Z) = ḡ(∇̄XY, Z) + ḡ(Y, ∇̄∗
XZ).

It is well-known (∇̄∗)∗ = ∇̄ and ∇̄∗ satisfies in (2.1).
(1, 2)-tensor field K̄ is defined

(2.3) K̄XY = ∇̄XY − ∇̂XY =
1

2
(∇̄XY − ∇̄∗

XY ).

It can be verify that K̄ is symmetric so,

(2.4) g(K̄XY, Z) = g(K̄XZ, Y ), K̄XY = K̄Y X.

The statistical curvature tensor is defined

(2.5) S̄(X,Y )Z =
1

2
(R̄(X,Y )Z + R̄∗(X,Y )Z),

where R̄, R̄∗ are curvature tensors of ∇̄, ∇̄∗, respectively.
For a statistical manifold (M̄, ḡ) the following relation holds [10]

2ḡ(∇̄XY,Z) = ḡ(∇̄XY − ∇̄∗
XY, Z) +Xḡ(Y, Z) + Y ḡ(Z,X)− Zḡ(X,Y )

+ ḡ([X,Y ], Z) + ḡ([Y,Z], X)− ḡ([Z,X], Y ).(2.6)
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Definition 2.1. [12] A vector field X on M̄ is said to be Killing vector field if
LX ḡ = 0, where L is the Lie derivative. A distribution D on M̄ is called Killing
distribution if each vector field on D be a Killing vector field.

D is called parallel with respect to ∇̄ if for all X ∈ Γ(TM̄) and Y ∈ Γ(D),
∇̄XY ∈ Γ(D).

Let (M, g) be an immersed m-dimensional submanifold in a statistical manifold
(M̄, ḡ, ∇̄) and g be a induced metric of ḡ on M . The submanifold M is called lightlike
submanifold if there exists a non-zero X ∈ Γ(TM) such that g(X,Y ) = 0, ∀Y ∈
Γ(TM). In this case, there exists a distribution Rad(TM) = TM ∩ TM⊥ of rank r,
(1 ≤ r ≤ m) which is known as radical (null) distribution, where

TM⊥ = ∪
p∈M

{X ∈ TpM̄ : ḡ(X,Y ) = 0, ∀Y ∈ TpM}.

The screen distribution S(TM) and screen transversal vector bundle S(TM⊥) are
semi-Riemannian complementary distribution of Rad(TM) in TM and TM⊥, re-
spectively.

Theorem 2.1. [4] Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold of (M̄, ḡ)
such that r > 1. Let U be a coordinate neighborhood of M and for i ∈ {1, · · · , r},
{ξi} be a basis for Γ(Rad(TM)) |U . Then there exists a complementary vector bundle
ltr(TM) of Rad(TM) in S(TM⊥)⊥ |U where {Ni} is a basis of ltr(TM) and

(2.7) ḡ(Ni, ξj) = δij ,

(2.8) ḡ(Ni, Nj) = 0, ∀i, j ∈ {1, · · · , r}.

Let tr(TM) be the complementary (but not orthogonal) vector bundle to TM in
TM̄ |M . Then we have

tr(TM) = ltr(TM)⊥S(TM⊥),

(2.9) TM̄ |M= S(TM) ⊥ [RadTM ⊕ ltr(TM)] ⊥ S(TM⊥).

For the statistical manifold M̄ and lightlike submanifold M the Gauss formulas are
given by

∇̄XY = ∇XY + h(X,Y ),

∇̄∗
XY = ∇∗

XY + h∗(X,Y ), ∀X,Y ∈ Γ(TM)

where {∇XY,∇∗
XY } and {h(X,Y ), h∗(X,Y )} belong to Γ(TM) and Γ(tr(TM)), re-

spectively.
Consider the projection morphism P from TM to S(TM), then Gauss formulas

become [4]

(2.10) ∇̄XY = ∇XY + hl(X,Y ) + hs(X,Y ),

(2.11) ∇XPY = ∇′
XPY + h′(X,PY ),

where hl, hs and h′ are Γ(ltr(TM))-valued, Γ(S(TM⊥))-valued and Γ(Rad(TM))-
valued which are called lightlike second fundamental form, screen second fundamental
form and radical second fundamental form, respectively. Also ∇′ is the tangential
projection of ∇ on Γ(S(TM)). In above formulas by changing ∇̄ to ∇̄∗ we get the
conjugate equations.
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Example 2.2. Let M̄ = {(x1, x2, x3, x4, x5) | xi ∈ R, i = 1, · · · , 5} be a 5-dimensional
semi-Riemannian manifold with metric ḡ = −dx2

1 − dx2
2 + dx2

3 + dx2
4 + dx2

5.

By taking
∂

∂xi
= ei, i = 1, · · · , 5, we define statistical connections ∇̄ and ∇̄∗ on M̄

as below

∇̄e1e1 = e2, ∇̄e2e2 = −e2, ∇̄e2e1 = −e5 + e1, ∇̄e1e2 = e5 + e1,
∇̄e3e3 = e4, ∇̄e4e4 = −e4, ∇̄e4e3 = e5 + e3, ∇̄e3e4 = −e5 + e3
∇̄∗

e1e1 = −e2, ∇̄∗
e2e2 = e2, ∇̄∗

e2e1 = −e5 − e1, ∇̄∗
e1e2 = e5 − e1,

∇̄∗
e3e3 = −e4, ∇̄∗

e4e4 = e4, ∇̄∗
e4e3 = e5 − e3, ∇̄∗

e3e4 = −e5 − e3
∇̄e1e5 = ∇̄e5e1 = ∇̄∗

e1e5 = ∇̄∗
e5e1 = e2,

∇̄e2e5 = ∇̄e5e2 = ∇̄∗
e2e5 = ∇̄∗

e5e2 = −e1,
∇̄e3e5 = ∇̄e5e3 = ∇̄∗

e3e5 = ∇̄∗
e5e3 = e4,

∇̄e4e5 = ∇̄e5e4 = ∇̄∗
e4e5 = ∇̄∗

e5e4 = −e3.

and other components be zero. Then M̄ is semi-Riemannian statistical manifold.

3 Lightlike submanifolds of statistical manifolds

Definition 3.1. [4] A lightlike submanifold (M, g) of statistical manifold M̄ is said
to be totally umbilical in M̄ if there exists a smooth vector field H l,H l∗ ∈ Γ(tr(TM))
and Hs, Hs∗ ∈ Γ(S(TM⊥)) on M such that

hl(X,Y ) = H lḡ(X,Y ), hs(X,Y ) = Hsḡ(X,Y ), ∀X,Y ∈ Γ(TM)

hl∗(X,Y ) = H l∗ḡ(X,Y ), hs∗(X,Y ) = Hs∗ḡ(X,Y ).

M is called totally geodesic if hl, hl∗ and hs, hs∗ vanish identically on M .

Proposition 3.1. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike sub-
manifold of M̄ . The induced connection ∇,∇∗ are affine and torsion-free connection
on M . Moreover, hl, hl∗, hs and hs∗ are symmetric and C∞(M)-bilinear forms.

Proof. For any f, g ∈ C∞(M) and X,Y ∈ Γ(T (M))

∇̄fX gY = f(Xg)Y + fg∇̄XY

= f(Xg)Y + fg∇XY + fg hl(X,Y ) + fg hs(X,Y ),

on the other hand, from Gauss formula we have

∇̄fX gY = ∇fX gY + hl(fX, gY ) + hs(fX, gY ).

Considering tangential and transversal components of above equations we get

∇fX gY = f(Xg)Y + fg∇XY,

hl(fX, gY ) = fg hl(X,Y ), hs(fX, gY ) = fg hs(X,Y ),

since ltr(TM) and S(TM⊥) are orthogonal to each other.
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Moreover, since ∇̄ is torsion-free on M̄

0 = ∇̄XY − ∇̄Y X − [X,Y ]

= ∇XY + hl(X,Y ) + hs(X,Y )−∇Y X − hl(Y,X)− hs(Y,X)− [X,Y ],

by equating tangential and transversal parts we obtain

[X,Y ] = ∇XY −∇Y X, hl(X,Y ) = hl(Y,X), hs(X,Y ) = hs(Y,X),

which proves the assertions. �

For all Z ∈ Γ(tr(M)) and X ∈ Γ(T (M)) the Weingarten formulas are as follows
[11]

(3.1) ∇̄XZ = −A∗
ZX +∇tr

XZ,

∇̄∗
XZ = −AZX +∇tr∗

X Z,

where A∗
ZX, AZX are shape operators on Γ(T (M)) and ∇tr

XZX, ∇tr∗
X ZX are linear

connections on Γ(tr(M)).
Decomposition (2.9) and (3.1) give the Weingarten formulas for the lightlike sub-

manifold M

(3.2) ∇̄XN = −A∗
NX +∇l

XN +Ds(X,N), ∀N ∈ Γ(ltr(TM))

(3.3) ∇̄XW = −A∗
WX +∇s

XW +Dl(X,W ), ∀W ∈ Γ(S(TM⊥))

for linear connections ∇l on Γ(ltr(TM)) and ∇s on S(TM⊥). Dl, Dl∗ and Ds, Ds∗

are C∞(M)-bilinear mappings on Γ(ltr(TM)) and Γ(S(TM⊥)), respectively. By
changing ∇̄ to ∇̄∗ we get the conjugate Weingarten formulas.

On the other hand, if we take the vector fields ξ ∈ Γ(Rad(TM)) and X ∈ Γ(TM)
we have the following relations like Weingarten formulas.

(3.4) ∇Xξ = −A′∗
ξ X +DXξ, ∇∗

Xξ = −A′
ξX +D∗

Xξ,

where A′
ξX,A′∗

ξ X and DXξ,D∗
Xξ are shape operators on Γ(S(TM)) and linear con-

nections on Γ(Rad(TM)), respectively.

Proposition 3.2. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike sub-
manifold of M̄ . Then for all N ∈ Γ(ltr(TM))

(3.5) ḡ(h′(X,PY ), N) = ḡ(PY,ANX), ḡ(h′∗(X,PY ), N) = ḡ(PY,A∗
NX).

Proof. For all X,Y ∈ Γ(TM) and N ∈ Γ(ltr(TM)) from (2.2), (2.10) and (2.11)

0 = Xḡ(PY,N) = ḡ(∇̄∗
XPY,N) + ḡ(PY, ∇̄XN)

= ḡ(∇∗
XPY,N)− ḡ(PY,A∗

NX)

= ḡ(h′∗(X,PY ), N)− ḡ(PY,A∗
NX).

Now, with similar computation for ∇̄ we get the result. �
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Proposition 3.3. Let M be a lightlike submanifold of statistical manifold (M̄, ∇̄, ḡ).
Then for all X,Y ∈ Γ(TM) and W ∈ Γ(S(TM⊥))

(3.6) ḡ(hs∗(X,Y ),W ) + ḡ(Dl(X,W ), Y ) = g(A∗
WX,Y ).

Proof. Since S(TM⊥) is orthogonal to TM and ltr(TM) so for all X,Y ∈ Γ(TM)
and W ∈ Γ(S(TM⊥)) we get

0 = Xḡ(W,Y ) = ḡ(∇̄XW,Y ) + ḡ(W, ∇̄∗
XY ),

now,by using Gauss formula and (3.3) we have

0 = ḡ(Y,−A∗
WX +Dl(X,W )) + ḡ(W,hs∗(X,Y )).

�

Proposition 3.4. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike sub-
manifold of M̄ . Then for all ξ ∈ Γ(Rad(TM)) and X,Y ∈ Γ(TM)

(3.7) ḡ(hl(X,PY ), ξ) = g(A′
ξX,PY ), ḡ(hl∗(X,PY ), ξ) = g(A′∗

ξ X,PY )

Proof. From (2.11), (3.4) and Gauss formula we obtain

0 = Xḡ(PY, ξ) = ḡ(∇̄∗
XPY, ξ) + ḡ(PY, ∇̄Xξ) = ḡ(hl∗(X,PY ), ξ)

+ ḡ(PY,∇Xξ) = ḡ(hl∗(X,PY ), ξ) + g(−A′∗
ξ X,PY ),

this completes the proof. �

By a simple computation such as previous propositions from (2.11), (3.4), Gauss
and Weingarten formulas we get the following relations

(3.8) ḡ(Ds(X,N),W ) = ḡ(AWX,N),

(3.9) g(∇∗
Xξ, Y ) + ḡ(hl(X,Y ), ξ) + ḡ(hl∗(X, ξ), Y ) = 0,

for all X,Y ∈ Γ(TM), N ∈ Γ(ltr(TM)), ξ ∈ Γ(Rad(TM)) and W ∈ Γ(S(TM⊥)).

Remark 3.2. The induced connections on non-degenerate submanifolds of statistical
semi-Riemannian manifolds are statistical. In the next theorem we show that on
lightlike submanifolds of statistical manifolds this does not satisfy in general (cf.
Theorem 3.5). In the Theorem 3.6 we obtain the necessary and sufficient condition
that induced connection and its dual be statistical.

Theorem 3.5. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike submani-
fold of M̄ . Then the induced connections ∇ and ∇∗ on M are not necessarily statis-
tical.

Proof. For all X,Y, Z ∈ Γ(TM) from (2.2) and Gauss formula

Xg(Y, Z) = Xḡ(Y,Z) = ḡ(∇̄XY, Z) + ḡ(Y, ∇̄∗
XZ)

= ḡ(∇XY + hl(X,Y ) + hs(X,Y ), Z)

+ ḡ(Y,∇∗
XZ + hl∗(X,Z) + hs∗(X,Z))

= g(∇XY,Z) + g(Y,∇∗
XZ) + ḡ(hl(X,Y ), Z) + ḡ(Y, hl∗(X,Z)).(3.10)

So in general (3.10) is not satisfied. �
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Theorem 3.6. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike subman-
ifold of M̄ . The induced connections ∇ and ∇∗ on M are statistical if and only
if

(3.11) ḡ((hl(X,Y ), Z) + ḡ(Y, hl∗(X,Z)) = 0, ∀X,Y, Z ∈ Γ(TM).

Corollary 3.7. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike subman-
ifold of M̄ . The Equation (3.11) implies one of the following conditions holds

a) hl and hl∗ vanish identically,

a) hl(X,Y ) = −hl∗(X,Z), ∀X,Y, Z ∈ Γ(TM),

c) Y, Z ∈ Γ(S(TM)).

Corollary 3.8. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike subman-
ifold of M̄ . Then for any vector fields on distribution S(TM), M satisfies Equation
(2.2).

Proof. If X,Y, Z ∈ Γ(S(TM)), (3.10) implies that the relation (3.11) holds, so from
Theorem 3.6, Eq. (2.2) is satisfied. �

Proposition 3.9. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike sub-
manifold of M̄ . Then for all ξ, ξ′ ∈ Γ(Rad(TM))

(3.12) A′
ξξ

′ +A′∗
ξ′ξ = 0.

Proof. Changing Y by ξ′ ∈ Γ(Rad(TM)) in (3.9) we obtain

(3.13) ḡ(hl(X, ξ′), ξ) + ḡ(hl∗(X, ξ), ξ′) = 0.

Substituting PX by X in (3.13) we have

(3.14) ḡ(hl(PX, ξ′), ξ) + ḡ(hl∗(PX, ξ), ξ′) = 0,

using (3.7) we get

0 = ḡ(hl(PX, ξ′), ξ) + ḡ(hl∗(PX, ξ), ξ′) = g(A′
ξξ

′, PX) + g(A′∗
ξ′ξ, PX).

the assertion follows since S(TM) is non-degenerate. �

In spite of Levi-Civita case that the lightlike second fundamental form on the null
distribution is always equal to zero, in the next proposition we show that in general for
lightlike submanifolds of statistical manifolds hl and hl∗ do not vanish on Rad(TM).

Proposition 3.10. Let M be a lightlike submanifold of the statistical manifold (M̄, ∇̄, ḡ)
and hl and hl∗ are not identically equal to zero. Then one of the following statements
holds

a) hl and hl∗ vanish on Rad(TM),

b) hl(ξ′, ξ) = −hl∗(ξ, ξ′)

for all ξ, ξ′ ∈ Γ(Rad(TM)).
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Proof. For all ξ, ξ′ ∈ Γ(Rad(TM)) and X ∈ Γ(TM) from (2.6) we get

2ḡ(∇̄ξξ
′, X) = ḡ(∇̄ξξ

′ − ∇̄∗
ξξ

′, X) + ξḡ(ξ′, X) + ξ′ḡ(X, ξ)−Xḡ(ξ, ξ′)

+ ḡ([ξ, ξ′], X) + ḡ([ξ′, X], ξ)− ḡ([X, ξ], ξ′)

= ḡ(∇̄ξξ
′ − ∇̄∗

ξξ
′, X) + ḡ(∇̄ξξ

′ − ∇̄ξ′ξ,X),(3.15)

so we get

ḡ(∇̄∗
ξξ

′, X) + ḡ(∇̄ξ′ξ,X) = 0.

From (2.10) we have

ḡ(∇∗
ξξ

′ + hl∗(ξ, ξ′) + hs∗(ξ, ξ′), X) + ḡ(∇ξ′ξ + hl(ξ′, ξ) + hs(ξ′, ξ), X) = 0.

By putting X = ξ′′ in last equation we obtain

(3.16) ḡ(hl(ξ′, ξ), ξ′′) = −ḡ(hl∗(ξ, ξ′), ξ′′),

so (3.16) implies that one of the statements (a) and (b) satisfies. �

In the last of this paper we construct examples that shows the items (a) and (b)
hold and the Equation (3.16) satisfies.

Theorem 3.11. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a statistical lightlike
submanifold of M̄ . For all ξ ∈ Γ(Rad(TM)), A′

ξ and A′∗
ξ vanish on Γ(TM) if and

only if one of the following relations hold

a) Rad(TM) is a parallel distribution with respect to ∇ and ∇∗.

b) Rad(TM) is a Killing distribution.

Proof. a) From (3.4), A′
ξ and A′∗

ξ vanish if and only if Rad(TM) is a parallel distri-
bution with respect to ∇ and ∇∗.

b) For all X,Y ∈ Γ(TM) Equation (2.2) implies

(Lξ ḡ)(X,Y ) = ξḡ(X,Y )− ḡ([ξ,X], Y )− ḡ(X, [ξ, Y ])

= ξḡ(X,Y )− ḡ(∇̄ξX,Y ) + ḡ(∇̄Xξ, Y )− ḡ(X, ∇̄ξY ) + ḡ(X, ∇̄Y ξ)

= ξḡ(X,Y )− ξḡ(X,Y ) + ḡ(X, ∇̄∗
ξY ) + ḡ(∇̄Xξ, Y )− ḡ(X, ∇̄ξY )

+ ḡ(X, ∇̄Y ξ) = −2ḡ(X, K̄ξY ) + ḡ(∇̄Xξ, Y ) + ḡ(X, ∇̄Y ξ),

so from (2.4) and (2.10) we have

(Lξ ḡ)(X,Y ) = −2ḡ(X, K̄Y ξ) + ḡ(∇Xξ + hl(X, ξ), Y ) + ḡ(X, ∇̄Y ξ)

= g(X,∇∗
Y ξ) + g(∇Xξ, Y ) + ḡ(X,hl∗(Y, ξ)) + ḡ(Y, hl(X, ξ)),(3.17)

by using (3.4) it turns into

(Lξ ḡ)(X,Y ) = g(X,−A′∗
ξ Y ) + g(Y,−A′

ξX) + ḡ(X,hl∗(Y, ξ))

+ ḡ(Y, hl(X, ξ)).(3.18)
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If A′
ξ and A′∗

ξ vanish, since the submanifold is statistical from Theorem (3.6)

(3.19) ḡ(X,hl∗(Y, ξ)) + ḡ(Y, hl(X, ξ)) = 0,

so (3.18) implies (Lξ ḡ) = 0 and Rad(TM) is a Killing distribution. Conversely,
replacing X by ξ′ ∈ Γ(Rad(TM)) and Y by PY in (3.18) and using (3.19) we obtain

g(PY,A′
ξξ

′) = 0,

so A′
ξξ

′ = 0. On the other hand replacing X,Y by PX,PY in (3.17) and using (3.4)
we get

0 = g(PX,∇∗
PY ξ) + g(∇PXξ, PY ) = PY g(PX, ξ)− g(∇PY PX, ξ)

+ g(∇PXξ, PY ) = g(−A′∗
ξ PX,PY )(3.20)

so A′∗
ξ PX = 0. Thus A′∗

ξ vanishes for any vector field in Γ(S(TM)) and Γ(Rad(TM)).
By similar computation we get A′

ξ = 0. �

Remark 3.3. One can show ∇′ and ∇′∗ are linear connections on S(TM) and h′ and
h′∗ are C∞(M)-bilinear forms. In general ∇′ and ∇′∗ are not statistical connections
and h′ and h′∗ are not symmetric second fundamental forms. In the next theorems
we prove the necessary condition that h′ and h′∗ be symmetric and ∇′ and ∇′∗ be
statistical.

Proposition 3.12. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike sub-
manifold of M̄ . S(TM) is integrable distribution if and only if h′ and h′∗ are sym-
metric on S(TM).

Proof. For all X,Y ∈ Γ(TM) and N ∈ Γ(ltr(TM)) from (2.10) and (2.11) we have

ḡ([PX,PY ], N) = ḡ(∇̄PXPY − ∇̄PY PX,N) = g(∇PXPY −∇PY PX,N)

= g(h′(PX,PY )− h′(PY, PX), N).

The above equation implies the equivalence of assertions. �

Proposition 3.13. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike sub-
manifold of M̄ . If S(TM) is an integrable distribution then the induced connections
∇′ and ∇′∗ are affine and torsion-free connections on S(TM).

Proof. For all X,Y,∈ Γ(TM) since ∇ is torsion-free, (2.11) implies

0 = ∇PXPY −∇PY PX − [PX,PY ]

= ∇′
PXPY −∇′

PY PX − [PX,PY ] + h′(PX,PY )− h′(PY, PX),

from Proposition 3.12 equating screen and radical parts gives

[PX,PY ] = ∇′
PXPY −∇′

PY PX, h′(PX,PY ) = h′(PY, PX).

�



Lightlike submanifolds of semi-Riemannian statistical manifolds 61

Theorem 3.14. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike subman-
ifold of M̄ . If S(TM) is an integrable distribution then the induced connections ∇′

and ∇′∗ are statistical connections on S(TM).

Proof. For all X,Y, Z ∈ Γ(TM), (2.2) and (2.11) and Gauss formula for lightlike
submanifolds imply

PXg(PY, PZ) = PXḡ(PY, PZ) = ḡ(∇̄PXPY, PZ) + ḡ(PY, ∇̄∗
PXPZ)

= g(∇PXPY, PZ) + g(PY,∇∗
PXPZ)

= g(∇′
PXPY + h′(PX,PY ), PZ) + g(PY,∇′∗

PXPZ + h′∗(PX,PZ))

= g(∇′
PXPY, PZ) + g(PY,∇′∗

PXPZ).

Moreover, from Proposition 3.13, ∇′ and ∇′∗ are affine and torsion-free so, M is
statistical on Γ(TM). �

4 Curvature tensors

In this section according to the Gauss and Codazzi equations for statistical manifolds
in [11] we obtain these equations for lightlike case.

Lemma 4.1. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike submanifold
of M̄ . If S̄ and S be the curvature tensors of M̄ and M , respectively, then for all
X,Y, Z,W ∈ Γ(TM) we get

2ḡ(S̄(X,Y )Z,W ) = 2g(S(X,Y )Z,W ) + g(Ahl(X,Z)Y,W )− g(Ahl(Y,Z)X,W )

+ g(Ahs(X,Z)Y,W )− g(Ahs(Y,Z)X,W ) + g(A∗
hl∗(X,Z)Y,W )

− g(A∗
hl∗(Y,Z)X,W ) + g(A∗

hs∗(X,Z)Y,W )− g(A∗
hs∗(Y,Z)X,W )

+ ḡ((∇Xhl)(Y, Z),W )− ḡ((∇Y h
l)(X,Z),W )

+ ḡ((∇∗
Xhl∗)(Y,Z),W )− ḡ((∇∗

Y h
l∗)(X,Z),W )

+ ḡ(Dl(X,hs(Y,Z)),W )− ḡ(Dl(Y, hs(X,Z)),W )

+ ḡ(Dl∗(X,hs∗(Y, Z)),W )− ḡ(Dl∗(Y, hs∗(X,Z)),W ).(4.1)

Proof. Let R̄ and R be the curvature tensors of ∇̄ and ∇, respectively. Then for all
X,Y, Z ∈ Γ(TM), we can obtain

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z

= R(X,Y )Z +Ahl(X,Z)Y −Ahl(Y,Z)X +Ahs(X,Z)Y −Ahs(Y,Z)X

+ (∇Xhl)(Y, Z)− (∇Y h
l)(X,Z) + (∇Xhs)(Y,Z)− (∇Y h

s)(X,Z)

+Ds(X,hl(Y,Z))−Ds(Y, hl(X,Z))

+Dl(X,hs(Y,Z))−Dl(Y, hs(X,Z)).(4.2)

where
(∇Xhl)(Y, Z) = ∇l

Xhl(Y, Z)− hl(∇XY,Z)− hl(Y,∇XZ),

(∇Xhs)(Y, Z) = ∇s
Xhs(Y, Z)− hs(∇XY,Z)− hs(Y,∇XZ).

In the similar way R̄∗ can be obtained, so we get the assertion where, 2S = R +R∗.
�
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By using (4.1) we can compute S for special case. Let X,Y, Z,W ∈ Γ(TM),
U ∈ Γ(S(TM⊥)), N ∈ Γ(ltr(TM)) and ξ ∈ Γ(Rad(TM)) from (3.5), (3.6) and (3.8)
we derive the following relations.

2ḡ(S̄(X,Y )Z,PW ) = 2g(S(X,Y )Z,PW ) + ḡ(h′(Y, PW ), hl(X,Z))

− ḡ(h′(X,PW ), hl(Y, Z)) + ḡ(h′∗(Y, PW ), hl∗(X,Z))

− ḡ(h′∗(X,PW ), hl∗(Y, Z)) + ḡ(hs(Y, PW ), hs(X,Z))

− ḡ(hs(X,PW ), hs(Y, Z)) + ḡ(hs∗(Y, PW ), hs∗(X,Z))

− ḡ(hs∗(X,PW ), hs∗(Y,Z)),(4.3)

2ḡ(S̄(X,Y )Z,U) = ḡ((∇Xhs)(Y, Z), U)− ḡ((∇Y h
s)(X,Z), U)

+ ḡ((∇∗
Xhs∗)(Y,Z), U)− ḡ((∇∗

Y h
s∗)(X,Z), U)

+ ḡ(AUX,hl(Y, Z))− ḡ(AUY, h
l(X,Z))

+ ḡ(A∗
UX,hl∗(Y,Z))− ḡ(A∗

UY, h
l∗(X,Z)),(4.4)

2ḡ(S̄(X,Y )Z,N) = 2ḡ(S(X,Y )Z,N) + ḡ(Ahl(X,Z)Y,N)− ḡ(Ahl(Y,Z)X,N)

+ ḡ(A∗
hl∗(X,Z)Y,N)− ḡ(A∗

hl∗(Y,Z)X,N) + ḡ(Ahs(X,Z)Y,N)

− ḡ(Ahs(Y,Z)X,N) + ḡ(A∗
hs∗(X,Z)Y,N)− ḡ(A∗

hs∗(Y,Z)X,N)

Proposition 4.2. Let (M̄, ∇̄, ḡ) be a statistical manifold and M be a lightlike sub-
manifold of M̄ . If M be a totally umbilical submanifold with respect to the ∇̄ in M̄
then for all Z ∈ Γ(Rad(TM)) and X,Y,W ∈ Γ(TM)

ḡ(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W ).

Proof. Since M is a totally umbilical submanifold for all X,Y,W ∈ Γ(TM) and
Z ∈ Γ(Rad(TM)) we obtain

hl(X,Z) = hl(Y,Z) = 0,

so it is sufficient to prove ḡ(hl(∇XZ, Y ),W )− ḡ(hl(∇Y Z,X),W ) = 0. By using (3.4)
in (4.2)

ḡ(hl(∇XZ, Y ),W )− ḡ(hl(∇Y Z,X),W ) = ḡ(∇XZ, Y )ḡ(H l,W )

− ḡ(∇Y Z,X)ḡ(H l,W ) = ḡ(H l,W )(g(A′∗
ZX,Y )− g(A′∗

ZY,X)) = 0,

which completes the proof, since A′∗ is self-adjoint. �

Example 4.1. Let M̄ be the statistical manifold defined in Example 2.2. Let (M =
{(u1, u2, u3) | ui ∈ R}, g = ḡ|M ) be a submanifold of M̄ where

x1 = u1, x2 = u2, x3 = u1, x4 = u2, x5 = u3.
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So we find

S(TM) = {Z = e5}, S(TM⊥) = f� ,

Rad(TM) = {ξ1 = e1 + e3, ξ2 = e2 + e4},

ltr(TM) = {N1 =
1

2
(−e1 + e3), N2 =

1

2
(−e2 + e4)}.

where,
∂

∂xi
= ei. By computing we get

∇̄ξ1ξ1 = ξ2, ∇̄ξ2ξ2 = −ξ2, ∇̄ξ2ξ1 = ξ1, ∇̄ξ1ξ2 = ξ1,
∇̄Zξ1 = ∇̄ξ1Z = ξ2, ∇̄Zξ2 = ∇̄ξ2Z = −ξ1,

∇̄∗
ξ1
ξ1 = −ξ2, ∇̄∗

ξ2
ξ2 = ξ2, ∇̄∗

ξ2
ξ1 = −ξ1, ∇̄∗

ξ1
ξ2 = −ξ1,

∇̄∗
Zξ1 = ∇̄∗

ξ1
Z = ξ2, ∇̄∗

Zξ2 = ∇̄∗
ξ2
Z = −ξ1.

Thus we can verify that hl = hl∗ = 0, and from Theorem 3.6, M is a 2-lightlike
statistical submanifold of semi-Riemannian statistical manifold M̄ .

Example 4.2. Let M̄ be a statistical manifold defined in Example 2.2 and subman-
ifold M be (M = {(u1, u2, u3) | ui ∈ R}, g = ḡ|M ), where

x1 = u1, x2 = u2, x3 = u2, x4 = u1, x5 = u3.

We have the following distributions on submanifold:

S(TM) = {Z = e5},

Rad(TM) = {ξ1 = e1 + e4, ξ2 = e2 + e3},

ltr(TM) = {N1 =
1

2
(−e1 + e4), N2 =

1

2
(−e2 + e3)}.

By direct calculating we can obtain the induced connections ∇,∇∗ and second fun-
damental forms hl, hl∗ as follows

∇ξ1ξ1 =
1

2
(ξ2 − ξ1), ∇ξ2ξ2 =

1

2
(ξ1 − ξ2), ∇ξ2ξ1 = −2Z +

1

2
(ξ1 + ξ2),

∇ξ1ξ2 = 2Z +
1

2
(ξ1 + ξ2), ∇ξ1Z = ∇Zξ1 = ∇Zξ2 = ∇ξ2Z = 0, ∇ZZ = 0,

∇∗
ξ1
ξ1 =

1

2
(ξ1 − ξ2), ∇∗

ξ2ξ2 =
1

2
(ξ2 − ξ1), ∇∗

ξ2ξ1 = −2Z − 1

2
(ξ1 + ξ2),

∇∗
ξ1
ξ2 = 2Z − 1

2
(ξ1 + ξ2), ∇∗

ξ1Z = ∇∗
Zξ1 = ∇∗

ξ2Z = ∇∗
Zξ2 = 0, ∇∗

ZZ = 0,

hl(ξ1, ξ1) = −N1 −N2 = −hl∗(ξ1, ξ1), hl(ξ2, ξ2) = N1 +N2 = −hl∗(ξ2, ξ2),
hl(ξ2, ξ1) = hl(ξ1, ξ2) = −N1 +N2 = −hl∗(ξ2, ξ1) = −hl∗(ξ1, ξ2),

hl(ξ1, Z) = hl(Z, ξ1) = hl∗(ξ1, Z) = hl∗(Z, ξ1) = −2N2,
hl(ξ2, Z) = hl(Z, ξ2) = hl∗(ξ2, Z) = hl∗(Z, ξ2) = 2N1,

hl(Z,Z) = hl∗(Z,Z) = 0,
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and hs = hs∗ = 0. Thus M is a 2-lightlike submanifold of M̄ . This example shows
that M is not statistical submanifold and (3.10) satisfies. On the other hand, we have

ḡ(hl(ξ, ξ′), ξ′′) = −ḡ(hl∗(ξ′, ξ), ξ′′), ∀ξ, ξ′, ξ′′ ∈ Γ(Rad(TM)),

that shows the part (b) in Proposition 3.10 holds.

Example 4.3. Let M̄ be a statistical manifold defined in Example 2.2. Assume M
be a 4-dimensional submanifold of M̄ defined by M = {(u1, u2, u3, u4) | ui ∈ R} such
that

x1 = u1, x2 = u2, x3 = u1, x4 = u3, x5 = u4,

and g = ḡ|M . We define

S(TM) = {Z1 = e2, Z2 = e4, Z3 = e5}, S(TM⊥) = f� ,

Rad(TM) = {ξ = e1 + e3},

ltr(TM) = {N =
1

2
(−e1 + e3)}.

∇ξξ = Z1 + Z2, ∇Z1ξ = −Z3 +
1

2
ξ, ∇ξZ1 = Z3 +

1

2
ξ, ∇Z2ξ = Z3 +

1

2
ξ,

∇ξZ2 = −Z3 +
1

2
ξ, ∇Z3ξ = Z1 + Z2, ∇ξZ3 = Z1 + Z2, ∇Z2Z1 = ∇Z1Z2 = 0,

∇Z3Z1 = ∇Z1Z3 =
−1

2
ξ, ∇Z3Z2 = ∇Z2Z3 =

−1

2
ξ,

∇Z1Z1 = −Z1, ∇Z2Z2 = −Z2, ∇Z3Z3 = 0,

∇∗
ξξ = −(Z1 + Z2), ∇∗

Z1
ξ = −Z3 −

1

2
ξ, ∇∗

ξZ1 = Z3 −
1

2
ξ, ∇∗

Z2
ξ = Z3 −

1

2
ξ,

∇∗
ξZ2 = −Z3 −

1

2
ξ, ∇∗

Z3
ξ = Z1 + Z2, ∇∗

ξZ3 = Z1 + Z2, ∇∗
Z2
Z1 = ∇∗

Z1
Z2 = 0,

∇∗
Z3
Z1 = ∇∗

Z1
Z3 =

−1

2
ξ, ∇∗

Z3
Z2 = ∇∗

Z2
Z3 =

−1

2
ξ,

∇∗
Z1
Z1 = Z1, ∇∗

Z2
Z2 = Z2, ∇∗

Z3
Z3 = 0,

hl(ξ, ξ) = hl∗(ξ, ξ) = 0,
hl(ξ, Z1) = hl(Z1, ξ) = −N = −hl∗(ξ, Z1) = −hl∗(Z1, ξ),
hl(ξ, Z2) = hl(Z2, ξ) = N = −hl∗(ξ, Z2) = −hl∗(Z2, ξ),
hl(ξ, Z3) = hl(Z3, ξ) = hl∗(ξ, Z3) = hl∗(Z3, ξ) = 0,

hl(Z1, Z2) = hl(Z2, Z1) = hl∗(Z1, Z2) = hl∗(Z2, Z1) = 0,
hl(Z1, Z3) = hl(Z3, Z1) = hl∗(Z1, Z3) = hl∗(Z3, Z1) = N,
hl(Z2, Z3) = hl(Z3, Z2) = hl∗(Z2, Z3) = hl∗(Z3, Z2) = −N,
hl(Z1, Z1) = hl(Z2, Z2) = hl∗(Z1, Z1) = hl∗(Z2, Z2) = 0,

hl(Z3, Z3) = hl∗(Z3, Z3) = 0,

Thus M is a 1-lightlike submanifold of M̄ . One can see that M is not statistical
submanifold and Equation (3.10) is satisfied. On the other hand, Corollary 3.8 holds
and Equation (2.2) satisfies on S(TM). Moreover, in this example the part (a) of
Proposition 3.10 holds.
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