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Abstract. In the present paper we study e—Kenmotsu 3-manifolds
admitting *—conformal n—Ricci solitons. Besides, we study gradient
x—conformal — Ricci solitons on e—Kenmotsu 3-manifolds and prove that
a gradient x—conformal n— Ricci soliton on an e—Kenmotsu 3-manifold
is x—conformal n—Einstein if and only if £f = 0. Finally, the existence
of x—conformal n—Ricci soliton in an e—Kenmotsu 3-manifold has been
proved by a concrete example.
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1 Introduction

The study of manifolds with indefinite metrics is of high interest in physics and
relativity theory. In 1993, the concept of e—Sasakian manifolds was introduced by
Bejancu and Duggal [2]. Later, it was shown by Xufeng and Xiaoli [22] that every
e—Sasakian manifolds are real hypersurfaces of indefinite Kahlerian manifolds. In
1972, Kenmotsu studied a class of contact Riemannian manifolds satisfying some
special conditions [13]. We call it Kenmotsu manifold. The concept of e—Kenmotsu
manifold was introduced by De and Sarkar [5] who showed that the existence of new
structure on an indefinite metric influences the curvatures. Recently, e—Kenmotsu
manifolds have also been studied by various authors such as ([9], [10], [11], [15], [21])
and many others.

In 2004, the concept of conformal Ricci flow was developed by Fischer [6] as a
variation of the classical Ricci flow equation. The conformal Ricci flow on a smooth
closed connected oriented n—manifold M is defined by the equation

9g g
1.1 Fio(s+2)=-
(1.1) 5+ +- pg
and r = —1, where p is a time dependent non-dynamical scalar field, S and r are the

Ricci tensor and the scalar curvature, respectively on M.
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The equations of a conformal Ricci soliton and of a conformal n—Ricci soliton are
given respectively by ([1], [18])

(1.2 £yg+25= (A~ (p+ D))y,

2
(1.3) Lyg+25+ 2 —(p+ E))9+2u77®77:0,

where A and p are constants.

The notion of *—Ricci tensor on almost Hermitian manifolds was introduced by
Tachibana [19]. Later, Hamada [8] studied *—Ricci flat real hypersurfaces of complex
space forms and Blair [3] defined *—Ricci tensor in contact metric manifolds given by

(1.4) S*(X,Y) = g(Q*X,Y) = Trace {¢ o R(X,$Y)}

for any vector fields X,Y on M, where Q* is the (1,1) *—Ricci operator and S* is a
tensor field of type (0,2).

Definition 1.1. [12] A Riemannian (or semi— Riemannian) metric g on M is called
a *—Ricci soliton, if

(1.5) (Lvg)(X,Y)+25"(X,Y)+2)\(X,Y) =0
for all vector fields X,Y on M and A is a constant.

Definition 1.2. [17] A Riemannian (or semi— Riemannian) metric g on M is called
a *—conformal n—Ricci soliton, if

9
(1.6) Lyvg+25"+ 2 - (p+ 5))g+2un®n=0,

where £y is the Lie derivative along the vector field V', S* is the x—Ricci tensor and
A, p are constants.

Definition 1.3. A Riemannian (or semi — Riemannian) metric g on M is called a
gradient *—conformal n—Ricci soliton, if

1 2
(1.7) Hessf+S*+()\—§(p+ 5))g+un®n=0,

where Hessf denotes the Hessian of a smooth function f on M and defined by
Hessf = VVf.

If S*(X,Y) = (A= 3(p+ 2))g(X,Y) + un(X)n(Y) for all vector fields X, Y and
A, i are smooth functions on M, then the manifold is called *—conformal n—Einstein
manifold. Further if 4 = 0, that is, S*(X,Y) = (A = £(p+ 2))g(X,Y) for all vector
fields X, Y, then the manifold becomes *—conformal Einstein manifold.

If an e— Kenmotsu manifold satisfies (1.6), then we say that M admits a x—conformal
n—Ricci soliton. Recently, De et al. [4] studied *—Ricci solitons in an e—Kenmotsu
3-manifold and provide the condition for a x—Ricci soliton in an e—Kenmotsu 3-
manifold with constant scalar curvature to be steady. The *—Ricci solitons have also
been studied by various authors in several ways to a different extent such as ([4], [7],
[14], [16], [20]) and many others.
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2 Preliminaries

An n—dimensional smooth manifold (M, g) is said to be an e—almost contact metric
manifold [2], if it admits a (1, 1) tensor field ¢, a structure vector field &, a 1—form 7
and an indefinite metric g such that

(2.1) P*X =-X+n(X)E, n(§ =1,
(2.2) 968 =€  n(X)=e9(X,$),
(2.3) 96X, 9Y) = g(X,Y) —en(X)n(Y)

for all vector fields X, Y on M, where € is 1 or —1 according as £ is spacelike or
timelike vector fields and rank ¢ is (n — 1). If

(2.4) dn(X,Y) = g(X, ¢Y)

for every X,Y € x(M), then we say that M is an e—contact metric manifold. Also,
we have

(2.5) 66 =0, n(9X) = 0.
If an e-contact metric manifold satisfies
(2.6) (Vxo)(Y) = g(¢X,Y)E — en(Y)oX,

where V denotes the Levi-Civita connection with respect to g, then M is called an
e—Kenmotsu manifold [5].
An e—almost contact metric manifold is an e—Kenmotsu if and only if

(2.7) Vx§=e(X —n(X)§).

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator @) in an
e—Kenmotsu manifold M with respect to the Levi-Civita connection satisfies

(2.8) (Vxn)Y = g(X,Y) — en(X)n(Y),

(2.9) R(X,Y)E =n(X)Y —n(Y)X,

(2.10) R(&X)Y =n(Y)X — eg(X,Y)E,

(2.11) R(§, X)§ = —R(X,§)¢ = X — n(X)¢,

(2.12) N(R(X,Y)Z) = e(g(X, Z)n(Y) = (Y, Z)n(X)),
(2.13) (i) S(X,8) = —(n—n(X),  (ii) S(§,€) =—(n—1),
(2.14) Q¢ =—€(n—1)¢

for any X,Y,Z on M, where g(QX,Y) = S(X,Y). We note that if ¢ = 1 and the
structure vector field € is spacelike, then an e—Kenmotsu manifold is usual Kenmotsu
manifold.
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Lemma 2.1. In an e—Kenmotsu n-manifold (M, ¢,&,n, g,€), we have [11]

(2.15) R(X,Y,¢Z,¢W) = R(X)Y,Z,W)
+ed(X, 2)D(Y, W) — e®(Y, Z)B(X, W)
+€g(K Z)g(X7 W) - 69(X7 Z)Q(K W)

for any X, Y, Z,W on M, where R(X,Y,Z,W) = g(R(X,Y)Z,W) and ® is the fun-
damental 2-form of M defined by ®(X,Y) = g(X, ¢Y).

The curvature tensor of an e—Kenmotsu 3—manifold is given by
(2.16) RX.Y)Z=SY,2)X -S(X,2)Y +9(Y,Z2)QX — 9(X,Z)QY
r
L6V, 2)X — g(X, 2)Y)

for any X,Y,Z € x(M) and r is the scalar curvature of the manifold. Putting Z = ¢
in (2.16) and using (2.2), (2.9) and (2.13)(¢), we find

(2.17) n(Y)QX —n(X)QY = Z(n(Y)X —n(X)Y).
Again putting Y = £ in (2.17) and using (2.1) and (2.14), we get

(2.18) QX = (g +eOX — (g +3e)m(X)E.

From (2.18), we find

(2.19) S(XLY) = (5 +g(X.Y) = (5 +3)m(0m(Y).

Now we prove the following Lemma :

Lemma 2.2. In an e—Kenmotsu 3—manifold (M, $,£,7,g,€), the x— Ricci tensor is
given by

(2.20) S*(Y,2) = S(Y,Z)+eg(Y,Z) +n(Y)n(Z)

forany Y, Z € x(M), where S and S* are the Ricci tensor and the x— Ricci tensor of
type (0,2), respectively on M.

Proof. Let {e;},i =1,2,3 be an orthonormal basis of the tangent space at each point
of the manifold. From the equations (2.15) and (1.4), we have

S*(Y, Z)

3
> R(ei, Y, ¢Z, ge;)
i=1

3
= Y [R(ei,Y, Z, ;) + €D(e;, 2)D(Y, €;) — €R(Y, Z)(e;, €;)
i=1

+ eg(Y,Z)g(ei,ei) — egles, Z)g(Y, ei)].

By using (2.3) and ®(X,Y) = g(X, ¢Y) in the above equation, Lemma 2.2 follows. O
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3 e—Kenmotsu 3—manifolds admitting x—conformal
n—Ricci solitons
In this section we prove the following theorem:

Theorem 3.1. If an e—Kenmotsu 3—manifold with a constant scalar curvature ad-
mits a *x—conformal n— Ricci soliton, then A\ + ey = %(p + %)

Proof. By using (2.19) in (2.20), the *—Ricci tensor S* is given by

(3.1) SXY) = (5 +209(X,Y) = (5 +2m(X)n(Y).

From the definition of a x—conformal n—Ricci soliton, we have
. 2
(£vg)(X,Y) = =287(X,Y) = @A = (p+ 3))9(X,Y) = 2un(X)n(Y)
2
(3.2) = —(r+4e+2\—(p+ g))g(X, Y)+ (er +4 —2u)n(X)n(Y).

Now taking covariant differentiation of (3.2) with respect to Z, we get

(33)  (VzLyg)(X,Y) = —(Zr)(g(X,Y) —en(X)n(Y))
+(er +4 = 2u)(9(X, Z) — en(X)n(Z2))n(Y)
+(er +4 —2u)(9(Y, Z) — en(Y)n(Z))n(X).

Following Yano [23], the following formula
(£vVxg—VxLvg—Vyx9)Y,Z2) = —g(£vV)(X,Y),Z) —g((£vV)(X, Z),Y)

is well known for any vector fields X,Y,Z on M. As g is parallel with respect to the
Levi-Civita connection V, the above relation becomes

B4)  (VxLvg)(Y,2) = g((£vV)(X,Y), Z) + g((£LvV)(X, Z),Y)

for any vector fields X, Y, Z. Since £¢V is a symmetric tensor of type (1,2), that is,
(LyV)(X,Y) = (£LyV)(Y, X), then it follows from (3.4) that

(35 g(£yVXY),Z) = S(Vx Lya)(¥. 2) + 5 (Ty £vg)(X, 2)

1
—5(VzLyg)(X,Y).
Using (3.3) in (3.5), we have

29((£vV)(X,Y),Z) = —(Xr)g(eY,¢Z)
er +4 —2p)(g(oY, 9 X)n(Z) + 9(¢Z, 9 X )n(Y))
Y7)g(¢X,9Z)
er +4) = 2u(g(oX, ¢Y)n(Z) + g(¢Z, ¢Y )n(X))

—(er + 4 — 2u)(g(6X, Z)n(Y) + 9(8Y, 6Z)n(X)).
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By removing Z from the last equation, it follows that
20£vV)(XY) = —(Xr)(Y —n(Y)S)
+(er +4 = 211)(eg(¢Y, 9 X )€ + (X — n(X)En(Y))
—(Yr)(X —n(X)E)
(3.6) +(er +4 = 2u)(eg(¢ X, ¢Y)E + (Y — n(Y)n(X))
+(Dr)g(¢X, ¢Y)
—(er +4=2p)((X = n(X)n(Y) + (Y = n(Y))n(X)),

where Xa = g(Da, X), D denotes the gradient operator with respect to g. Putting
Y = ¢ in (3.6) and using r = constant (hence (Dr) =0 and ({r = 0)), we find

(3.7) (£vV)(X,§) = o
Taking the covariant derivative of (3.7) with respect to Y, we have
(3.8) (Vy£vV)(X,§) = 0.

Again from [23], we have
(£vR)(X,Y)Z = (Vx £y V)Y, Z) — (Vy £vV)(X, Z).
Thus the last two equations give
(3.9) (LvR)(X,Y,§) = 0.
Taking the Lie-derivative of R(X,¢)¢ = n(X)¢ — X along V, we have
(£vR)(X, )¢ — 2(£vE)X +eg(X, £vE)§ = (L£vn)(X)¢
which by using (3.9) reduces to

(3.10) (Lvm)(X)€ = =2n(£vE)X + eg(X, £vE)E.
Now taking the Lie derivative of n(X) = g(X,¢), we find
(3.11) (£vn)X = e(£vg)(X,§) + eg(X, £vE).
Taking Y = ¢ in (3.2) leads to

1 2
(3.12) (Lvg)(X,€) = —2e(A +eu — 5 (p + 3))n(X).
Putting X = ¢ in (3.12) yields

1 2
(3.13) n(£vE) = A+ eu—5p+3)
By making use of (3.11) — (3.13), we get from (3.10) that
1 2
(3.14) A ten—5p+ E))¢2X =0
from which it follows that
1 2

(3.15) )\+6,u:§(p+ g),

where ¢?X # 0. This completes the proof of the Theorem 3.1. O
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4 Gradient x—conformal n—Ricci solitons on
e—Kenmotsu 3-manifolds

Let M be an e—Kenmotsu 3—manifold with g as a gradient x—conformal n— Ricci
soliton. Then equation (1.7) can be written as

(4.1) VyDf QY + (= S0+ )Y +epm(¥)E =0

for all vector fields Y on M, where D denotes the gradient operator of g. First we
prove the following Lemmas for later use:

Lemma 4.1. In an e—Kenmotsu 3—manifold, we have

er r

(4:2) (Vy@E — (VeQ)Y = (5 + 5 + (¥ —n(Y)e).
for all vector fields Y on M.

Proof. From (3.1), we can write

(4.3) Q"X = (5 +20(X —n(X)9).

Differentiating (4.3) covariantly with respect to Y, we get

(M) VQX = X ()6 + (5 +20[Vy X (Vyn)(X)¢

—n(Vy X)§ = n(X)Vy¢].
By using (4.3) and (4.4), we find

(15) (WQ)X = “L(X (X))~ (L +20[(Vyn)(X)€ +n(X)Tve]

which by replacing X by ¢ and using (2.1), (2.7), (2.8) reduces to

(4.6) (VyQE = (5 +2Y —n(¥)e).

Again replacing Y by £ in (4.5) and using (2.7) and (2.8), we find

(47) (Ve = v -nv)e).
By substracting (4.7) from (4.6), (4.2) follows. O

Lemma 4.2. In an e—Kenmotsu 3—manifold, we have
(4.8)  R(X,)Y)Df = (VyQ")X — (VxQ")Y + p(n(X)Y —n(¥)X).

for all vector fields X, Y on M.
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Proof. Differentiating (4.1) covariantly along the vector field X, we have

(4.9) VxVyDf+VxQ'Y + (A — %(p + %))VXY +euVx (n(Y)E) =0.

Interchanging X and Y in (4.9), we have

(4.10) VyVxDf + VyQ* X + (A — %(p - g))va + euVy (n(X)§) = 0.

Also from (4.1), we find
(4.11) V[X7Y]Df+Q*(VXY*VYX)
HA= 3o+ 2)(TxY = Ty X) + eun((X, Y))E = 0.

By using (4.9) — (4.11) in R(X,Y)Df = VxVyDf-VyVxDf -V x y]Df, Lemma
4.2 follows. This completes the proof. (]

Theorem 4.3. A gradient *—conformal n—Ricci soliton on an e—Kenmotsu
3—manifold is x—conformal n— Einstein if and only if £f = 0.

Proof. Putting X = £ in (4.8), we have
R(EY)Df = (VyQ")E = (VeQM)Y + u(Y —n(Y)E)

which by taking the inner product with £ and using the Lemma 4.1 gives

(4.12) 9(R(§,Y)Df, &) = 0.

By using (2.9), we have

(4.13) 9(R(&,Y)D S, &) = n(Y)(Ef) — (Y f).
From (4.12) and (4.13), we find

(4.14) Yf) =en(Y)(&S)

for any Y € x(M). Therefore, Df = (£f)¢. Thus Df = 0 if £f = 0. Therefore,
it follows from (1.7) that S*(X,Y) = —(A — $(p + 2))g9(X,Y) — un(X)n(Y). This
completes the proof. O

Example: We consider the three dimensional manifold M = [(z,y,2) € R3 | z #
0], where (z,v, 2) are the standard coordinates in R3. Let ej, es and e3 be the vector
fields on M given by
e —ezi e —ez2 e ——ei
1= o1’ 2 = ayv 3 — 92’
which are linearly independent at each point of M. Let g be the indefinite Riemannian
metric defined by

glei,e2) = 9(62763) = 9(63761) =0, 9(61,61) = 9(62762) =1, g(es,e3) = ¢,
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where € = +1. Let 1 be the 1-form on M defined by n(X) = eg(X, e3) = eg(X, §) for
all X € x(M). Let ¢ be the (1, 1)-tensor field on M defined by

p(e1) = e2, P(e2) = —er, ¢(e3) = 0.
Then by the linearity property of ¢ and g, we have
¢*X =X +n(X)es, mlez) =1 and  g(¢X,9Y) = g(X,Y) — en(X)n(Y)

for any vector fields X, Y € x(M). Thus for e3 = &, the structure (¢,&,n,g,¢€)
defines an indefinite almost contact metric structure on M. Let V be the Levi-Civita
connection with respect to the indefinite metric g. Then we have

[e1,ea] =0, [e1, e3] = eeq, [e2, e3] = ees.
The Riemannian connection V with respect to the metric g is given by
29(VxY,Z) = Xg(Y,Z) +Yg(Z,X) — Zg(X,Y) + g([X,Y], Z)
—9(IY, 2], X) + 9([Z, X].Y).

From above equation which is known as Koszul’s formula, we can easily calculate
q ,

velel = —é€s, VeleZ =0, Velei’: = €€,
Ve,e1 =0, Ve,€2 = —e3,  Ve,e3 = eeq,
V6361 = 0, Veaeg = 07 v6363 =0.

Using the above relations, it follows that
Vx§ = e(X —n(X)S)

for £ = e3. Hence the manifold is an e—Kenmotsu manifold of dimension three. It is
known that
R(X,Y)Z =VxVyZ ~VyVxZ —VixyZ.

By using the above results, one can easily obtain the components of the curvature
tensor as follows:

R(el, 62)61 = €€, R(el, 62)62 = —€e€q, R(el, 62)63 = 0,
R(ea,e3)e; =0, R(eq,e3)es = ee3, R(ea,e3)es = —es
R(ey,e3)er = ees, R(e1,e3)ea =0, R(eq,e3)es = —e;.

From these curvature tensors, we calculate the components of Ricci tensor as follows:
(4.15) S(ey,e1) = S(ea,ea) = —2¢, S(es,e3) = —2.

In [11], the authors proved that an e—Kenmotsu 3—manifold admitting a *—conformal
n—Ricci soliton is an n—Einstein manifold of the form S(Y,Z) = —(A+2e — (p +
2))9(Y, Z)—pn(Y)n(Z). From this equation, we have S(es, e3) = —eA—p—2+5(p+32).
By equating both the values of S(es, e3), we obtain

A+ L + 2

€= — - .

F=3\PT3
Hence A and p satisfies the equation (3.15) and so g defines a x—conformal n—Ricci
soliton on the 3—dimensional e—Kenmotsu manifold.
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5 Conclusions

In recent years, the study of x—Ricci solitons and gradient * — n—Ricci solitons on
Riemannian (as well as, semi-Riemannian) manifolds became of major importance
in the area of differential geometry, physics and relativity as well. The problem of
studying *—Ricci solitons in a Kaehler manifold was initiated by Kaimakamis and
Panagiotidou. Recently, S. Roy with other geometers introduced the notion of a
special type of metric on Sasakian manifold, called x—conformal n—Ricci soliton. As
a continuation of this study, we made an effort to study *—conformal n—Ricci solitons
in the frame-work of e—Kenmotsu geometry.

Acknowledgements. The authors are thankful to the editor and anonymous referees
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