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Abstract. In this paper we studied biharmonic Hopf QR-hypersurfaces
in the quaternionic Euclidean space Qn. Indeed, we proved that the bi-
harmonic Hopf QR-hypersurfaces in the quaternionic Euclidean space Qn

are minimal. Actually, it showed that the Weingarten operator A of the
biharmonic Hopf QR-hypersurfaces in the quaternionic Euclidean space
Qn has exactly three distinct eigenvalues at each point.
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1 Introduction

A harmonic map f : M → N between two Riemannian manifolds is known as critical
point of the energy functional E(f) = 1

2

∫
M

|df |2dυ. By taking the similar idea,
the problem was proposed to investigate the k-harmonic maps as the critical point
of the k-energy functional (see [7, 6]). In case k = 2, the bienergy of f defined by
E2(f) =

1
2

∫
M

|τ(f)|2dυ, where τ(f) = trace∇df is the tension field of f . In [12, 13] the
authors showed a new definition of the biharmonic function in point of the variational
formulas and the Euler-Lagrange equation correlated to E2, written as:

τ2(f) = −∆τ(f)− traceRN (df(.), τ(f))df(.) = 0,(1.1)

where τ2(f) = 0 is named the biharmonic equation and it is the fourth order elliptic
semilinear PDE. Obviously, every harmonic map is biharmonic the interesting is in
the non harmonic biharmonic maps which are called proper biharmonic. The first
ambient spaces to investigate the proper biharmonic submanifolds are spaces of the
constant sectional curvature. In this case, the biharmonic concept of submanifold in
the Euclidean space with the harmonic mean curvature vector was established by B.
Y. Chen. Indeed, the well known conjecture was posted: any biharmonic submanifold
in Euclidean space is harmonic (see [3]). Also, the first class of submanifolds to be
studied is that of the hypersurfaces. Up to now, the following classification results
reached.

∗Balkan Journal of Geometry and Its Applications, Vol.25, No.2, 2020, pp. 66-75.
c⃝ Balkan Society of Geometers, Geometry Balkan Press 2020.



Biharmonic Hopf QR-hypersurfaces 67

• biharmonic surfaces in Rn, n=3, 4, 5 are minimal [4, 11, 10];

• biharmonic hypersurfaces in 4-dimensional space forms R4 and H4 are minimal
[2];

• biharmonic hypersurfaces with three distinct principal curvatures in Rn and Sn

are minimal [8, 9];

• biharmonic submanifold with constant mean curvature is minimal in Euclidean
space [5].

Recently, in the Euclidean case with regarding the idea about the number of
distinct principal curvatures, in [14, 15] the authors showed the biharmonic Hopf
hypersurfaces in the complex Euclidean spaces and in the odd dimensional spheres
are minimal. Furthermore, the nonexistence result of the proper biharmonic Ricci
Soliton hypersurfaces obtained in the Euclidean space En+1.

After all, the conjecture was persuasive enough that to be considered on the certain
hypersurfaces in the quaternionic Kählerian manifold. The objectives of the present
article is to give an affirmative answer to the conjecture about the biharmonic Hopf
QR- hypersurfaces in the quaternionic Euclidean space Qn, where the ambient man-
ifold admits a vector bundle V consists of the tensors of type (1, 1). We investigate
on the biharmonic QR-hypersurface of the quaternionic Euclidean space Qn, where
the structural vector fields are eigenvectors of the Weingarten operator. Finally, with
respect to the number of the distinct principal curvatures at each point of these hy-
persurfaces, we obtain the biharmonic Hopf QR-hypersurfaces in the quaternionic
Euclidean space Qn are minimal.

The paper is organized as following. Section 2, is devoted to establish the fun-
damental definitions and formulas about the biharmonic condition in the Euclidean
space, the quaternionic Kählarien manifold and its special QR-hypersurfaces, which
required in the following sections. Next, we illustrate some examples of the Hopf
hypersurfaces in the quatenionic Eulidean space R4 at the end of this section. Sec-
tion 3 is consisted the main computation and the principal theorem, where we prove
that ” biharmonic Hopf QR-hypersurfaces in the quatenionic Eulidean space Qn are
minimal”.

2 Preliminaries

In this section, we recall some fundamental definitions for the principal theorem
about the biharmonic Hopf QR-hypersurfaces, which are immersed isometrically in
the quaternionic Euclidean space Qn. At first, we put the biharmonic concept of a
hypersurface in the Euclidean space En.

Let x : M −→ En+1 be an isometric immersion of an n-dimensional hypersurface
M into the Euclidean space En+1. Let ∇ and ∇ be the Levi-Civita connections on
M and En+1, respectively. Let N be a local unit normal vector field to M in En+1.

Assume that
−→
H = HN and

−→
H implies the mean curvature vector field. One of the

considerable equation in differential geometry is △x = −n
−→
H , where △ the Laplacian-

Beltrami operator is defined △ = - trace ∇2. The expressions assumed by the tension
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and bitension fields are

(2.1) τ(x) = n
−→
H, τ2(x) = −n∆

−→
H,

then, the immersion x is called biharmonic if and only if △
−→
H = 0, where written as:

0 = △
−→
H = 2A(gradH) + nHgradH + (△⊥H +HtraceA2),

by identifying the bitension field in its normal and tangent components, the main
tool is obtained in the study of the proper biharmonic hypersurfaces in the Euclidean
spaces.

Theorem 2.1. [4] Let x : M −→ En+1 be an isometric immersion of an n-dimensional
hypersurface M into the Euclidean space En+1. Then M is a biharmonic hypersurface
if and only if {

△⊥H +HtraceA2 = 0;
2A(gradH) + nHgradH = 0,

(2.2)

where A denotes the Weingarten operator and ∆⊥ the Laplacian in the normal bundle
of M in En+1.

Suppose that, an n-dimension differentiable manifold Mn admits a 3-dimensional
vector bundle V including tensors of type (1, 1), that satisfies:

1. In any coordinate neighborhood U on Mn there exists a local basis {J1, J2, J3}
of V such that

JsJt + JtJs = −2δstI s, t = 1, 2, 3,

J1J2 = J3,(2.3)

the local base {J1, J2, J3} is named a canonical local base of the bundle V in
the coordinate U . The bundle V is called an almost quaternionic structure and
(Mn, V ) is an almost quaternionic manifold. Essentially, the almost quater-
nionic manifolds are of dimension 4m.

2. With respect to the Riemannian metric g, which is the Hermitian metric, the
Levi-Civita connection ∇ of (Mn, g, V ) and the canonical local basis {J1, J2, J3}
of V in the coordinate U we have

∇XJ1 = r(X)J2 − q(X)J3,

∇XJ2 = −r(X)J1 + p(X)J3,

∇xJ3 = q(X)J1 − p(X)J2,(2.4)

for all X ∈ T (Mn), where r, p and q are special local 1-forms define in U . Now, by
taking into account the above conditions, Mn and V are called quaternionic Kählerian
manifold and quaternionic Kählerian structure, respectively.

Also, a real submanifold M of real codimension p of a quaternionic Kählerian
manifold is called a QR-submanifold of QR-dimension of r, provided that there is a
r-dimensional normal distribution ν of the normal bundle TM⊥ satisfies

Jsνx ⊂ νx, s = 1, 2, 3

Jsν
⊥
x ⊂ TxM, s = 1, 2, 3
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at each point x ∈ M , where ν⊥ denotes the complementary orthogonal distribution
to ν in TM⊥. We recall a real hypersurface M is called the Hopf hypersurface,
provided that −JsN is the eigenvector of the Weingarten operator A. Indeed, we
concentrate on the biharmonic Hopf QR-hypersurfaces M , which are immersed in
the quaternionic Euclidean space Qn isometrically and equipped with the induced
almost quaternionic structure too. So, we takeing into account the second term
of the biharmonic condition (2.2), which yields the gradH is the eigenvector of the
Weingarten operator corresponding to the eigenvalue − 4n+3

2 H. Let ∇ and ∇ be the
Levi-Civita connections on M and Qn, respectively. Also, there is a local unit normal
vector field N on M such that ν⊥ = Span{N} and ξs = −JsN ∈ T (M), where
s = 1, 2, 3. In this way, the Hopf hypersurface is a QR-submanifold with the tangent
bundle

Tx(M) = Dx ⊕D⊥
x ,(2.5)

where Dx denotes the quaternionic bundle and D⊥
x = Span{ξ1, ξ2, ξ3} in Tx(M). Also,

suppose that the Weingarten operator A keeps Dx, that is, ADx = Dx. Now, for any
X ∈ χ(M) we have

JsX = φsX + ηs(X)N, s = 1, 2, 3,(2.6)

where φs is a (1, 1) tensor, which acts on TxM , and the one-form ηs(X) = g(−JsN,X)
on M . Also, by taking the covariant derivative of both sides of the equation ξs =
−JsN , where s = 1, 2, 3, and applying the equations (2.4), then comparing the tangent
and the normal parts written as:

∇Y ξ1 = r(Y )ξ2 − q(Y )ξ3 + J1AY,

∇Y ξ2 = −r(Y )ξ1 + p(Y )ξ3 + J2AY,

∇Y ξ3 = q(Y )ξ1 − p(Y )ξ2 + J3AY ,(2.7)

where Y ∈ χ(M). We end this section with examples of the Hopf hypersurfaces in
the Euclidean quaternionic space Qn.

Example 2.1. Hypercylinder in R4. Let

M = {(x1, x2, x3, x4) ∈ R4; x2
1 + x2

3 = 1} ≈ S1 ×R2,

we consider the quaternionic Kählerian structure {Js} for s = 1, 2, 3 as following

J1 =

(
0 −I
I 0

)
, J2 =

(
0 σ
σ 0

)
, J3 =

(
−σ 0
0 σ

)
,

where

σ =

(
0 −1
1 0

)
, I =

(
1 0
0 1

)
,

we consider a local unit normal vector field N = (x1, 0, x3, 0)
t on M , as respect

−J1N = ξ1 =


x3

0
−x1

0

 , −J2N = ξ2 =


0

−x3

0
−x1

 , −J3N = ξ3 =


0
x1

0
−x3

 ,
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then with respect to the Weingarten formula we have

∇ξ1N = ξ1, ∇ξ2N = 0, ∇ξ3N3 = 0,

where ∇ denotes the Levi-Civita connection on R4. Hence, the above equations shows
that ξs for s = 1, 2, 3 are the eigenvectors of the Weingarten operator A.

Furthermore, the hypersphere and the hyperplane are the Hopf hypersurfaces in
the Euclidean quaternionic space R4, obviously.

3 QR-hypersurfaces in the quaternionic Euclidean
space

In this section we show that the biharmonic Hopf QR-hypersurfaces in the quater-
nionic Euclidean space Qn are minimal. More precisely, the biharmonic Hopf QR-
hypersurfaces in the quaternionic Euclidean space Qn have three distinct principal
curvatures at each point. So, according to the result in [9], M is a minimal QR-
hypersurface. The goal will be obtained through the following investigation.

Lemma 3.1. Let M be a Hopf biharmonic QR-hypersurface in the quaternionic Eu-
clidean space Qn. Let the Weingarten operator A satisfies AX = λX, where X ∈ Dx

for x ∈ M . Then we have

AJsX =
αsλ

2λ− αs
JsX s = 1, 2, 3,(3.1)

where αs is an eigenvalue of the Weingarten operator corresponding to the eigenvector
ξs ∈ D⊥ and {J1, J2, J3} is the almost quaternionic structure.

Proof. Let Y, Z ∈ χ(M) and ξ1 be an eigenvector of A corresponding to the eigenvalue
α1. Taking the covariant derivative of both sides of Aξ1 = α1ξ1, which yields

∇Y Aξ1 = Y (α1)ξ1 + α1∇Y ξ1,

from the equation (2.7) we have

(∇Y A)ξ1 + α2r(Y )ξ2 − α3q(Y )ξ3 +AJ1AY =

Y (α1)ξ1 + α1r(Y )ξ2 − α1q(Y )ξ3 + α1J1AY,

and because the Weingarten operator is self adjoint it yields

g((∇Y A)Z, ξ1) + α2r(Y )g(ξ2, Z)− α3q(Y )g(ξ3, Z) + g(AJ1AY,Z) =

Y (α1)g(ξ1, Z) + α1r(Y )g(ξ2, Z)− α1q(Y )g(ξ3, Z) + α1g(J1AY,Z),
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thus

g((∇Y A)Z − (∇ZA)Y, ξ1)

+ 2g(AJ1AY,Z) + α2r(Y )g(ξ2, Z)

− α3q(Y )g(ξ3, Z)− α2r(Z)g(ξ2, Y )

+ α3q(Z)g(ξ3, Y ) =

Y (α1)g(ξ1, Z) + α1r(Y )g(ξ2, Z)

− α1q(Y )g(ξ3, Z)− Z(α1)g(ξ1, Y )

− α1r(Z)g(ξ2, Y ) + α1q(Z)g(ξ3, Y )

+ α1g(J1AY,Z)− α1g(J1AZ, Y ).

Consequently, by applying the Codazzi equation we have

2g(AJ1AY,Z) + α2r(Y )g(ξ2, Z)

− α3q(Y )g(ξ3, Z)− α2r(Z)g(ξ2, Y )

+ α3q(Z)g(ξ3, Y ) =

Y (α1)g(ξ1, Z) + α1r(Y )g(ξ2, Z)

− α1q(Y )g(ξ3, Z)− Z(α1)g(ξ1, Y )

− α1r(Z)g(ξ2, Y ) + α1q(Z)g(ξ3, Y )

+ α1g(J1AY,Z) + α1g(Z,AJ1Y ).(3.2)

Now according to the assumption, where AX = λX for Z ∈ D from the equation
(3.2) we get

2g(AJ1AX,Z) = α1g(J1AX,Z) + α1g(AJ1X,Z),

(2λ− α1)g(AJ1X,Z) = α1λg(J1X,Z),

AJ1X =
α1λ

2λ− α1
J1X.(3.3)

Similarly, the equation (3.3) can be hold for J2 and J3 as well. Hence, the result
obtain as it is claimed. �

By applying the equation (3.2), where Y ∈ D, putting Z = ξ2 or Z = ξ3, and
taking into account that Aξt = αtξt we get the following results.

Corollary 3.2. Let M be a biharmonic Hopf QR-hypersurface in the quaternionic
Euclidean space Qn. Then the eigenvalues αs, corresponding to the eigenvectors ξs ∈
D⊥, where s = 1, 2, 3, of the Weingarten operator are equal, that is, α1 = α2 = α3.

By summarizing the above information and taking into account that the eigenvalue
corresponding to the eigenvector gradH of the Weingarten operator is unique [9], we
have:

Corollary 3.3. Let M be a biharmonic Hopf QR-hypersurface in the quaternionic
Euclidean space Qn. Then the eigenvector gradH can not be in D⊥, that is, gradH is
not in the direction of ξs ∈ D⊥, where s = 1, 2, 3.
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Now we consider a biharmonic Hopf QR-hypersurface M in the quaternionic Eu-
clidean space Qn. Suppose that in the appropriate orthogonal frame field {X1, ..., Xi, JsX1, ..., JsXi, ξt},
for s, t = 1, 2, 3, the Weingarten operator A satisfies AXi = λiXi, Aξt = αξt and
AJsXi = λisJsXi, where λis = λiα

2λi−α with respect to the Lemma 3.1. Also, we have

∇ξrXi =
n∑

j=1

ωj
riXj +

∑
s=1,2,3

n∑
j=1

ωjs
riJsXj +

3∑
t=1

ωt
riξt,(3.4)

∇Xiξr =

n∑
j=1

ωj
irXj +

∑
s=1,2,3

n∑
j=1

ωjs
irJsXj +

3∑
t=1

ωt
irξt,(3.5)

where ωjs
ri , ω

j
ri,..., are the smooth functions on M for 1 ≤ i, j ≤ n and r, s, t = 1, 2, 3.

Morevere, with respect to the equations (3.4) and (3.5), then the Codazzi equation
implies

(λi − λj)ω
j
ri = (α− λj)ω

j
ir,(3.6)

(λi − λjs)ω
js
ri = (α− λjs)ω

js
ir ,(3.7)

for distinct i and j, where r, s, t = 1, 2, 3 and i, j = 1, ..., n.

Putting all the above information together and summarizing them, we are ready
to prove the principal theorem about the Hopf biharmonic QR-hypersurface in the
quternionic Euclidean space Qn.

Theorem 3.4. The biharmonic Hopf QR-hypersurfaces in the quaternionic Euclidean
space Qn are minimal.

Proof. With respect to the proceeding Lemma, there is an appropriate orthogonal
frame {X1, ..., Xn, JsX1, ..., JsXn, ξ1, ξ2, ξ3}, for s = 1, 2, 3 such that X1 is parallel
to the gradH, where the gradH ̸= 0, and the shape operator A of M is taken the
following form:

AXi = λiXi ; 1 ≤ i ≤ n

Aξt = αξt ; t = 1, 2, 3(3.8)

AJsXi = λisJsXi ; s = 1, 2, 3, 1 ≤ i ≤ n,

where λi and λis = λiα
2λi−α are the eigenvalues corresponding to the eigenvectors Xi

and JsXi, that s = 1, 2, 3, respectively. Also, α is the eigenvalue corresponding to the
eigenvectors ξt ∈ D⊥ and λ1 = −4n+3

2 H too. Let X, Y and Z be in χ(M). Then the
Codazzi equation yields

g(∇XAY,Z)− g(∇Y AX,Z) = g(A∇XY, Z)− g(A∇Y X,Z),(3.9)

let Y = ξ1 and pay attention to the assumption AXi = λiXi, where 1 < i ≤ n. Then
from the equation (3.9) we get

g(∇XiAξ1, Z)− g(∇ξ1λiXi, Z) = g(A∇Xiξ1, Z)− g(A∇ξ1Xi, Z),(3.10)
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now the equations (3.10) and (2.7) follow

Xi(α)g(ξ1, Z) + αg(∇Xiξ1, Z)

− ξ1(λi)g(Xi, Z) + g(λi∇ξ1Xi, Z) =

αr(Xi)g(ξ2, Z)− αq(Xi)g(ξ3, Z)

+ λig(AJ1Xi, Z)− g(A∇ξ1Xi, Z),

then we have

Xi(α)g(ξ1, Z) + αr(Xi)g(ξ2, Z)

− αq(Xi)g(ξ3, Z) + αλig(J1Xi, Z)

− ξ1(λi)g(Xi, Z) + λig(∇ξ1Xi, Z) =

αr(Xi)g(ξ2, Z)− αq(Xi)g(ξ3, Z)

+ λig(AJ1Xi, Z)− g(A∇ξ1Xi, Z).(3.11)

Suppose that Z = Xj is an eigenvector of the Weingarten operator corresponding to
the eigenvalue λj , where i ̸= j. Then from the equation (3.11) we have:

−λig(∇ξ1Xi, Xj) = −λjg(∇ξ1Xi, Xj),(3.12)

where j ̸= 1. Now, one more time we suppose that Z = JsXj , where s = 1, 2, 3 and
utilize the equation (3.11) we get

λig(∇ξ1Xi, JsXj) = λjsg(∇ξ1Xi, JsXj).(3.13)

Finally, we show that the equations (3.12) and (3.13), follow λi = λj = α.
Indeed, from the equations (3.4), (3.5) and (3.12) we have

(λi − λj)ω
j
1ig(Xj , Xj) = 0,(3.14)

where ωj
1i satisfies at the equation (3.6). Now, taking into account the equations (3.6)

and (3.14), then the results written as:

1. λi = λj , provided that ωj
1i ̸= 0 for distinct i and j, where 1 < i, j ≤ n.

2. If ωj
1i = 0, either α = λj or λi = λj for distinct i and j, where 1 < i, j ≤ n.

Similarly, from (3.4), (3.5) and (3.13) we have

(λi − λjs)ω
js
1ig(JsXj , JsXj) = 0,(3.15)

where λjs =
λjα

2λj−α is the eigenvalue corresponding to the eigenvector JsXj that ωjs
1i

satisfies the (3.7). After all, by taking the equations (3.7) and (3.15) we arrive at

1. λi = λjs if ωjs
1i ̸= 0, where s = 1, 2, 3 and 1 < i, j ≤ n.

2. If ωjs
i1 = 0, either λj = α or λi = λjs , where s = 1, 2, 3 and 1 < i, j ≤ n.
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Consequently, with respect to the results 1 and 2 of the both above cases, we
obtain λi = λj = α, where (i ̸= j ̸= 1) as it is claimed.

Furthermore, we point that the gradH is an eigenvector of the Weingarten opera-
tor corresponding to the unique eigenvalue −4n+3

2 H. Also, the Lemma 3.1 shows

Js(gradH) are the eigenvector with respect to the same eigenvalue (4n+3)Hα
2(α−(4n+3)H) ,

where s = 1, 2, 3. After all, the above computation follows the Weingarten opera-
tor has three distinct eigenvalues, at follow the Hopf biharmonic QR-hypersurfaces
in the Euclidean space Qn have three distinct principal curvatures. Then, according
to the result in [9], these hypersurfaces are minimal. �

Acknowledgements. Many thanks to referee for developing this class file.
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