On ϵ -Kenmotsu 3-manifolds admitting *-conformal η -Ricci solitons

Abdul Haseeb and Mehmet Akif Akyol

Abstract. In the present paper we study ϵ -Kenmotsu 3-manifolds admitting *-conformal η -Ricci solitons. Besides, we study gradient *-conformal η - Ricci solitons on ϵ -Kenmotsu 3-manifolds and prove that a gradient *-conformal η - Ricci soliton on an ϵ -Kenmotsu 3-manifold is *-conformal η -Einstein if and only if $\xi f=0$. Finally, the existence of *-conformal η -Ricci soliton in an ϵ -Kenmotsu 3-manifold has been proved by a concrete example.

M.S.C. 2010: 53D15, 53C25, 53C50.

Key words: ϵ -Kenmotsu manifolds; *-conformal η -Ricci solitons; gradient *-conformal η -Ricci solitons; *-conformal η -Einstein manifolds.

1 Introduction

The study of manifolds with indefinite metrics is of high interest in physics and relativity theory. In 1993, the concept of ϵ -Sasakian manifolds was introduced by Bejancu and Duggal [2]. Later, it was shown by Xufeng and Xiaoli [22] that every ϵ -Sasakian manifolds are real hypersurfaces of indefinite Kahlerian manifolds. In 1972, Kenmotsu studied a class of contact Riemannian manifolds satisfying some special conditions [13]. We call it Kenmotsu manifold. The concept of ϵ -Kenmotsu manifold was introduced by De and Sarkar [5] who showed that the existence of new structure on an indefinite metric influences the curvatures. Recently, ϵ -Kenmotsu manifolds have also been studied by various authors such as ([9], [10], [11], [15], [21]) and many others.

In 2004, the concept of conformal Ricci flow was developed by Fischer [6] as a variation of the classical Ricci flow equation. The conformal Ricci flow on a smooth closed connected oriented n-manifold M is defined by the equation

(1.1)
$$\frac{\partial g}{\partial t} + 2\left(S + \frac{g}{n}\right) = -pg$$

and r = -1, where p is a time dependent non-dynamical scalar field, S and r are the Ricci tensor and the scalar curvature, respectively on M.

Balkan Journal of Geometry and Its Applications, Vol.26, No.1, 2021, pp. 1-11.

[©] Balkan Society of Geometers, Geometry Balkan Press 2021.

The equations of a conformal Ricci soliton and of a conformal η -Ricci soliton are given respectively by ([1], [18])

(1.2)
$$\pounds_V g + 2S = (2\lambda - (p + \frac{2}{n}))g,$$

$$\pounds_V g + 2S + (2\lambda - (p + \frac{2}{n}))g + 2\mu\eta \otimes \eta = 0,$$

where λ and μ are constants.

The notion of *-Ricci tensor on almost Hermitian manifolds was introduced by Tachibana [19]. Later, Hamada [8] studied *-Ricci flat real hypersurfaces of complex space forms and Blair [3] defined *-Ricci tensor in contact metric manifolds given by

(1.4)
$$S^*(X,Y) = g(Q^*X,Y) = \operatorname{Trace} \{\phi \circ R(X,\phi Y)\}\$$

for any vector fields X, Y on M, where Q^* is the (1,1) *-Ricci operator and S^* is a tensor field of type (0,2).

Definition 1.1. [12] A Riemannian (or semi-Riemannian) metric g on M is called a *-Ricci soliton, if

$$(\pounds_V g)(X, Y) + 2S^*(X, Y) + 2\lambda g(X, Y) = 0$$

for all vector fields X, Y on M and λ is a constant.

Definition 1.2. [17] A Riemannian (or semi-Riemannian) metric g on M is called a *-conformal η -Ricci soliton, if

(1.6)
$$\pounds_V g + 2S^* + (2\lambda - (p + \frac{2}{n}))g + 2\mu\eta \otimes \eta = 0,$$

where \pounds_V is the Lie derivative along the vector field V, S^* is the *-Ricci tensor and λ , μ are constants.

Definition 1.3. A Riemannian (or semi – Riemannian) metric g on M is called a gradient *-conformal η -Ricci soliton, if

$$(1.7) \qquad \qquad Hess f + S^* + (\lambda - \frac{1}{2}(p + \frac{2}{n}))g + \mu \eta \otimes \eta = 0,$$

where Hessf denotes the Hessian of a smooth function f on M and defined by $Hessf = \nabla \nabla f$.

If $S^*(X,Y) = (\lambda - \frac{1}{2}(p + \frac{2}{n}))g(X,Y) + \mu\eta(X)\eta(Y)$ for all vector fields X,Y and λ,μ are smooth functions on M, then the manifold is called *-conformal η -Einstein manifold. Further if $\mu = 0$, that is, $S^*(X,Y) = (\lambda - \frac{1}{2}(p + \frac{2}{n}))g(X,Y)$ for all vector fields X,Y, then the manifold becomes *-conformal Einstein manifold.

If an ϵ - Kenmotsu manifold satisfies (1.6), then we say that M admits a *-conformal η -Ricci soliton. Recently, De et al. [4] studied *-Ricci solitons in an ϵ -Kenmotsu 3-manifold and provide the condition for a *-Ricci soliton in an ϵ -Kenmotsu 3-manifold with constant scalar curvature to be steady. The *-Ricci solitons have also been studied by various authors in several ways to a different extent such as ([4], [7], [14], [16], [20]) and many others.

2 Preliminaries

An n-dimensional smooth manifold (M,g) is said to be an ϵ -almost contact metric manifold [2], if it admits a (1,1) tensor field ϕ , a structure vector field ξ , a 1-form η and an indefinite metric g such that

(2.1)
$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1,$$

(2.2)
$$g(\xi,\xi) = \epsilon, \quad \eta(X) = \epsilon g(X,\xi),$$

(2.3)
$$g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X) \eta(Y)$$

for all vector fields X, Y on M, where ϵ is 1 or -1 according as ξ is spacelike or timelike vector fields and rank ϕ is (n-1). If

$$(2.4) d\eta(X,Y) = g(X,\phi Y)$$

for every $X,Y\in\chi(M)$, then we say that M is an $\epsilon-$ contact metric manifold. Also, we have

$$\phi \xi = 0, \ \eta(\phi X) = 0.$$

If an ϵ -contact metric manifold satisfies

(2.6)
$$(\nabla_X \phi)(Y) = g(\phi X, Y)\xi - \epsilon \eta(Y)\phi X,$$

where ∇ denotes the Levi-Civita connection with respect to g, then M is called an ϵ -Kenmotsu manifold [5].

An ϵ -almost contact metric manifold is an ϵ -Kenmotsu if and only if

(2.7)
$$\nabla_X \xi = \epsilon (X - \eta(X)\xi).$$

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in an ϵ -Kenmotsu manifold M with respect to the Levi-Civita connection satisfies

$$(2.8) \qquad (\nabla_X \eta) Y = q(X, Y) - \epsilon \eta(X) \eta(Y),$$

$$(2.9) R(X,Y)\xi = \eta(X)Y - \eta(Y)X,$$

(2.10)
$$R(\xi, X)Y = \eta(Y)X - \epsilon g(X, Y)\xi,$$

(2.11)
$$R(\xi, X)\xi = -R(X, \xi)\xi = X - \eta(X)\xi,$$

$$(2.12) \eta(R(X,Y)Z) = \epsilon(g(X,Z)\eta(Y) - g(Y,Z)\eta(X)),$$

(2.13) (i)
$$S(X,\xi) = -(n-1)\eta(X)$$
, (ii) $S(\xi,\xi) = -(n-1)$,

$$(2.14) Q\xi = -\epsilon(n-1)\xi$$

for any X, Y, Z on M, where g(QX, Y) = S(X, Y). We note that if $\epsilon = 1$ and the structure vector field ξ is spacelike, then an ϵ -Kenmotsu manifold is usual Kenmotsu manifold.

Lemma 2.1. In an ϵ -Kenmotsu n-manifold $(M, \phi, \xi, \eta, g, \epsilon)$, we have [11]

$$(2.15) \bar{R}(X,Y,\phi Z,\phi W) = \bar{R}(X,Y,Z,W)$$

$$+\epsilon \Phi(X,Z)\Phi(Y,W) - \epsilon \Phi(Y,Z)\Phi(X,W)$$

$$+\epsilon g(Y,Z)g(X,W) - \epsilon g(X,Z)g(Y,W)$$

for any X,Y,Z,W on M, where $\bar{R}(X,Y,Z,W)=g(R(X,Y)Z,W)$ and Φ is the fundamental 2-form of M defined by $\Phi(X,Y)=g(X,\phi Y)$.

The curvature tensor of an ϵ -Kenmotsu 3-manifold is given by

(2.16)
$$R(X,Y)Z = S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY - \frac{r}{2}(g(Y,Z)X - g(X,Z)Y)$$

for any $X, Y, Z \in \chi(M)$ and r is the scalar curvature of the manifold. Putting $Z = \xi$ in (2.16) and using (2.2), (2.9) and (2.13)(i), we find

(2.17)
$$\eta(Y)QX - \eta(X)QY = \frac{r}{2}(\eta(Y)X - \eta(X)Y).$$

Again putting $Y = \xi$ in (2.17) and using (2.1) and (2.14), we get

(2.18)
$$QX = (\frac{r}{2} + \epsilon)X - (\frac{r}{2} + 3\epsilon)\eta(X)\xi.$$

From (2.18), we find

(2.19)
$$S(X,Y) = \left(\frac{r}{2} + \epsilon\right)g(X,Y) - \left(\frac{\epsilon r}{2} + 3\right)\eta(X)\eta(Y).$$

Now we prove the following Lemma :

Lemma 2.2. In an ϵ -Kenmotsu 3-manifold $(M, \phi, \xi, \eta, g, \epsilon)$, the *-Ricci tensor is given by

(2.20)
$$S^*(Y,Z) = S(Y,Z) + \epsilon g(Y,Z) + \eta(Y)\eta(Z)$$

for any $Y, Z \in \chi(M)$, where S and S^* are the Ricci tensor and the *-Ricci tensor of type (0,2), respectively on M.

Proof. Let $\{e_i\}$, i = 1, 2, 3 be an orthonormal basis of the tangent space at each point of the manifold. From the equations (2.15) and (1.4), we have

$$S^{*}(Y,Z) = \sum_{i=1}^{3} \bar{R}(e_{i}, Y, \phi Z, \phi e_{i})$$

$$= \sum_{i=1}^{3} [\bar{R}(e_{i}, Y, Z, e_{i}) + \epsilon \Phi(e_{i}, Z) \Phi(Y, e_{i}) - \epsilon \Phi(Y, Z) \Phi(e_{i}, e_{i})$$

$$+ \epsilon q(Y, Z) q(e_{i}, e_{i}) - \epsilon q(e_{i}, Z) q(Y, e_{i})].$$

By using (2.3) and $\Phi(X,Y) = g(X,\phi Y)$ in the above equation, Lemma 2.2 follows. \square

3 ϵ -Kenmotsu 3-manifolds admitting *-conformal η -Ricci solitons

In this section we prove the following theorem:

Theorem 3.1. If an ϵ -Kenmotsu 3-manifold with a constant scalar curvature admits a *-conformal η -Ricci soliton, then $\lambda + \epsilon \mu = \frac{1}{2}(p + \frac{2}{3})$.

Proof. By using (2.19) in (2.20), the *-Ricci tensor S^* is given by

(3.1)
$$S^*(X,Y) = (\frac{r}{2} + 2\epsilon)g(X,Y) - (\frac{\epsilon r}{2} + 2)\eta(X)\eta(Y).$$

From the definition of a *-conformal η -Ricci soliton, we have

$$(\pounds_{V}g)(X,Y) = -2S^{*}(X,Y) - (2\lambda - (p + \frac{2}{3}))g(X,Y) - 2\mu\eta(X)\eta(Y)$$

$$(3.2) = -(r + 4\epsilon + 2\lambda - (p + \frac{2}{3}))g(X,Y) + (\epsilon r + 4 - 2\mu)\eta(X)\eta(Y).$$

Now taking covariant differentiation of (3.2) with respect to Z, we get

$$(3.3) \qquad (\nabla_Z \pounds_V g)(X,Y) = -(Zr)(g(X,Y) - \epsilon \eta(X)\eta(Y))$$

$$+(\epsilon r + 4 - 2\mu)(g(X,Z) - \epsilon \eta(X)\eta(Z))\eta(Y)$$

$$+(\epsilon r + 4 - 2\mu)(g(Y,Z) - \epsilon \eta(Y)\eta(Z))\eta(X).$$

Following Yano [23], the following formula

$$(\pounds_V \nabla_X g - \nabla_X \pounds_V g - \nabla_{[V,X]} g)(Y,Z) = -g((\pounds_V \nabla)(X,Y),Z) - g((\pounds_V \nabla)(X,Z),Y)$$

is well known for any vector fields X, Y, Z on M. As g is parallel with respect to the Levi-Civita connection ∇ , the above relation becomes

$$(3.4) \qquad (\nabla_X \mathcal{L}_V g)(Y, Z) = g((\mathcal{L}_V \nabla)(X, Y), Z) + g((\mathcal{L}_V \nabla)(X, Z), Y)$$

for any vector fields X, Y, Z. Since $\pounds_V \nabla$ is a symmetric tensor of type (1, 2), that is, $(\pounds_V \nabla)(X, Y) = (\pounds_V \nabla)(Y, X)$, then it follows from (3.4) that

(3.5)
$$g((\pounds_V \nabla)(X, Y), Z) = \frac{1}{2} (\nabla_X \pounds_V g)(Y, Z) + \frac{1}{2} (\nabla_Y \pounds_V g)(X, Z) - \frac{1}{2} (\nabla_Z \pounds_V g)(X, Y).$$

Using (3.3) in (3.5), we have

$$\begin{aligned} 2g((\pounds_V\nabla)(X,Y),Z) &= & -(Xr)g(\phi Y,\phi Z) \\ &+ (\epsilon r + 4 - 2\mu)(g(\phi Y,\phi X)\eta(Z) + g(\phi Z,\phi X)\eta(Y)) \\ &- (Yr)g(\phi X,\phi Z) \\ &+ (\epsilon r + 4) - 2\mu(g(\phi X,\phi Y)\eta(Z) + g(\phi Z,\phi Y)\eta(X)) \\ &+ (Zr)g(\phi X,\phi Y) \\ &- (\epsilon r + 4 - 2\mu)(g(\phi X,\phi Z)\eta(Y) + g(\phi Y,\phi Z)\eta(X)). \end{aligned}$$

By removing Z from the last equation, it follows that

$$2(\pounds_{V}\nabla)(X,Y) = -(Xr)(Y - \eta(Y)\xi) + (\epsilon r + 4 - 2\mu)(\epsilon g(\phi Y, \phi X)\xi + (X - \eta(X)\xi)\eta(Y)) - (Yr)(X - \eta(X)\xi) + (\epsilon r + 4 - 2\mu)(\epsilon g(\phi X, \phi Y)\xi + (Y - \eta(Y)\xi)\eta(X)) + (Dr)g(\phi X, \phi Y) + (Y - \eta(Y)\xi)\eta(X)),$$

$$(3.6)$$

where $X\alpha = g(D\alpha, X)$, D denotes the gradient operator with respect to g. Putting $Y = \xi$ in (3.6) and using r = constant (hence (Dr) = 0 and $(\xi r = 0)$), we find

$$(3.7) (\pounds_V \nabla)(X, \xi) = 0.$$

Taking the covariant derivative of (3.7) with respect to Y, we have

$$(3.8) \qquad (\nabla_Y \mathcal{L}_V \nabla)(X, \xi) = 0.$$

Again from [23], we have

$$(\pounds_V R)(X, Y)Z = (\nabla_X \pounds_V \nabla)(Y, Z) - (\nabla_Y \pounds_V \nabla)(X, Z).$$

Thus the last two equations give

$$(\mathcal{L}_V R)(X, Y, \xi) = 0.$$

Taking the Lie-derivative of $R(X,\xi)\xi = \eta(X)\xi - X$ along V, we have

$$(\pounds_V R)(X,\xi)\xi - 2\eta(\pounds_V \xi)X + \epsilon g(X,\pounds_V \xi)\xi = (\pounds_V \eta)(X)\xi$$

which by using (3.9) reduces to

$$(3.10) \qquad (\pounds_V \eta)(X)\xi = -2\eta(\pounds_V \xi)X + \epsilon g(X, \pounds_V \xi)\xi.$$

Now taking the Lie derivative of $\eta(X) = g(X, \xi)$, we find

(3.11)
$$(\pounds_V \eta) X = \epsilon (\pounds_V g)(X, \xi) + \epsilon g(X, \pounds_V \xi).$$

Taking $Y = \xi$ in (3.2) leads to

(3.12)
$$(\pounds_V g)(X,\xi) = -2\epsilon(\lambda + \epsilon\mu - \frac{1}{2}(p + \frac{2}{3}))\eta(X).$$

Putting $X = \xi$ in (3.12) yields

(3.13)
$$\eta(\pounds_V \xi) = \lambda + \epsilon \mu - \frac{1}{2} (p + \frac{2}{3}).$$

By making use of (3.11) - (3.13), we get from (3.10) that

(3.14)
$$(\lambda + \epsilon \mu - \frac{1}{2}(p + \frac{2}{n}))\phi^2 X = 0$$

from which it follows that

(3.15)
$$\lambda + \epsilon \mu = \frac{1}{2} (p + \frac{2}{3}),$$

where $\phi^2 X \neq 0$. This completes the proof of the Theorem 3.1.

4 Gradient *-conformal η -Ricci solitons on ϵ -Kenmotsu 3-manifolds

Let M be an ϵ -Kenmotsu 3-manifold with g as a gradient *-conformal η - Ricci soliton. Then equation (1.7) can be written as

(4.1)
$$\nabla_Y Df + Q^*Y + (\lambda - \frac{1}{2}(p + \frac{2}{3}))Y + \epsilon \mu \eta(Y)\xi = 0$$

for all vector fields Y on M, where D denotes the gradient operator of g. First we prove the following Lemmas for later use:

Lemma 4.1. In an ϵ -Kenmotsu 3-manifold, we have

(4.2)
$$(\nabla_Y Q^*)\xi - (\nabla_\xi Q^*)Y = -(\frac{\epsilon r}{2} + \frac{\xi r}{2} + 2)(Y - \eta(Y)\xi).$$

for all vector fields Y on M.

Proof. From (3.1), we can write

(4.3)
$$Q^*X = (\frac{r}{2} + 2\epsilon)(X - \eta(X)\xi).$$

Differentiating (4.3) covariantly with respect to Y, we get

(4.4)
$$\nabla_Y Q^* X = \frac{Yr}{2} (X - \eta(X)\xi) + (\frac{r}{2} + 2\epsilon) [\nabla_Y X - (\nabla_Y \eta)(X)\xi - \eta(\nabla_Y X)\xi - \eta(X)\nabla_Y \xi].$$

By using (4.3) and (4.4), we find

$$(4.5) \quad (\nabla_Y Q^*) X = \frac{Yr}{2} (X - \eta(X)\xi) - (\frac{r}{2} + 2\epsilon) [(\nabla_Y \eta)(X)\xi + \eta(X)\nabla_Y \xi]$$

which by replacing X by ξ and using (2.1), (2.7), (2.8) reduces to

(4.6)
$$(\nabla_Y Q^*)\xi = -(\frac{\epsilon r}{2} + 2)(Y - \eta(Y)\xi).$$

Again replacing Y by ξ in (4.5) and using (2.7) and (2.8), we find

$$(4.7) \qquad (\nabla_{\xi} Q^*)Y = \frac{\xi r}{2} (Y - \eta(Y)\xi).$$

By substracting (4.7) from (4.6), (4.2) follows.

Lemma 4.2. In an ϵ -Kenmotsu 3-manifold, we have

(4.8)
$$R(X,Y)Df = (\nabla_Y Q^*)X - (\nabla_X Q^*)Y + \mu(\eta(X)Y - \eta(Y)X).$$

for all vector fields X, Y on M.

Proof. Differentiating (4.1) covariantly along the vector field X, we have

$$(4.9) \quad \nabla_X \nabla_Y Df + \nabla_X Q^* Y + \left(\lambda - \frac{1}{2}(p + \frac{2}{3})\right) \nabla_X Y + \epsilon \mu \nabla_X (\eta(Y)\xi) = 0.$$

Interchanging X and Y in (4.9), we have

$$(4.10) \nabla_{Y} \nabla_{X} Df + \nabla_{Y} Q^{*}X + (\lambda - \frac{1}{2}(p + \frac{2}{3})) \nabla_{Y} X + \epsilon \mu \nabla_{Y} (\eta(X)\xi) = 0.$$

Also from (4.1), we find

(4.11)
$$\nabla_{[X,Y]} Df + Q^* (\nabla_X Y - \nabla_Y X) + (\lambda - \frac{1}{2} (p + \frac{2}{3})) (\nabla_X Y - \nabla_Y X) + \epsilon \mu \eta ([X,Y]) \xi = 0.$$

By using (4.9) – (4.11) in $R(X,Y)Df = \nabla_X \nabla_Y Df - \nabla_Y \nabla_X Df - \nabla_{[X,Y]} Df$, Lemma 4.2 follows. This completes the proof.

Theorem 4.3. A gradient *-conformal η -Ricci soliton on an ϵ -Kenmotsu 3-manifold is *-conformal η -Einstein if and only if $\xi f = 0$.

Proof. Putting $X = \xi$ in (4.8), we have

$$R(\xi, Y)Df = (\nabla_Y Q^*)\xi - (\nabla_\xi Q^*)Y + \mu(Y - \eta(Y)\xi)$$

which by taking the inner product with ξ and using the Lemma 4.1 gives

$$(4.12) g(R(\xi, Y)Df, \xi) = 0.$$

By using (2.9), we have

$$(4.13) q(R(\xi, Y)Df, \xi) = \eta(Y)(\xi f) - \epsilon(Yf).$$

From (4.12) and (4.13), we find

$$(4.14) (Yf) = \epsilon \eta(Y)(\xi f)$$

for any $Y \in \chi(M)$. Therefore, $Df = (\xi f)\xi$. Thus Df = 0 if $\xi f = 0$. Therefore, it follows from (1.7) that $S^*(X,Y) = -(\lambda - \frac{1}{2}(p + \frac{2}{3}))g(X,Y) - \mu \eta(X)\eta(Y)$. This completes the proof.

Example: We consider the three dimensional manifold $M = [(x, y, z) \in \mathbb{R}^3 \mid z \neq 0]$, where (x, y, z) are the standard coordinates in \mathbb{R}^3 . Let e_1 , e_2 and e_3 be the vector fields on M given by

$$e_1 = e^z \frac{\partial}{\partial x}, \quad e_2 = e^z \frac{\partial}{\partial y}, \quad e_3 = -\epsilon \frac{\partial}{\partial z},$$

which are linearly independent at each point of M. Let g be the indefinite Riemannian metric defined by

$$g(e_1, e_2) = g(e_2, e_3) = g(e_3, e_1) = 0,$$
 $g(e_1, e_1) = g(e_2, e_2) = 1,$ $g(e_3, e_3) = \epsilon,$

where $\epsilon = \pm 1$. Let η be the 1-form on M defined by $\eta(X) = \epsilon g(X, e_3) = \epsilon g(X, \xi)$ for all $X \in \chi(M)$. Let ϕ be the (1, 1)-tensor field on M defined by

$$\phi(e_1) = e_2, \qquad \phi(e_2) = -e_1, \qquad \phi(e_3) = 0.$$

Then by the linearity property of ϕ and g, we have

$$\phi^2 X = -X + \eta(X)e_3, \quad \eta(e_3) = 1$$
 and $g(\phi X, \phi Y) = g(X, Y) - \epsilon \eta(X)\eta(Y)$

for any vector fields $X, Y \in \chi(M)$. Thus for $e_3 = \xi$, the structure $(\phi, \xi, \eta, g, \epsilon)$ defines an indefinite almost contact metric structure on M. Let ∇ be the Levi-Civita connection with respect to the indefinite metric g. Then we have

$$[e_1, e_2] = 0,$$
 $[e_1, e_3] = \epsilon e_1,$ $[e_2, e_3] = \epsilon e_2.$

The Riemannian connection ∇ with respect to the metric g is given by

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) + g([X, Y], Z)$$
$$-g([Y, Z], X) + g([Z, X], Y).$$

From above equation which is known as Koszul's formula, we can easily calculate

$$\begin{split} & \nabla_{e_1} e_1 = -e_3, \quad \nabla_{e_1} e_2 = 0, \qquad \nabla_{e_1} e_3 = \epsilon e_1, \\ & \nabla_{e_2} e_1 = 0, \qquad \nabla_{e_2} e_2 = -e_3, \qquad \nabla_{e_2} e_3 = \epsilon e_2, \\ & \nabla_{e_3} e_1 = 0, \qquad \nabla_{e_3} e_2 = 0, \qquad \nabla_{e_3} e_3 = 0. \end{split}$$

Using the above relations, it follows that

$$\nabla_X \xi = \epsilon(X - \eta(X)\xi)$$

for $\xi=e_3$. Hence the manifold is an $\epsilon-$ Kenmotsu manifold of dimension three. It is known that

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

By using the above results, one can easily obtain the components of the curvature tensor as follows:

$$R(e_1, e_2)e_1 = \epsilon e_2, \quad R(e_1, e_2)e_2 = -\epsilon e_1, \quad R(e_1, e_2)e_3 = 0,$$

$$R(e_2, e_3)e_1 = 0, \qquad R(e_2, e_3)e_2 = \epsilon e_3, \quad R(e_2, e_3)e_3 = -e_2$$

$$R(e_1, e_3)e_1 = \epsilon e_3, \qquad R(e_1, e_3)e_2 = 0, \qquad R(e_1, e_3)e_3 = -e_1.$$

From these curvature tensors, we calculate the components of Ricci tensor as follows:

$$(4.15) S(e_1, e_1) = S(e_2, e_2) = -2\epsilon, S(e_3, e_3) = -2.$$

In [11], the authors proved that an ϵ -Kenmotsu 3-manifold admitting a *-conformal η -Ricci soliton is an η -Einstein manifold of the form $S(Y,Z) = -(\lambda + 2\epsilon - \frac{1}{2}(p + \frac{2}{3}))g(Y,Z) - \mu \eta(Y)\eta(Z)$. From this equation, we have $S(e_3,e_3) = -\epsilon \lambda - \mu - 2 + \frac{\epsilon}{2}(p + \frac{2}{3})$. By equating both the values of $S(e_3,e_3)$, we obtain

$$\lambda + \epsilon \mu = \frac{1}{2} \left(p + \frac{2}{3} \right).$$

Hence λ and μ satisfies the equation (3.15) and so g defines a *-conformal η -Ricci soliton on the 3-dimensional ϵ -Kenmotsu manifold.

5 Conclusions

In recent years, the study of *-Ricci solitons and gradient *- η -Ricci solitons on Riemannian (as well as, semi-Riemannian) manifolds became of major importance in the area of differential geometry, physics and relativity as well. The problem of studying *-Ricci solitons in a Kaehler manifold was initiated by Kaimakamis and Panagiotidou. Recently, S. Roy with other geometers introduced the notion of a special type of metric on Sasakian manifold, called *-conformal η -Ricci soliton. As a continuation of this study, we made an effort to study *-conformal η -Ricci solitons in the frame-work of ϵ -Kenmotsu geometry.

Acknowledgements. The authors are thankful to the editor and anonymous referees for their valuable suggestions in the improvement of the paper.

References

- [1] N. Basu and A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Global Journal of Advanced Research on Classical and Modern Geometries 4 (2015), 15-21.
- [2] A. Bejancu and K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Math. Sci. 16 (1993), 545-556.
- [3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition, Progress in Mathematics, Vol. 203, Birkhauser Boston, Inc., Boston, MA, 2010.
- [4] K. De, A. M. Blaga and U. C. De, *-Ricci solitons on (ϵ) -Kennmotsu manifolds, Palestine J. Math. 9 (2020), 984-990.
- [5] U. C. De and A. Sarkar, On ϵ -Kenmotsu manifold, Hardonic J. 32 (2009), 231-242.
- [6] A. E. Fischer, An introduction to conformal Ricci flow, Class. Quantum Grav. 21 (2004), 171-218.
- [7] A. Ghosh and D. S. Patra, *-Ricci soliton within the frame-work of Sasakian and (κ, μ) -contact manifold, Int. J. Geom. Methods in Mod. Phys. 15 (2018), 21 pages.
- [8] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo J. Math. 25 (2002), 473-483.
- [9] A. Haseeb, Some results on projective curvature tensor in an ϵ -Kenmotsu manifold, Palestine J. Math. 6 (Special Issue:II) (2017), 196-203.
- [10] A. Haseeb, M. Ahmad and S. Rizvi, On the conformal curvature tensor of ϵ -Kenmotsu manifolds, Italian J. Pure and Appl. Math. 40 (2018), 656-670.
- [11] A. Haseeb and R. Prasad, *-conformal η -Ricci solitons in ϵ -Kenmotsu manifolds, Publications De L'Institut Mathematique Nouvelle série tome 108 (122) (2020), 91-102.
- [12] G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408-413.
- [13] K. Kenmotsu, A class of almost contact Riemannian manifold, Tohoku Math. J. 24 (1972), 93-103.

- [14] P. Majhi, U. C. De and Y. J. Suh, *-Ricci solitons on Sasakian 3-manifolds, Publ. Math. Debrecen 93 (2018), 241-252.
- [15] D. G. Prakasha, M. Nagaraja and M. Kasab, On $M-projective\ \phi-symmetric\ \epsilon-Kenmotsu\ manifolds,$ New Trends in Mathematical Sciences 4 (2016), 295-305
- [16] D. G. Prakasha and P. Veeresha, *Para-Sasakian manifolds and* *-*Ricci solitons*, Afrika Matematika 30 (2018), 989-998.
- [17] S. Roy, S. Dey, A. Bhattacharyya and S. K. Hui, *-conformal η-Ricci Soliton on Sasakian manifold, arXiv:1909.01318v1.
- [18] M. D. Siddiqi, Conformal η -Ricci Solitons in δ -Lorentzian trans-Sasakian manifolds, Inter. J. of Maps in Math. 1 (2018), 15-34.
- [19] S. Tachibana, On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. 11 (2), (1959), 247-265.
- [20] Venkatesha, D. M. Naik and H. A. Kumara, *-Ricci solitons and gradient almost *-Ricci solitons on Kenmotsu manifolds, Mathematica Slovaca 69 (2019), 1447-1458.
- [21] Venkatesha and S. V. Vishnuvardhana, $\epsilon-Kenmotsu$ manifolds admitting a semi-symmetric metric connection, Italian Journal of Pure and Appl Math. 38 (2017), 615-623.
- [22] X. Xufeng and C. Xiaoli, Two theorems on ϵ -Sasakian manifolds, Int. J. Math. Math. Sci. 21 (1998), 249-254.
- [23] K. Yano, Integral Formulas in Riemannian Geometry, Marcel Dekker, Inc., New York 1970.

Authors' addresses:

Abdul Haseeb

Department of Mathematics,

Faculty of Science, Jazan University,

Jazan-2097, Kingdom of Saudi Arabia.

Email addresses: haseeb@jazanu.edu.sa, malikhaseeb80@gmail.com

Mehmet Akif Akyol

Department of Mathematics

Faculty of Arts and Sciences,

Bingol University, 12000 Bingol, Turkey.

 $\hbox{E-mail addresses: } mehmetakifakyol@bingol.edu.tr, mehmetakifakyl@gmail.com\\$