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Abstract. In the paper, we study the geometry of Lichnerowicz type
Laplacians, which generalize the ordinary Laplacian of Lichnerowicz. We
are based on the analytical method, due to Bochner, of proving vanishing
theorems for the null space of Laplace operator. We pay a special attention
to the kernel of the Lichnerowicz type Laplacian on Riemannian symmetric
spaces of compact and complete noncompact types. We also consider
applications of our results to the theories of Codazzi and Killing tensors,
infinitesimal Einstein deformations and stability of Einstein manifolds.
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1 Introduction

Let (M, g) be an n-dimensional (n ≥ 2) connected Riemannian manifold. The vector
bundle ⊗p T ∗M of covariant p-tensors (1 ≤ p < ∞) over M carries the well-known
Lichnerowicz Laplacian defined by the Weitzenböck decomposition formula (see [2,
p. 388–389], [3, p. 54] and [24, p. 27])

(1.1) ∆L = ∆̄ + ℜ,

where ∆̄ is the connection or Bochner Laplacian (see [3, p. 54] and [24, p. 27]) and
ℜ : ⊗p T ∗M → ⊗p T ∗M is the symmetric Weitzenböck curvature operator (see [35,
pp. 343–345]) that depends linearly in known way on the Riemannian curvature tensor
and the Ricci tensor of the metric g. This situation can be generalized to the following
setting. Consider a Riemannian bundle E over M with a scalar product gx = ⟨·, ·⟩
in each fiber Ex, smoothly depending on x ∈ M , and with a compatible connection.
Further, the scalar products and connections of E, as well as of M will be denoted
by the same symbols g and ∇. Define the L2 global scalar product on C∞-sections
of E by the formula ⟨u, v⟩ =

∫
M

gx(u, v) d volg and consider the associated Hilbert
space L2(E). Using the L2-structures on C∞(E), we define the connection Laplacian
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by the formula ∆̄ = ∇∗∇, where ∇∗ is the formal-adjoint operator of the compatible
connection ∇ : C∞(E) → C∞(T ∗M ⊗E). In the paper, we consider a one-parameter
family of Lichnerowicz type Laplacians on E, defined by the formula

(1.2) ∆L = ∆̄ + cℜ

for any c ∈ R and a smooth symmetric endomorphism ℜ of E, related to the curvature
R∇ of ∇ (for particular cases, see [19]; [35, p. 344]). The subscript L for ∆ will denote
that it is the Lichnerowicz type Laplacian due to above definition. Any ∆L is a second
order elliptic linear differential operator on C∞(E), which is symmetric with respect
to ⟨·, ·⟩. On a closed (i.e., compact without boundary) (M, g) we have an orthogonal
(with respect to the global scalar product on ⊗p T ∗M) decomposition

(1.3) C∞(⊗p T ∗M) = Ker∆L ⊕ Im∆L,

and ∆L has a discrete spectrum and its eigenvalues have finite multiplicities, which in
few cases have been computed. The first component Ker∆L of (1.3) is the kernel of
∆L. Its smooth sections are called ∆L-harmonic (see [36, p. 104]). Examples below
show how this construction works (see also its applications in Sections 4 and 5).

Example 1.1. (i) For c = 0 and p = 0, ∆L is the Bochner Laplacian ∆H on C∞(M).
The kernel of ∆L consists of harmonic functions.

(ii) If c = 1 and E = ΛpM is the bundle of p-forms (1 ≤ p ≤ n − 1) over M ,
then ∆L is the Hodge-de Rham Laplacian ∆H on p-forms. In this case, we have (1.3)
for ∆H , where ℜ is expressed in terms of the curvature and Ricci tensors (see [33,
p. 347]). It is known that the p-th Betti number bp(M) of a closed (M, g) is equal to
the dimension of the kernel of ∆L on p-forms. Elements of ker∆L are called harmonic
p-forms.

(iii) If c = −1 and E = SpM for the bundle of covariant symmetric p-tensors
(1 ≤ p < ∞) over M , then ∆L is the Sampson Laplacian ∆S (see [39, p. 147]). In this
case, (1.3) for ∆S has the form ∆S = ∆̄ − ℜ, where ℜ is expressed in terms of the
curvature and Ricci tensors of (M, g) (see [28]; [39, p. 147]; [44, p. 55]). Elements of
ker∆S are called harmonic symmetric p-tensors, and they form a finite-dimensional
vector space on a compact Riemannian manifold (see [39, pp. 148, 150]).

(iv) Let c = 1/4 and E = ΣM be the spinor bundle on a compact (M, g). In this
case, ∆L is the spinor Laplacian∆D and (1.1) has the form ∆D = ∆̄+(1/4) s, see [25],
where s is the scalar curvature and ∆D is the square of the Dirac operator D on C∞-
sections of E = ΣM (see [3, p. 55] and [25]). Elements of ker∆D = kerD are called
harmonic spinors (see, e.g., [1]; [3, p. 170]), and they form a finite-dimensional vector
space on a compact manifold M , as follows from standard elliptic theory applied to
the strongly elliptic system ∆D T = 0 for smooth sections of ΣM .

In the present work we study ∆L-harmonic sections of (E, g) using the analytical
method, due to S. Bochner (e.g., monographs [35, Chapter 9] and [6, 36, 46]), of
proving Liouville type vanishing theorems for the null space of a Laplace operator
admitting (1.1).

Recall that by classical Liouville theorem, any bounded harmonic function in Rn

is constant. There is a more general approach to vanishing theorems of Liouville type
in Riemannian geometry (e.g., [28, 38, 41]). Namely, let A be an elliptic operator
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of some order acting on a functional class F(M) over a complete (M, g). Then, in
accordance with the general theory, we say that the Liouville type vanishing theorem
on (M, g) is true if any solution of equation Af = 0 from class F(M) is trivial. The
“triviality property” can be understand in different ways, for example, identically
zero or constant, or for linear equations triviality can be equivalent to having finite
dimension. This theory is a part of Geometric Analysis based on the contributions of
K.Uhlenbeck, C.Taubes, S.T.Yau, R. Shoen and R.Hamilton.

We pay a special attention to the kernel of the Laplacian (1.2) on Riemannian
symmetric spaces of compact and noncompact types. We also give applications of our
results to the theories of Codazzi and Killing tensors, infinitesimal Einstein deforma-
tions and stability of Einstein manifolds (see [2] and [3, Chapter 12]).

2 The Lichnerowicz type Laplacian on covariant p-tensors

There are few general theorems on the kernel of the Lichnerowicz type Laplacian
∆L : C∞(⊗p T ∗M) → C∞(⊗p T ∗M) for p ≥ 2. In the section we fill this gap.

2.1. Let M be a connected manifold of dimension n and g be a Riemannian metric
on M with its Levi-Civita connection ∇. One can associate to (M, g) a number of
natural elliptic differential operators. Usually these operators act in the space C∞(E)
of smooth sections of some Riemannian vector bundle E → M over (M, g). As an
example we consider the Laplacian (1.2). A section ξ ∈ C∞(E) is called ∆L-harmonic
if ∆L ξ = 0 (see [36, p. 104]). Define the vector space of ∆L-harmonic C∞-sections
of E → M by

Ker∆L = {ξ ∈ C∞(E) : ∆L ξ = 0},
and the vector space of ∆L-harmonic Lq(E)-sections of E → M by the condition

Lq(Ker∆L) = { ξ ∈ Ker∆L : ∥ξ∥ ∈ Lq(M) }.

Furthermore, ∆L-harmonic sections satisfy the (strong) unique continuation prop-
erty. In coordinates, the condition ∆L ξ = 0 becomes a system of elliptic equations
satisfying the structural assumptions of Aronszajn-Cordes (see [36, Appendix]). Con-
sequently, the following proposition holds (see [36, p. 104]).

Proposition 2.1. Let ∆L be an elliptic operator on C∞-sections of E → M over
(M, g), satisfying (1.2). Let ξ ∈ Ker∆L be an ∆L-harmonic section of E → M . If ξ
has a zero of infinite order at some point x ∈ M , then ξ vanishes on M .

2.2. An illustration of the construction (1.2) is given by ∆L : C∞(⊗p T ∗M) →
C∞(⊗p T ∗M). Namely, ∆L is defined for any T ∈ C∞(⊗p T ∗M) by, e.g., [35, p. 344],

(2.1) ∆LT = ∆̄T + cℜ(T ).

We will use the standard definition of the Riemannian curvature tensor:

R(X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ], X, Y ∈ TM.

In this case, the Weitzenböck curvature operator ℜ : ⊗p T ∗M → ⊗p T ∗M is defined
by the following equalities (see also [3, p. 54]):

(2.2) (ℜ(T ))i1...ip =
∑

a
Riaj T

j
i1... ... ip

− 2
∑

a<b
Rj iak ibT

j k
i1... ... ... ip

,
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where Ti1...ip , Rij and Rijkl are components of the tensor T ∈ C∞(⊗p T ∗M), the
Ricci tensor and the Riemannian curvature tensor, respectively,

Ti1...ip = T (ei1 , . . . , eip), Rkl = Ri
kil, Rijkl = gim Rm

jkl.

Here R(ej , el) ek = Ri
kjlei and gim = g(ei, em) for an orthonormal frame {e1, . . . , en}

of TxM at an arbitrary point x ∈ M and for any i, j, k, . . . ∈ {1, 2, . . . , n}. Moreover,
the following identity holds for any T, T ′ ∈ ⊗p T ∗M , see [24, p. 27]:

g(ℜ(T ), T ′) = g(ℜ(T ′), T ).

Remark 2.1. In [35], operator (2.2) is presented by

(2.3) (ℜ(T ))(X1, . . . , Xp) =
∑
a,j

(R(ej , Xa)T )(X1, . . . , ej︸ ︷︷ ︸
a

, . . . , Xp).

From the well known formula for curvature on the (p, l)-tensor bundle, keeping in
mind that R(Y,Z)(T (X1, . . . , Xp)) = 0 for a p-tensor T , we obtain

(R(Y,Z)T )(X1, . . . , Xp) = −
∑

a
T (X1, . . . , R(Y, Z)Xa, . . . , Xp).

Thus, (2.3) can be rewritten in the form, which obviously coincides with (2.2),

(ℜ(T ))(X1, . . . , Xp) = −2
∑

j,a;b<a

T (X1, . . . , R(ej , Xa)Xb︸ ︷︷ ︸
b

, . . . , ej︸ ︷︷ ︸
a−b

, . . . , Xp)

−
∑
j,a

T (X1, . . . , R(ej , Xa)ej︸ ︷︷ ︸
a

, . . . , Xp)

= −2
∑

j,k,a;b<a

R(ej , Xa, ek, Xb)T (X1, . . . , ek︸ ︷︷ ︸
b

, . . . , ej︸ ︷︷ ︸
a−b

, . . . , Xp)

+
∑
j,a

Ric(ej , Xa)T (X1, . . . , ej︸ ︷︷ ︸
a

, . . . , Xp).

For the case p = 1, we get (ℜ(T ))(X) = T (Ric(X)), thus ∆L has the form ∆L = ∆̄+
Ric (with c = 1). In this case, the operator ∆L is the Hodge-de Rham Laplacian ∆H

on one-forms. Therefore, ker∆L consists of harmonic one-forms on (M, g). Moreover,
if M is closed then we have the orthogonal decomposition (1.3), where dimension
of L2(Ker∆L) equals to the first Betti number of (M, g), according to de Rham’s
theorem. On the other hand, if (M, g) is complete with nonnegative Ricci curvature,
then L2(Ker∆L) consists of parallel one-forms on (M, g). Furthermore, if the Ricci
curvature is positive at some point of (M, g) or the holonomy of (M, g) is irreducible
then L2(Ker∆L) is trivial (for the proof, see [47, p. 666]). In particular, for c = −1
and p = 1 we obtain from (2.1) that ∆L = ∆ − Ric. The kernel of this Laplacian
consists of infinitesimal harmonic transformations (see [27]). Recall that a vector
field ξ, generating a local one-parameter group of local harmonic diffeomorphisms on
(M, g), is an infinitesimal harmonic transformation of (M, g) (see [32]). In this case,
we proved in [43] that if (M, g) is a complete Riemannian manifold with nonpositive
Ricci curvature, then L2(ker∆L) consists of parallel one-forms on (M, g). Moreover,
if the volume of (M, g) is infinite then any infinitesimal harmonic transformation is
equal to zero. Thus, we will not consider these well-known cases, and assume p ≥ 2.
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We can formulate the following corollary of Proposition 2.1.

Corollary 2.2. Let ∆L be acting on C∞(⊗p T ∗M) for (p ≥ 2). If a ∆L-harmonic
section T of ⊗p T ∗M has zero of infinite order at some point x ∈ M , then T vanishes.

By direct calculations, from (2.1) we obtain the Bochner-Weitzenböck formula

1

2
∆B (∥T ∥2) = −g(∆̄T, T ) + ∥∇T ∥2

= −g(∆L T, T ) + ∥∇T ∥2 + c g(ℜ(T ), T ),(2.4)

where c ̸= 0 and ∆B = div ◦ grad is the Beltrami Laplacian on C∞(M).
Recall that the Riemannian curvature tensor of (M, g) defines a symmetric alge-

braic operator R̄: Λ2(TxM) → Λ2(TxM) on the vector space Λ2(TxM) at an arbitrary
point x ∈ M (see [35, pp. 82–83]). This R̄ is called the curvature operator of (M, g).
The eigenvalues Λα of R̄ are real numbers at each point x ∈ M . Then we can select
the orthonormal frame {Ξα} for Λ2(T ∗

xM) at each point x ∈ M , consisting of eigen-
vectors for R̄, i.e., R̄(Ξα) = ΛαΞα. In this case, the quadratic form g(ℜ(T ), T ) can
be represented in the following form at each point x ∈ M (see [35, p. 346]):

(2.5) g(ℜ(Tx), Tx) =
∑

α
Λα∥Ξα(Tx)∥2.

Remark 2.2. There are many works devoted to the relationship between the curva-
ture operator R̄ of (M, g) and some global characterization of it, e.g., its homotopy
type, topological type (see, e.g., [35, pp. 351, 353 and 390] and [7, 41]). In particu-
lar, if R̄ ≥ 0 (respectively, R̄ ≤ 0) at a point x ∈ M , then all sectional curvatures
sec(π) ≥ 0 (respectively, sec(π) ≤ 0) for any 2-plane π in TxM as well. The above
statement is a consequence of the following theorem (see [35, p. 115]): if {e1, . . . , en}
is an orthonormal basis in TxM such that {ei∧ej} diagonalize the curvature operator:
R̄(ei ∧ ej) = λij ei ∧ ej , then sec(π) ∈ {minλij ,maxλij} for any 2-plane π in TxM .

Recall that the eigenvalues of R̄ are real numbers at any x ∈ M . Thus, R̄ is non-
negative, R̄ ≥ 0 (or, strictly positive, R̄ > 0), if all eigenvalues of R̄ are nonnegative
(resp., strictly positive). For a ∆L-harmonic section T of ⊗p T ∗M , by (2.4) we obtain

(2.6)
1

2
∆B (∥T ∥2) = ∥∇T ∥2 + c g(ℜ(T ), T ).

Therefore, if c > 0 and g(ℜ(T ), T ) ≥ 0, then ∆B(∥T∥2) ≥ 0, and hence, ∥T∥2 is a
nonnegative subharmonic function. In this case, the following local theorem holds.

Theorem 2.3. Let U be a connected open domain of a Riemannian manifold (M, g)
with positive semi-definite curvature operator R̄ at any point of U , and ∆L be the
Lichnerowicz type Laplacian acting on C∞-sections of the bundle of covariant p-tensor
fields ⊗p T ∗M over (M, g) for c > 0 for p ≥ 2. If T ∈ Ker∆L at any point of U
and the scalar function ∥T∥ 2 has a local maximum at some point of U , then ∥T∥ 2

is constant and T is parallel on U . In addition, if R̄ ≥ k > 0 at a point x ∈ U and
T ∈ C∞(ΛpM) for any p ∈ {1, . . . , n− 1}, then T ≡ 0.

Proof. From (2.5) we can conclude that the sign of the quadratic form g(ℜ(T ), T )
is opposite to the sign of the curvature operator R̄ of a Riemannian manifold (M, g).
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In particular, (2.5) shows that the quadratic form g(ℜ(Tx), Tx) is nonnegative (resp.,
positive) when the curvature operator is nonnegative (resp., positive) on M . From
the above and (2.6) we conclude that if R̄ is positive semi-definite on M , then ∥T∥2
is a subharmonic scalar function on U . Therefore, proceeding from (2.6) and using
the Hopf maximum principle (see [6, p. 26] and [9]), we conclude that if the curvature
operator is positive semi-definite on a connected domain U , then ∥T∥2 is a constant
C and ∇T = g(ℜ(T ), T )) = 0 on U . If C > 0, then T is nowhere zero. Now, at a
point x ∈ U , where the curvature operator satisfies the inequality R̄ ≥ k > 0, we have

(2.7) g(ℜ(Tx), Tx) =
∑

α
Λα∥Ξα(Tx)∥2 ≥ k

∑
α
∥Ξα(Tx)∥2 ≥ 0.

In this case, the LHS of (2.7) is zero, while the RHS would be nonnegative. This
contradiction shows that Ξα(Tx) = 0 for all α. In particular, for T ∈ C∞(ΛpM) we
have Tx = 0 (see [34, p. 351]). Then C = 0, hence T ≡ 0. �

Remark 2.3. Recall that the Hopf maximum principle reads as follows: If a subhar-
monic function attains a local maximum value at some point of a connected domain
U of (M, g) then it is a constant C in U (see [9, Theorem 1]).

Let (M, g) be closed, then (2.6) is globally defined and there exists a point x ∈ M ,
at which ∥T ∥2 attains the global maximum. At the same time, let ∥T ∥2 satisfies
∆B(∥T ∥2) ≥ 0 on M . In this case, we use the Bochner maximum principle, which
we deduce from the Hopf maximum principle. Namely, an arbitrary subharmonic
function on a closed Riemannian manifold is constant (see [6, Theorem 2.2]). Thus,
the following statement follows from Theorem 2.3.

Corollary 2.4. Let (M, g) be closed with positive semi-definite curvature operator R̄
and ∆L : C∞(⊗p T ∗M) → C∞(⊗p T ∗M) with c > 0 for p ≥ 2. If T ∈ Ker∆L on M ,
then ∥T ∥ 2 is constant and T is parallel. If, in addition, R̄ ≥ k > 0 at a point x ∈ M
and T ∈ C∞(ΛpM) where p ∈ {1, . . . , n− 1} then T ≡ 0.

Remark 2.4. The Hodge-de Rham Laplacian ∆H on C∞-sections of the bundle
Λp(M) is the most famous example of ∆L. Thus we conclude from Theorem 2.3 that
a closed Riemannian manifold with positive curvature operator has vanishing the p-th
Betti number βp(M). The added benefit is that we also conclude from our theorem

that if R̄ is merely nonnegative, then the inequality βp(M) ≤
( n

p

)
holds (see the

Meyer-Gallot Theorem in [35, p. 351]).

As analogues of Theorem 2.3 and Corollary 2.4, we obtain the following theorem
and corollary.

Theorem 2.5. Let U be a connected open domain of a Riemannian manifold (M, g)
with negative semi-definite curvature operator R̄ at any point of U and ∆L be the
Lichnerowicz type Laplacian acting on C∞-sections of the bundle of covariant p-tensor
fields ⊗p T ∗M with c < 0 for p ≥ 2. If T ∈ Ker∆L at any point of U and the scalar
function ∥T∥2 has a local maximum at some point of U , then ∥T∥2 is constant and T
is parallel on U . In addition, if R̄ ≤ k < 0 at some point x ∈ U and T ∈ C∞(ΛpM)
for any p ∈ {1, . . . , n− 1}, then T ≡ 0.
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Corollary 2.6. Let (M, g) be closed with negative semi-definite curvature operator R̄
and ∆L : C∞(⊗p T ∗M) → C∞(⊗p T ∗M) with c < 0 for p ≥ 2. If T ∈ Ker∆L on M ,
then ∥T∥2 is constant and T is parallel. If, in addition, R̄ ≤ k < 0 at a point x ∈ M
and T ∈ C∞(ΛpM) where p ∈ {1, . . . , n− 1} then T ≡ 0.

By direct calculation we find

1

2
∆B (∥T∥2) = ∥T∥ ·∆B(∥T∥) + ∥ d ∥T∥ ∥2.

Then (2.6) can be rewritten in the form

∥T ∥∆B(∥T ∥) = c g(ℜ(T ), T ) + ∥∇T ∥2 − ∥d ∥T ∥ ∥2.

Using the Kato inequality ∥∇T ∥2 ≥ ∥ d ∥T ∥ ∥2 (see [10]), we write the following
inequality (with c ̸= 0):

(2.8) ∥T∥ ·∆B(∥T∥) ≥ c g(ℜ(T ), T ).

Therefore, if c > 0 and g(ℜ(T ), T ) ≥ 0 on (M, g), then we have ∆B (∥T ∥) ≥ 0 and
hence, ∥T∥ is a nonnegative subharmonic function on M . On the other hand, Greene
and Wu proved in [16] the following: if (M, g) is complete noncompact with nonneg-
ative sectional curvature and f is a nonnegative subharmonic function on M , then∫
M

fq d volg = ∞ for any 1 ≤ q < ∞ unless f ≡ 0. Based on (2.8), Theorem 2.3 and
the Greene-Wu result, we conclude that if T ∈ Ker∆L on M and

∫
M

∥T ∥ q d volg < ∞
for some 1 ≤ q < ∞, then T ≡ 0 for the case of a complete noncompact (M, g) with
nonnegative sectional curvature. Thus, we obtain the following.

Theorem 2.7. Let (M, g) be complete noncompact with a positive semi-definite cur-
vature operator R̄ and ∆L : C∞(⊗p T ∗M) → C∞(⊗p T ∗M) with c > 0 for p ≥ 2.
Then Lq(Ker∆L) is trivial for any 1 ≤ q < ∞.

As an analogue of Theorem 2.7 we obtain the following.

Theorem 2.8. Let (M, g) be complete and simply connected with a negative semidefi-
nite curvature operator R̄ and ∆L : C∞(⊗p T ∗M) → C∞(⊗p T ∗M) with c < 0 for
p ≥ 2. If T ∈ Lq(Ker∆L) for some q ∈ (0,∞), then ∥T∥ is constant and T is parallel.
In particular, if Vol(M, g) = ∞, then T ≡ 0. If, in addition, R̄ ≤ k < 0 at some point
x ∈ M and T ∈ C∞(ΛpM) where p ∈ {1, . . . , n− 1} then T ≡ 0 as well.

Proof. Note that if R̄ ≤ 0, then g(ℜ(Tx), Tx) ≤ 0 at an arbitrary point x ∈ M
because g(ℜ(Tx), Tx) =

∑
α Λα∥Ξα(Tx)∥2 ≤ 0, where Λα ≤ 0 for all α. On the other

hand, if c < 0 and g(ℜ(Tx), Tx) ≤ 0 at any point of (M, g), then from (2.7) we obtain
∆B(∥T∥) ≥ 0. In this case, ∥T∥ is a nonnegative subharmonic function on (M, g).
On the other hand, in [23, p. 288] was proved that every nonnegative subharmonic
Lq-function for q ∈ (0,∞) on a complete simply connected (M, g) of nonpositive
sectional curvature is constant. Therefore, if (M, g) is complete and simply connected
and T ∈ Lq(Ker∆L) for some q ∈ (0,∞), then ∥T∥ is a constant C ≥ 0 and ∇T = 0.

In this case, the inequality
∫
M

∥T∥q d volg < ∞ can be rewritten in the form
Cq

∫
M

d volg = Cq Vol(M, g) < ∞ Thus, if Vol(M, g) = ∞ then C = 0 and, hence,
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T ≡ 0. On the other hand, at a point x ∈ M , where the curvature operator R̄ satisfies
the inequality R̄ ≤ k < 0, we have

g(ℜ(Tx), Tx) =
∑

α
Λα∥Ξα(Tx)∥2 ≤ k

∑
α
∥Ξα(Tx)∥2 ≤ 0.

In this case, the LHS of (2.7) is zero, while the RHS would be nonpositive. This
contradiction shows that Ξα(Tx) = 0 for all α. In particular, for T ∈ C∞(ΛpM) we
have Tx = 0 (see [35, p. 351]). Then C = 0 and hence T ≡ 0. �

2.3. Recall that the Riemannian symmetric space is a finite-dimensional (M, g),
such that for every its point x there is an involutive geodesic symmetry sx of a
neighborhood of x, such that x is an isolated fixed point of sx. (M, g) is said to
be Riemannian locally symmetric if its geodesic symmetries are in fact isometries.
Such (M, g) is a Riemannian globally symmetric space if, in addition, its geodesic
symmetries are defined on all (M, g). A Riemannian globally symmetric space is
complete (see [21, p. 244]). In addition, a complete and simply connected Riemannian
locally symmetric space is a Riemannian globally symmetric space. These spaces can
be classified in terms of their isometry groups, and the classification distinguishes
three basic types: the spaces of compact type, the spaces of noncompact type and the
spaces of Euclidean type (e.g., [21, p. 252]). If, in addition, (M, g) is a Riemannian
globally symmetric space of compact type then it is a closed Riemannian manifold with
non-negative sectional curvature and positive-definite Ricci tensor (see [21, p. 256]).
Moreover, its R̄ is nonnegative (see [13]). Using Remark 2.1 and Corollary 2.4, one
can argue that the following statement holds.

Proposition 2.9. Let (M, g) be an n-dimensional (n ≥ 2) simply connected Rieman-
nian globally symmetric space of compact type and ∆L : C∞(⊗pT ∗M)→C∞(⊗pT ∗M)
be the Lichnerowicz type Laplacian with c > 0, for p ≥ 1. Then all ∆L-harmonic sec-
tions of T ∗M vanish and every ∆L-harmonic section of ⊗p T ∗M for p ≥ 2 is parallel.

Remark 2.5. If (M, g) is a simply connected Riemannian globally symmetric space
of compact type then its Betti numbers satisfy the conditions b1(M) = bn−1(M) = 0

and bp(M) ≤
( n

p

)
for p = 2, . . . , n− 2. This follows directly from Proposition 2.9.

Notice that a Riemannian symmetric space of noncompact type has nonpositive
sectional curvature and negative-definite Ricci tensor, see [22, p. 256]. Also, a Rie-
mannian symmetric space has the nonpositive curvature operator if and only if it has
the nonpositive sectional curvature (see [13]). After the above remarks, the assertion
of the following proposition becomes an obvious corollary of Theorem 2.8.

Proposition 2.10. Let (M, g) be an n-dimensional (n ≥ 2) simply connected Ri-
emannian globally symmetric space of noncompact type and ∆L : C∞(⊗p T ∗M)
→ C∞(⊗p T ∗M) be the Lichnerowicz type Laplacian with c < 0 for p ≥ 2. Then
Lq(Ker∆L) for any q ∈ (0,∞) consists of parallel tensor fields. In particular, if
Vol(M, g) = ∞, then Lq(Ker∆L) is trivial.

3 The Lichnerowicz type Laplacian on symmetric bilinear forms

Here, we study the kernel Ker∆L of ∆L restricted to the space of C∞-sections of
SpM with p ≥ 2 and, in particular, of C∞-sections of S2M on (M, g). In this section,
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we denote by φ an arbitrary element of C∞(SpM).

3.1. Consider the subbundle Sp
0M of ⊗p T ∗M consisting of smooth traceless

symmetric tensor fields. A section φ ∈ C∞(Sp
0M) is defined by the condition

traceg φ :=
∑n

i=1
φ(ei, ei, X3, . . . , Xp) = 0

for the orthonormal frame {ei} of TxM at any point x ∈ M . It is known (see [2]) that
g(ℜ(φ), φ) ≥ 0 for any φ ∈ C∞(S2

0M) if sec ≥ 0 for the sectional curvature of (M, g).
This statement was generalized in [5, p. 8] in the following form: g(ℜ(φ), φ) is positive-
semidefinite for p ≥ 2 if sec ≥ 0. Moreover, for any p ≥ 2, positive-semidefiniteness
of g(ℜ(φ), φ) for φ ∈ C∞(Sp

0M) and of g(ℜ(φ), φ) for φ ∈ C∞(SpM) are equivalent
(see [5, p. 8]). Thus, we reformulate Theorem 2.7 in the following form.

Corollary 3.1. Let (M, g) be complete noncompact with positive semi-definite sec-
tional curvature and ∆L : C∞(SpM) → C∞(SpM) be the Lichnerowicz type Lapla-
cian with c > 0 for p ≥ 2. Then Lq(Ker∆L) is trivial for an arbitrary q ∈ [1,∞).

The fact that sec ≤ 0 implies negative-semidefiniteness of g(ℜ(φ), φ) for p ≥ 2 and
φ ∈ C∞(Sp

0M) was proved in [12, 18]. Thus, from Theorem 2.8 we get the following.

Corollary 3.2. Let (M, g) be complete noncompact with negative semi-definite sec-
tional curvature and ∆L : C∞(Sp

0M) → C∞(Sp
0M) be the Lichnerowicz type Lapla-

cian with c < 0 for p ≥ 2. Then Lq(Ker∆L) for any q ∈ (0,∞) consists of parallel
tensor fields. In particular, if Vol(M, g) = ∞, then Lq(Ker∆L) is trivial.

3.2. Rewrite (2.1) for ∆L : C∞(S2M) → C∞(S2M) in the form (with c ̸= 0):

(3.1) ∆L φ = ∆̄φ+ cℜ(φ).

In this case, the Weitzenböck curvature operator (2.3) reduces to the form

(ℜ(φ))(X1, X2) =
∑

j

(
Ric(ej , X1)φ(ej , X2) + Ric(ej , X2)φ(ej , X1)

)
− 2

∑
j,k

R(ej , X1, ek, X2)φ(ej , ek),

or, equivalently, (2.2) has the following form (see [3, p. 64] and [2, 44]):

(3.2) (ℜ(φ))ij = Rikφ
k
j +Rjkφ

k
i − 2Rikjlφ

kl

for components φij of an arbitrary φ ∈ C∞(S2M). Directly from (3.1) and (3.2) we
obtain traceg(∆L φ) = ∆̄(traceg φ) for an arbitrary φ ∈ C∞(S2M). Therefore, the
following statement holds (see also [24]).

Proposition 3.3. Let ∆L acts on C∞(S2M), then traceg(∆L φ) = ∆̄(traceg φ).

It is known that for any 2-tensor φ the following inequality holds:

∥φ∥2 ≥ (1/n)(traceg φ)
2

at an arbitrary point x ∈ M . Therefore, if φ ∈ L2(Ker∆L), then traceg φ ∈
L2(ker ∆̄). On the other hand, if φ ∈ Ker∆L, then ∆(traceg φ) = 0. At the same
time, Yau proved in [47] that any harmonic function f satisfying f ∈ Lq(M) for some
q ∈ (1,∞) is constant on a complete Riemannian manifold (M, g). In particular, if
Vol(M, g) = ∞, then f ≡ 0. From the above assumption we conclude the following.
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Proposition 3.4. Let ∆L : C∞(S2M) → C∞(S2M) act on a complete noncompact
(M, g). Then the trace of any smooth section of L2(Ker∆L) is a constant function.
In particular, if Vol(M, g) = ∞, then L2(Ker∆L) consists of traceless symmetric
2-tensors.

On the other hand, it is known that there are no non-constant harmonic functions
on a closed Riemannian manifold. Thus, we get the following corollary.

Corollary 3.5. Let (M, g) be closed with ∆L acting on C∞(S2M). Then traceg φ is
a constant for an arbitrary bilinear form φ ∈ Ker∆L.

In our case, (2.4) can be rewritten in the following form (with c ̸= 0):

(3.3)
1

2
∆B(∥φ∥2) = −g(∆L φ, φ) + ∥∇φ∥ 2 + c g(ℜ(φ), φ).

Next, for any point x ∈ M there exists an orthonormal eigenframe {e1, . . . , en} of
TxM such that φx(ei, ej) = µiδij for the Kronecker delta δij . Then we have

g(ℜ(φx), φx) = 2
∑

i<j
sec(ei ∧ ej)(µi − µj)

2,

(see [2, p. 388] and [3, p. 436]), where sec(ei ∧ ej) = g(R(ei, ej)ej , ei) is the sectional
curvature sec(σx) of (M, g) in the direction of the tangent two-plane section σx =
span{ei, ej} at x ∈ M . Then we rewrite (3.3) in the following form:

1

2
∆B(∥φ∥2) = −g(∆L φ,φ) + ∥∇φ∥2 + 2 c

∑
i<j

sec(ei ∧ ej)(µi − µj)
2.

In particular, if φ is a covariant ∆L-harmonic 2-tensor, then we have

(3.4)
1

2
∆B(∥φ∥2) = ∥∇φ∥2 + 2 c

∑
i<j

sec(ei ∧ ej)(µi − µj)
2.

From (3.4) we conclude that ∥φ∥2 is a subharmonic function if c > 0 and the sectional
curvature of (M, g) is non-negative. Therefore, proceeding from the above formula and
using the Hopf maximum principle (see [6, p. 26] and [9]), we conclude the following:
if the sectional curvature sec(σx) of (M, g) is non-negative at any point of a connected
open domain U ⊂ M and sec(σx) is positive (in all 2-dimensional directions σx) at
some point x ∈ U , then ∥φ ∥2 is a constant C and ∇φ = 0 in U . If C > 0, then
φ is nowhere zero. Now, at a point x ∈ U , where the sectional curvature sec(σx) is
positive, the LHS of (5.5) is zero, while the RHS is nonpositive. This contradiction
shows µ1 = . . . = µn = µ and hence φ = µ ·g for some constant µ on U . On the other
hand, the fact that ∇φ = 0 means that φ is parallel. In this case, if the holonomy of
(M, g) is irreducible, then the tensor φ has a one eigenvalue, i.e., φ = µ · g for some
constant µ on U . As a result, we have the following local theorem.

Theorem 3.6. Let U be a connected open domain of a Riemannian manifold (M, g)
with nonnegative sectional curvature and ∆L be the Lichnerowicz type Laplacian with
c > 0 acting on C∞-sections of the bundle S2M over (M, g). If φ ∈ Ker∆L at any
point of U and the scalar function ∥φ ∥2 has a local maximum at some point of U ,
then ∥φ ∥2 is constant and φ is parallel on U . Moreover, if either sec(σx) > 0 in all
directions σx at some point x ∈ U or the holonomy of (M, g) is irreducible, then φ is
a constant multiple of g on U .
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Based on (3.3) and using Theorem 2.7 and the Greene-Wu result on subharmonic
functions on a complete noncompact (M, g) with nonnegative sectional curvature (see
[16]), we conclude that if φ ∈ Ker∆L on (M, g) and

∫
M

∥φ∥ 2 d volg < ∞, then φ ≡ 0.
Then we obtain the following.

Corollary 3.7. Let (M, g) be complete noncompact with nonnegative sectional cur-
vature and ∆L : C∞(S2M) → C∞(S2M) with c > 0. Then L2(Ker∆L) is trivial.

Consider now the case n = 3. We have the following equality:

sec(σx) = (1/2) s− Ric(Xx, Xx),

where sec(σx) is the sectional curvature in the direction of the plane σx ⊂ TxM for a
point x ∈ M , X is a unit vector orthogonal to σx (see [45, Lemma 2.1]). Therefore, if
n = 3 and Ric ≤ (1/2)s g on M , then the inequality sec(σx) ≥ 0 holds at each point
x ∈ M . In this case, if c > 0 then from (3.4) we conclude that ∥φ∥ 2 is a subharmonic
function, and using the Greene-Wu theorem on subharmonic functions, we get φ ≡ 0.

Thus, we obtain the following.

Corollary 3.8. Let (M, g) be a three-dimensional complete noncompact Riemannian
manifold and ∆L : C∞(S2M) → C∞(S2M) be the Lichnerowicz type Laplacian.
If the Ricci curvature Ric and the scalar curvature s of (M, g) satisfy Ric ≤ (1/2)s g,
then L2(Ker∆L) is trivial.

3.3. Consider a closed (M, g) with nonnegative sectional curvature. Then, based
on (3.4) and the Bochner maximum principle (see [6, p. 30]), we conclude that the
kernel of ∆L : C∞(S2M) → C∞(S2M) with c > 0 consists of parallel symmetric
2-tensor tensor fields, i.e., from the condition φ ∈ Ker∆L we obtain ∇φ = 0. It is
known that every parallel symmetric tensor field φ ∈ C∞(S2M) on (M, g) with
irreducible holonomy is trivial, i.e., φ = λ g for some constant λ.

Therefore, we obtain the following.

Theorem 3.9. Let (M, g) be closed with irreducible holonomy and nonnegative sec-
tional curvature. Then the kernel of the Lichnerowicz type Laplacian ∆L : C∞(S2M)
→ C∞(S2M) with c > 0 consists of trivial symmetric 2-tensors.

Note that a Riemannian symmetric space of compact type is an example of a closed
Riemannian manifold with non-negative sectional curvature and positive-definite Ricci
tensor (see [21, p. 256]). Thus, the following corollary is valid.

Corollary 3.10. Let (M, g) be a locally irreducible Riemannian symmetric space of
compact type. Then the kernel of the Lichnerowicz type Laplacian ∆L : C∞(S2M) →
C∞(S2M) with c > 0 consists of trivial symmetric 2-tensors.

Remark 3.1. A simple example of a Riemannian symmetric space of compact type is
the n-dimensional round sphere (Sn, g0) with standard metric g0. Then an arbitrary
∆L-harmonic tensor on (Sn, g0) has the form φ = µ · g0 for some real constant µ.

In conclusion, recall the definition of a TT-tensor (Transverse Traceless tensor),
i.e., a divergence free and traceless covariant symmetric 2-tensor field. Such tensors are
of fundamental importance in stability analysis in General Relativity (e.g., [15, 34, 37])
and in Riemannian geometry (see [20, 24]). In particular, Page and Pope have proved
in [34] the following theorem on the kernel of ∆L on TT-tensors.
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Theorem 3.11. Let (M, g) be a Riemannian manifold and ∆L be the Lichnerowicz
type Laplacian with c = 1 acting on C∞-sections of S2M . If the holonomy of (M, g)
is reducible, then there exists a TT-tensor φ ∈ C∞(S2M) such that φ ∈ Ker∆L.

Thus, Theorem 3.6 yields the following corollary for ∆L-harmonic TT-tensors.

Corollary 3.12. Let (M, g) be closed with positive sectional curvature and ∆L :
C∞(S2M) → C∞(S2M) with c = 1 be restricted to TT -tensors on (M, g). Then
L2(Ker∆L) is trivial.

It is known that in dimension three a metric g has positive sectional curvature
if and only if its Ricci curvature and scalar curvature satisfy the inequality Ric <
(1/2)s g (see [17, p. 277]). Therefore, we obtain the following.

Corollary 3.13. Let (M, g) be a three-dimensional closed Riemannian manifold and
the Lichnerowicz type Laplacian ∆L:C

∞(S2M) → C∞(S2M) with c = 1 be restricted
to TT-tensors on (M, g). If Ric < (1/2) s g, then L2(Ker∆L) is trivial.

Remark 3.2. Let (M, g) admit a spinor structure, see Example 1.1(iv). If s > 0,
then the equation ∆DT = 0 for the spinor Laplacian ∆D implies that the harmonic
spinor T vanishes, since

0 = ⟨∆DT, T ⟩ = ⟨∇T, ∇T ⟩+ (1/4) s ⟨T, T ⟩.

Therefore, there are no nonzero harmonic spinors on a closed Riemannian manifold
with positive scalar curvature (see [25]). This proposition together with Atiyah-Singer
index Theorem applied to the Dirac operator for 4k-dimensional manifolds, gives a
topological obstruction – namely, the vanishing of the Â-genus of Hirzebruch – for the
existence of positive scalar curvature metrics on a compact spin manifold. The proof
uses the classical Bochner technique (see [25]; [3, pp. 169–171]).

4 Applications to higher order Killing and Codazzi tensors

4.1. Here, we consider ∆L, acting on C∞(SpM), where Sp
0M is the subbundle of

trace-free covariant symmetric tensor fields for p ≥ 2. In [18], it was proven that if
(M, g) has non-negative sectional curvature, then for any T ∈ Sp

0M the inequality
g(ℜ(T ), T ) ≤ 0 holds on this manifold. Thus, we obtain Corollary 3.2 (from Theo-
rem 2.8), which we use to study higher order symmetric Killing tensors.

If a tensor T ∈ C∞(SpM) satisfies (∇XT )(X, . . . ,X) = 0 for any X ∈ TM ,
then it is called symmetric Killing p-tensor. In this case, δ∗T = 0 for the operator
δ∗ : C∞(SpM) → C∞(Sp+1M) of degree one such that (see [27, 44])

(δ∗T )(X1, . . . , Xp+1) = (∇X1
T )(X2, . . . , Xp+1) + . . .+ (∇Xp+1

T )(X1, . . . , Xp)

for any X1, . . . , Xp+1 ∈ TxM at a point x ∈ M . There exists its formal adjoint
operator with respect to the L2-product which is called the divergence operator (see [3,
p. 356]). Notice that δ is the ⊗p+1T ∗M -restriction of ∇∗ to Sp+1M . Using operators
δ∗ and δ, Sampson defined in [39, p. 147] the second order elliptic differential operator
∆S : C∞(SpM) → C∞(SpM) by the formula ∆S = δ δ∗ − δ∗δ. In addition, we have
the Weitzenböck decomposition formula ∆S = ∆̄−ℜ (see [18, 30, 39]).
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Based on the foregoing, we conclude that any divergence-free (e.g., traceless) sym-
metric Killing p-tensor belongs to ker∆S (see [18, 30]). In this case, the equation
∆LT = (c + 1)ℜ(T ) is valid. Therefore, any symmetric Killing p-tensor belongs to
ker∆L for the case c = −1. Thus, (2.4) can be rewritten as

(1/2)∆B∥T∥2 = ∥∇T∥2 − g(ℜ(T ), T ).

Then the above reasoning shows that the following proposition is true.

Proposition 4.1. Let ∆L be the Lichnerowicz type Laplacian acting on C∞(SpM)
for p ≥ 2, then any symmetric traceless Killing p-tensor T belongs to ker∆L for the
case of c = −1. Moreover, if (M, g) is complete and simply connected with nonpositive
sectional curvature, then T is parallel, and if Vol(M, g) = ∞ then T ≡ 0.

The above proposition completes the results from [12, 18, 30, 40], where symmetric
Killing p-tensors were considered on compact Riemannian manifolds. On the other
hand, in [5] they proved that for every T ∈ SpM on a Riemannian manifold with
non-positive sectional curvature, the inequality g(ℜ(T ), T ) ≥ 0 holds at every point
of this manifold. Then we obtain Corollary 3.1 (from Theorem 2.7), which we use to
study higher order Codazzi tensors.

If a tensor T ∈ C∞(SpM) satisfies ∇T ∈ C∞(Sp+1M) then it is called Codazzi
p-tensor, or, higher order Codazzi tensor (see [26, 29, 40]). Moreover, an arbitrary
traceless or divergence-free Codazzi p-tensor T satisfies ∆ST = (p + 1)∆̄T for the
Sampson Laplacian ∆L : C∞(SpM) → C∞(SpM). In this case, the following equa-
tion ∆LT = (c−1/p)ℜ(T ) is valid. Therefore, any traceless Codazzi p-tensor belongs
to ker∆L for the case of c = 1/p. In its turn, (2.4) can be rewritten as

(1/2)∆B∥T∥2 = ∥∇T∥2 + (1/p)g(ℜ(T ), T ).

Then the above reasoning shows that the following corollary is valid.

Proposition 4.2. Let ∆L be the Lichnerowicz type Laplacian acting on C∞(SpM) for
p ≥ 2, then any traceless Codazzi p-tensor belongs to ker∆L for the case of c = 1/p.
Moreover, if (M, g) is complete noncompact with non-negative sectional curvature,
then any traceless higher order Codazzi Lq-tensor for an arbitrary 1 ≤ q < ∞ is
parallel, and if Vol(M, g) = ∞ then it is identically zero.

Notice that Corollary 3.1 completes the results from [12, 40, 29], where Codazzi
p-tensors are considered on complete and compact Riemannian manifolds.

4.2. In conclusion, consider ∆L, which acts on the vector space of C∞-sections
of ΛpM . If a tensor field T ∈ C∞(ΛpM) satisfies conditions ∇T = (1/(p + 1))dT
and δT = 0 for the exterior differential d : C∞(ΛpM) → C∞(Λp+1M), then it is
called a Killing tensor (see [6, pp. 65–66]). In this case, ∆HT = (p + 1)∆̄T for the
Hodge-de Rham Laplacian ∆H = d δ + δ d (see [35, p. 335]). Then the equation
∆LT = (c+ 1/p)ℜ(T ) is valid. Therefore, any Killing p-tensor belongs to ker∆L for
the case of c = −1/p. In its turn, (2.4) can be rewritten in the form

(1/2)∆B∥T∥2 = ∥∇T∥2 − (1/p)g(ℜ(T ), T ).

By the above, the following corollary from Theorem 2.8 is true.
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Corollary 4.3. Let ∆L be acting on C∞(ΛpM) for 1 ≤ p ≤ dimM − 1. Then any
Killing p-tensor T belongs to ker∆L for the case of c = −1/p. Moreover, if (M, g) is
complete and simply connected with negative semi-definite curvature operator R̄, then
T is parallel. If, in addition, R̄ ≤ k < 0 at some point x ∈ M , then T ≡ 0.

Remark 4.1. More information on Codazzi and Killing tensors on complete Rie-
mannian manifolds can be found in our articles [29] and [41], respectively.

5 Applications to the theories of infinitesimal Einstein defor-
mations and the stability of Einstein manifolds

The Lichnerowicz Laplacian ∆L : C∞(S2M) → C∞(S2M) with c = 1 is of funda-
mental importance in the stability analysis in General Relativity (e.g., [5, 15, 37])
and appears in many problems of Riemannian geometry. For example, ∆L acting on
symmetric 2-tensor fields can be seen as infinitesimal deformations of metric g, and
describes the change of the Ricci tensor in terms of these deformations (e.g., [2] and
[3, Chapter 12]). Furthermore, ∆L is a fundamental operator; when acting on covari-
ant symmetric 2-tensor fields in context of Ricci flow, it seems to be more natural
than the connection or Bochner Laplacian ∆̄. Examples of this naturalness are the
appearance of ∆L in the linearized Ricci flow equation (e.g., the evolution formula
of the Ricci tensor under the Ricci flow in [11, p. 112]). Here, we complete some of
these results.

5.1. Recall that an Einstein manifold is (M, g), whose Ricci tensor satisfies Ric =
κ g for some κ ∈ R. Taking trace of this, one can see that κ = s/n for the scalar
curvature s of (M, g). We shall consider Einstein manifolds in this section.

Notice that the Riemannian curvature tensor of (M, g) defines a symmetric alge-

braic operator
◦
R : S2(TxM) → S2(TxM) on the vector space S2(TxM) of symmetric

bilinear forms over tangent space TxM at an arbitrary point x ∈ M . The operator
◦
R

is called the curvature operator of the second kind of (M, g).

Remark 5.1. The definition, properties and applications of
◦
R can be found in mono-

graphs [3, 4] and in articles from the following list: [8, 20, 31, 33, 40, 42].

We call the differential operator ∆E = ∆̄−2
◦
R acting on C∞-sections of the bundle

S2M over an Einstein manifold (M, g) the Einstein operator. This is a self-adjoint
elliptic operator mapping from the vector space of TT-tensors to itself (see also [22]).
If a TT-tensor φ belongs to Ker∆E then it can be seen as an infinitesimal Einstein
deformation through g (see [2] and [3, pp. 346–348]). Recall that a deformation of
Einstein structures through g means a smooth curve g(t) of Riemannian metrics,
where t belongs to some open interval I containing 0 with g(0) = g and such that
for each t ∈ I there exists a real number κ(t) with the property Ricg(t) = κ(t) · g(t).
The Einstein operator is closely related to ∆L with c = 1; in fact, we have

(5.1) ∆L = ∆E + 2 (s/n) Id.

Therefore, if φ ∈ C∞(S2M)∩Ker∆L then ∆E φ = −2(s/n)φ, i.e., φ is an eigentensor
of ∆E with the eigenvalue −2 s/n. The converse is also true. From (5.1) we find
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that the Einstein operator ∆E is positive (resp., negative) for all nonzero TT-tensors
belonging to Ker∆L, if (M, g) is an Einstein manifold with negative (resp., positive)
scalar curvature. In particular, if (M, g) is Ricci-flat (see [14]), then ∆L = ∆E .
In this case, an arbitrary TT-tensor φ is an infinitesimal Einstein deformation of the
metric g if φ belongs to Ker∆L. Therefore, we obtain the following.

Proposition 5.1. Let (M, g) be an Einstein manifold, then Ker∆L of Laplacian ∆L

acting on C∞(S2M) consists of eigentensors of the Einstein operator ∆E = ∆̄− 2
◦
R

with eigenvalues equal to −2 s/n. The converse is also true. Furthermore, ∆E is
positive (resp., negative) on TT-tensors belonging to Ker∆L, if s is negative (resp.,
positive). In particular, if (M, g) is Ricci-flat, then a TT-tensor φ belongs to Ker∆L

if and only if it is an infinitesimal Einstein deformation of the metric g.

Recall that (M, g) is unstable, if the Einstein operator admits negative eigenvalues
on TT-tensors (see [22]). By Proposition 5.1, (M, g) is unstable with respect to a TT-
tensor φ ∈ Ker∆L, if (M, g) is an Einstein manifold with positive scalar curvature.
The following theorem from [3, p. 355] is well known: let g be an Einstein metric on

M and a0 – the largest eigenvalue of the zero order operator
◦
R on the bundle of trace-

less symmetric 2-tensor fields, i.e., a0 = sup{ g(
◦
Rh, h)/∥h∥2 : h ∈ C∞(S2

0M) }. If
a0 < max{−s/n; s/(2n)}, then g does not admit infinitesimal Einstein deformations.
The following our theorem completes the above theorem.

Theorem 5.2. Let (M, g) be a closed Einstein manifold with nonzero scalar curvature
s and Kmin – the minimum of its sectional curvature. If Kmin ≥ s/n2, then (M, g) is
not unstable and does not admit infinitesimal Einstein deformations.

Proof. Let (M, g) be an Einstein manifold with nonzero scalar curvature s and let
φ be a TT-tensor on (M, g). Then (3.3) can be rewritten in the form

1

2
∆B(∥φ ∥2) = −g(∆E φ,φ)− 2

s

n
∥φ∥2 + ∥∇φ∥2

+2
∑

i<j
sec(ei ∧ ej)(µi − µj)

2,(5.2)

where c = 1. If traceg φ = µ1 + . . . + µn = 0, then the following equality holds:
∥φ∥2 = µ2

1 + . . .+ µ2
n = 1

n

∑
i<j(µi − µj)

2. In this case, from (5.2) one can obtain

(5.3)
1

2
∆B(∥φ∥2) ≥ −g(∆E φ,φ) + ∥∇φ∥2 + 2

(
Kmin − s

n2

)∑
i<j

(µi − µj)
2,

where we denoted by Kmin the minimum of the sectional curvature of (M, g), i.e.,
sec(σx) ≥ Kmin in all 2-dimensional directions σx at each point x ∈ M .

First, let (M, g) be unstable for φ, then g(∆E φ,φ) = −λ2(φ)∥φ ∥2 for some
λ(φ) ̸= 0. In this case, the inequality (5.3) takes the form

(5.4)
1

2
∆B( ∥φ∥2) ≥ λ2(φ)∥φ∥2 + ∥∇φ∥ 2 + 2

(
Kmin − s

n2

)∑
i<j

(µi − µj)
2.

If Kmin ≥ s/n2, then from (5.4) we conclude that ∥φ∥ 2 is a subharmonic function, i.e.,
∆B(∥φ∥ 2) ≥ 0. Furthermore, if (M, g) is a closed manifold, then using the Bochner
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maximum principle (see [6, p. 30]), we conclude that ∥φ∥2 is constant. In this case,
from (5.4) we obtain that φ ≡ 0.

Second, if (M, g) is a stable manifold, then (5.3) can be rewritten in the form

(5.5)
1

2
∆B (∥φ ∥ 2) ≥ ∥∇φ ∥ 2 + 2

(
Kmin − s

n2

)∑
i<j

(µi − µj)
2.

If Kmin ≥ s/n2, then from (5.5) we obtain ∆B(∥φ∥ 2) ≥ 0, i.e., ∆B(∥φ∥ 2) is a
subharmonic function. Then proceeding from (5.5) and using the Bochner maximum
principle (see [6, p. 30]), we conclude that ∥φ∥ = const and hence ∇φ = 0. In this

case, by the Ricci identities, we have φikR
k
jlm+φkjR

k
ilm = 0. Thus,

◦
R(φ) = −(s/n)φ.

In this case, the equation ∆E φ = ∆̄φ − 2
◦
R (φ) = 0 can be rewritten in the form

∆̄φ = −2(s/n)φ. This implies

−2
s

n

∫
M

∥φ∥2 d volg =

∫
M

g(∆̄φ,φ) d volg =

∫
M

∥∇φ∥2 d volg = 0.

Hence, φ ≡ 0. By this, φ is a trivial infinitesimal Einstein deformation. �
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geometric examples, Ann. Sc. Éc. Norm. Sup. 11 (1978), 71–92.

[9] E. Calabi, An extension of E. Hopf’s maximum principle with an application to
Riemannian geometry, Duke Math. J. 25 (1957), 45–56.

[10] D.M.J. Calderbank, P. Gauduchon and M. Herzlich, Refined Kato inequalities
and conformal weights in Riemannian geometry, J. of Functional Analysis, 173
(2000), 214–255.

[11] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci Flow, AMS, 2006.

[12] N.S. Dairbekov and V.A. Sharafutdinov, Conformal Killing symmetric tensor
fields on Riemannian manifolds. Mat. Tr. 13 (2010), 85–14

[13] B. Duchesne, Infinite dimensional Riemannian symmetric spaces with fixed-sing
curvature operator, Ann. Inst. Fourier, 2015, 65:1, 211–244.

[14] F.E. Fischer and J.A. Wolf, The structure of compact Ricci-flat Riemannian
manifolds, J. Diff. Geometry, 10 (1975), 277–288.



92 V.Rovenski, S. Stepanov and I. Tsyganok

[15] G.W. Gibbons and S.A. Hartnoll, A gravitational instability in higher dimen-
sions, Phys. Rev. D, 66 (2002) 064024, 43 p.

[16] R.E. Greene and H. Wu, Integrals of subharmonic functions on manifolds of
nonnegative curvature, Invent. Math. 27 (1974), 265–298.

[17] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17
(1982), 255–306.

[18] K. Heil, A. Moroianu and U. Semmelmann, Killing and conformal Killing tensors,
J. of Geometry and Physics, 106 (2016), 383–400.

[19] N. Hitchin, A note on vanishing theorems, Progress in Math.: ”Geometry and
Analysis on Manifolds”, 308 (2015), 373–382.

[20] T. Kashiwada, On the curvature operator of the second kind, Natural Science
Report, Ochanomizu University, 44:2 (1993), 69–73.

[21] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. II, New
York and London, Interscience Publishers, 1969.
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[25] A. Lichnerowicz, Spineurs harmoniques, C.R. Acad. Sci. Paris, Ser. A-B, 257
(1963), 7–9.

[26] H.L. Liu, U. Simon and C.P. Wang, Higher order Codazzi tensors on conformal
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