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Abstract. In the present paper we study ε−Kenmotsu 3-manifolds
admitting ∗−conformal η−Ricci solitons. Besides, we study gradient
∗−conformal η− Ricci solitons on ε−Kenmotsu 3-manifolds and prove that
a gradient ∗−conformal η− Ricci soliton on an ε−Kenmotsu 3-manifold
is ∗−conformal η−Einstein if and only if ξf = 0. Finally, the existence
of ∗−conformal η−Ricci soliton in an ε−Kenmotsu 3-manifold has been
proved by a concrete example.
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1 Introduction

The study of manifolds with indefinite metrics is of high interest in physics and
relativity theory. In 1993, the concept of ε−Sasakian manifolds was introduced by
Bejancu and Duggal [2]. Later, it was shown by Xufeng and Xiaoli [22] that every
ε−Sasakian manifolds are real hypersurfaces of indefinite Kahlerian manifolds. In
1972, Kenmotsu studied a class of contact Riemannian manifolds satisfying some
special conditions [13]. We call it Kenmotsu manifold. The concept of ε−Kenmotsu
manifold was introduced by De and Sarkar [5] who showed that the existence of new
structure on an indefinite metric influences the curvatures. Recently, ε−Kenmotsu
manifolds have also been studied by various authors such as ([9], [10], [11], [15], [21])
and many others.

In 2004, the concept of conformal Ricci flow was developed by Fischer [6] as a
variation of the classical Ricci flow equation. The conformal Ricci flow on a smooth
closed connected oriented n−manifold M is defined by the equation

(1.1)
∂g

∂t
+ 2

(
S +

g

n

)
= −pg

and r = −1, where p is a time dependent non-dynamical scalar field, S and r are the
Ricci tensor and the scalar curvature, respectively on M .
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The equations of a conformal Ricci soliton and of a conformal η−Ricci soliton are
given respectively by ([1], [18])

(1.2) £V g + 2S = (2λ− (p+
2

n
))g,

(1.3) £V g + 2S + (2λ− (p+
2

n
))g + 2µη ⊗ η = 0,

where λ and µ are constants.
The notion of ∗−Ricci tensor on almost Hermitian manifolds was introduced by

Tachibana [19]. Later, Hamada [8] studied ∗−Ricci flat real hypersurfaces of complex
space forms and Blair [3] defined ∗−Ricci tensor in contact metric manifolds given by

S∗(X,Y ) = g(Q∗X,Y ) = Trace {φ ◦R(X,φY )}(1.4)

for any vector fields X,Y on M , where Q∗ is the (1,1) ∗−Ricci operator and S∗ is a
tensor field of type (0, 2).

Definition 1.1. [12] A Riemannian (or semi−Riemannian) metric g on M is called
a ∗−Ricci soliton, if

(£V g)(X,Y ) + 2S∗(X,Y ) + 2λg(X,Y ) = 0(1.5)

for all vector fields X,Y on M and λ is a constant.

Definition 1.2. [17] A Riemannian (or semi−Riemannian) metric g on M is called
a ∗−conformal η−Ricci soliton, if

£V g + 2S∗ + (2λ− (p+
2

n
))g + 2µη ⊗ η = 0,(1.6)

where £V is the Lie derivative along the vector field V , S∗ is the ∗−Ricci tensor and
λ, µ are constants.

Definition 1.3. A Riemannian (or semi− Riemannian) metric g on M is called a
gradient ∗−conformal η−Ricci soliton, if

Hessf + S∗ + (λ− 1

2
(p+

2

n
))g + µη ⊗ η = 0,(1.7)

where Hessf denotes the Hessian of a smooth function f on M and defined by
Hessf = ∇∇f .

If S∗(X,Y ) = (λ− 1
2 (p+ 2

n ))g(X,Y ) + µη(X)η(Y ) for all vector fields X, Y and
λ, µ are smooth functions on M , then the manifold is called ∗−conformal η−Einstein
manifold. Further if µ = 0, that is, S∗(X,Y ) = (λ− 1

2 (p+ 2
n ))g(X,Y ) for all vector

fields X, Y , then the manifold becomes ∗−conformal Einstein manifold.
If an ε−Kenmotsu manifold satisfies (1.6), then we say thatM admits a ∗−conformal

η−Ricci soliton. Recently, De et al. [4] studied ∗−Ricci solitons in an ε−Kenmotsu
3-manifold and provide the condition for a ∗−Ricci soliton in an ε−Kenmotsu 3-
manifold with constant scalar curvature to be steady. The ∗−Ricci solitons have also
been studied by various authors in several ways to a different extent such as ([4], [7],
[14], [16], [20]) and many others.
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2 Preliminaries

An n−dimensional smooth manifold (M, g) is said to be an ε−almost contact metric
manifold [2], if it admits a (1, 1) tensor field φ, a structure vector field ξ, a 1−form η
and an indefinite metric g such that

(2.1) φ2X = −X + η(X)ξ, η(ξ) = 1,

(2.2) g(ξ, ξ) = ε, η(X) = εg(X, ξ),

(2.3) g(φX, φY ) = g(X,Y )− εη(X)η(Y )

for all vector fields X, Y on M, where ε is 1 or −1 according as ξ is spacelike or
timelike vector fields and rank φ is (n− 1). If

(2.4) dη(X,Y ) = g(X,φY )

for every X,Y ∈ χ(M), then we say that M is an ε−contact metric manifold. Also,
we have

(2.5) φξ = 0, η(φX) = 0.

If an ε-contact metric manifold satisfies

(2.6) (∇Xφ)(Y ) = g(φX, Y )ξ − εη(Y )φX,

where ∇ denotes the Levi-Civita connection with respect to g, then M is called an
ε−Kenmotsu manifold [5].
An ε−almost contact metric manifold is an ε−Kenmotsu if and only if

(2.7) ∇Xξ = ε(X − η(X)ξ).

Moreover, the curvature tensor R, the Ricci tensor S and the Ricci operator Q in an
ε−Kenmotsu manifold M with respect to the Levi-Civita connection satisfies

(2.8) (∇Xη)Y = g(X,Y )− εη(X)η(Y ),

(2.9) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.10) R(ξ,X)Y = η(Y )X − εg(X,Y )ξ,

(2.11) R(ξ,X)ξ = −R(X, ξ)ξ = X − η(X)ξ,

(2.12) η(R(X,Y )Z) = ε(g(X,Z)η(Y )− g(Y,Z)η(X)),

(2.13) (i) S(X, ξ) = −(n− 1)η(X), (ii) S(ξ, ξ) = −(n− 1),

(2.14) Qξ = −ε(n− 1)ξ

for any X,Y, Z on M, where g(QX,Y ) = S(X,Y ). We note that if ε = 1 and the
structure vector field ξ is spacelike, then an ε−Kenmotsu manifold is usual Kenmotsu
manifold.
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Lemma 2.1. In an ε−Kenmotsu n-manifold (M,φ, ξ, η, g, ε), we have [11]

R̄(X,Y, φZ, φW ) = R̄(X,Y, Z,W )(2.15)

+εΦ(X,Z)Φ(Y,W )− εΦ(Y, Z)Φ(X,W )

+εg(Y,Z)g(X,W )− εg(X,Z)g(Y,W )

for any X,Y, Z,W on M, where R̄(X,Y, Z,W ) = g(R(X,Y )Z,W ) and Φ is the fun-
damental 2-form of M defined by Φ(X,Y ) = g(X,φY ).

The curvature tensor of an ε−Kenmotsu 3−manifold is given by

(2.16) R(X,Y )Z = S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY

−r
2

(g(Y, Z)X − g(X,Z)Y )

for any X,Y, Z ∈ χ(M) and r is the scalar curvature of the manifold. Putting Z = ξ
in (2.16) and using (2.2), (2.9) and (2.13)(i), we find

(2.17) η(Y )QX − η(X)QY =
r

2
(η(Y )X − η(X)Y ).

Again putting Y = ξ in (2.17) and using (2.1) and (2.14), we get

(2.18) QX = (
r

2
+ ε)X − (

r

2
+ 3ε)η(X)ξ.

From (2.18), we find

(2.19) S(X,Y ) = (
r

2
+ ε)g(X,Y )− (

εr

2
+ 3)η(X)η(Y ).

Now we prove the following Lemma :

Lemma 2.2. In an ε−Kenmotsu 3−manifold (M,φ, ξ, η, g, ε), the ∗−Ricci tensor is
given by

S∗(Y,Z) = S(Y,Z) + εg(Y,Z) + η(Y )η(Z)(2.20)

for any Y, Z ∈ χ(M), where S and S∗ are the Ricci tensor and the ∗−Ricci tensor of
type (0, 2), respectively on M .

Proof. Let {ei} , i = 1, 2, 3 be an orthonormal basis of the tangent space at each point
of the manifold. From the equations (2.15) and (1.4), we have

S∗(Y, Z) =

3∑
i=1

R̄(ei, Y, φZ, φei)

=

3∑
i=1

[R̄(ei, Y, Z, ei) + εΦ(ei, Z)Φ(Y, ei)− εΦ(Y,Z)Φ(ei, ei)

+ εg(Y,Z)g(ei, ei)− εg(ei, Z)g(Y, ei)].

By using (2.3) and Φ(X,Y ) = g(X,φY ) in the above equation, Lemma 2.2 follows. �
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3 ε−Kenmotsu 3−manifolds admitting ∗−conformal
η−Ricci solitons

In this section we prove the following theorem:

Theorem 3.1. If an ε−Kenmotsu 3−manifold with a constant scalar curvature ad-
mits a ∗−conformal η−Ricci soliton, then λ+ εµ = 1

2 (p+ 2
3 ).

Proof. By using (2.19) in (2.20), the ∗−Ricci tensor S∗ is given by

S∗(X,Y ) = (
r

2
+ 2ε)g(X,Y )− (

εr

2
+ 2)η(X)η(Y ).(3.1)

From the definition of a ∗−conformal η−Ricci soliton, we have

(£V g)(X,Y ) = −2S∗(X,Y )− (2λ− (p+
2

3
))g(X,Y )− 2µη(X)η(Y )

= −(r + 4ε+ 2λ− (p+
2

3
))g(X,Y ) + (εr + 4− 2µ)η(X)η(Y ).(3.2)

Now taking covariant differentiation of (3.2) with respect to Z, we get

(∇Z£V g)(X,Y ) = −(Zr)(g(X,Y )− εη(X)η(Y ))(3.3)

+(εr + 4− 2µ)(g(X,Z)− εη(X)η(Z))η(Y )

+(εr + 4− 2µ)(g(Y,Z)− εη(Y )η(Z))η(X).

Following Yano [23], the following formula

(£V∇Xg −∇X£V g −∇[V,X]g)(Y, Z) = −g((£V∇)(X,Y ), Z)− g((£V∇)(X,Z), Y )

is well known for any vector fields X,Y, Z on M . As g is parallel with respect to the
Levi-Civita connection ∇, the above relation becomes

(∇X£V g)(Y,Z) = g((£V∇)(X,Y ), Z) + g((£V∇)(X,Z), Y )(3.4)

for any vector fields X,Y, Z. Since £V∇ is a symmetric tensor of type (1, 2), that is,
(£V∇)(X,Y ) = (£V∇)(Y,X), then it follows from (3.4) that

(3.5) g((£V∇)(X,Y ), Z) =
1

2
(∇X£V g)(Y, Z) +

1

2
(∇Y £V g)(X,Z)

−1

2
(∇Z£V g)(X,Y ).

Using (3.3) in (3.5), we have

2g((£V∇)(X,Y ), Z) = −(Xr)g(φY, φZ)

+(εr + 4− 2µ)(g(φY, φX)η(Z) + g(φZ, φX)η(Y ))

−(Y r)g(φX, φZ)

+(εr + 4)− 2µ(g(φX, φY )η(Z) + g(φZ, φY )η(X))

+(Zr)g(φX, φY )

−(εr + 4− 2µ)(g(φX, φZ)η(Y ) + g(φY, φZ)η(X)).
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By removing Z from the last equation, it follows that

2(£V∇)(X,Y ) = −(Xr)(Y − η(Y )ξ)

+(εr + 4− 2µ)(εg(φY, φX)ξ + (X − η(X)ξ)η(Y ))

−(Y r)(X − η(X)ξ)

+(εr + 4− 2µ)(εg(φX, φY )ξ + (Y − η(Y )ξ)η(X))(3.6)

+(Dr)g(φX, φY )

−(εr + 4− 2µ)((X − η(X)ξ)η(Y ) + (Y − η(Y )ξ)η(X)),

where Xα = g(Dα,X), D denotes the gradient operator with respect to g. Putting
Y = ξ in (3.6) and using r = constant (hence (Dr) = 0 and (ξr = 0)), we find

(£V∇)(X, ξ) = 0.(3.7)

Taking the covariant derivative of (3.7) with respect to Y , we have

(∇Y £V∇)(X, ξ) = 0.(3.8)

Again from [23], we have

(£VR)(X,Y )Z = (∇X£V∇)(Y,Z)− (∇Y £V∇)(X,Z).

Thus the last two equations give

(£VR)(X,Y, ξ) = 0.(3.9)

Taking the Lie-derivative of R(X, ξ)ξ = η(X)ξ −X along V, we have

(£VR)(X, ξ)ξ − 2η(£V ξ)X + εg(X,£V ξ)ξ = (£V η)(X)ξ

which by using (3.9) reduces to

(£V η)(X)ξ = −2η(£V ξ)X + εg(X,£V ξ)ξ.(3.10)

Now taking the Lie derivative of η(X) = g(X, ξ), we find

(£V η)X = ε(£V g)(X, ξ) + εg(X,£V ξ).(3.11)

Taking Y = ξ in (3.2) leads to

(£V g)(X, ξ) = −2ε(λ+ εµ− 1

2
(p+

2

3
))η(X).(3.12)

Putting X = ξ in (3.12) yields

η(£V ξ) = λ+ εµ− 1

2
(p+

2

3
).(3.13)

By making use of (3.11)− (3.13), we get from (3.10) that

(λ+ εµ− 1

2
(p+

2

n
))φ2X = 0(3.14)

from which it follows that

λ+ εµ =
1

2
(p+

2

3
),(3.15)

where φ2X 6= 0. This completes the proof of the Theorem 3.1. �



On ε−Kenmotsu 3-manifolds admitting ∗−conformal η−Ricci solitons 7

4 Gradient ∗−conformal η−Ricci solitons on
ε−Kenmotsu 3-manifolds

Let M be an ε−Kenmotsu 3−manifold with g as a gradient ∗−conformal η− Ricci
soliton. Then equation (1.7) can be written as

∇YDf +Q∗Y + (λ− 1

2
(p+

2

3
))Y + εµη(Y )ξ = 0(4.1)

for all vector fields Y on M , where D denotes the gradient operator of g. First we
prove the following Lemmas for later use:

Lemma 4.1. In an ε−Kenmotsu 3−manifold, we have

(∇YQ∗)ξ − (∇ξQ∗)Y = −(
εr

2
+
ξr

2
+ 2)(Y − η(Y )ξ).(4.2)

for all vector fields Y on M.

Proof. From (3.1), we can write

Q∗X = (
r

2
+ 2ε)(X − η(X)ξ).(4.3)

Differentiating (4.3) covariantly with respect to Y , we get

∇YQ∗X =
Y r

2
(X − η(X)ξ) + (

r

2
+ 2ε)[∇YX − (∇Y η)(X)ξ(4.4)

−η(∇YX)ξ − η(X)∇Y ξ].

By using (4.3) and (4.4), we find

(∇YQ∗)X =
Y r

2
(X − η(X)ξ)− (

r

2
+ 2ε)[(∇Y η)(X)ξ + η(X)∇Y ξ](4.5)

which by replacing X by ξ and using (2.1), (2.7), (2.8) reduces to

(∇YQ∗)ξ = −(
εr

2
+ 2)(Y − η(Y )ξ).(4.6)

Again replacing Y by ξ in (4.5) and using (2.7) and (2.8), we find

(∇ξQ∗)Y =
ξr

2
(Y − η(Y )ξ).(4.7)

By substracting (4.7) from (4.6), (4.2) follows. �

Lemma 4.2. In an ε−Kenmotsu 3−manifold, we have

R(X,Y )Df = (∇YQ∗)X − (∇XQ∗)Y + µ(η(X)Y − η(Y )X).(4.8)

for all vector fields X,Y on M.
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Proof. Differentiating (4.1) covariantly along the vector field X, we have

∇X∇YDf +∇XQ∗Y + (λ− 1

2
(p+

2

3
))∇XY + εµ∇X(η(Y )ξ) = 0.(4.9)

Interchanging X and Y in (4.9), we have

∇Y∇XDf +∇YQ∗X + (λ− 1

2
(p+

2

3
))∇YX + εµ∇Y (η(X)ξ) = 0.(4.10)

Also from (4.1), we find

∇[X,Y ]Df +Q∗(∇XY −∇YX)(4.11)

+(λ− 1

2
(p+

2

3
))(∇XY −∇YX) + εµη([X,Y ])ξ = 0.

By using (4.9)− (4.11) in R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df , Lemma
4.2 follows. This completes the proof. �

Theorem 4.3. A gradient ∗−conformal η−Ricci soliton on an ε−Kenmotsu
3−manifold is ∗−conformal η−Einstein if and only if ξf = 0.

Proof. Putting X = ξ in (4.8), we have

R(ξ, Y )Df = (∇YQ∗)ξ − (∇ξQ∗)Y + µ(Y − η(Y )ξ)

which by taking the inner product with ξ and using the Lemma 4.1 gives

g(R(ξ, Y )Df, ξ) = 0.(4.12)

By using (2.9), we have

g(R(ξ, Y )Df, ξ) = η(Y )(ξf)− ε(Y f).(4.13)

From (4.12) and (4.13), we find

(Y f) = εη(Y )(ξf)(4.14)

for any Y ∈ χ(M). Therefore, Df = (ξf)ξ. Thus Df = 0 if ξf = 0. Therefore,
it follows from (1.7) that S∗(X,Y ) = −(λ − 1

2 (p + 2
3 ))g(X,Y ) − µη(X)η(Y ). This

completes the proof. �

Example: We consider the three dimensional manifold M = [(x, y, z) ∈ R3 | z 6=
0], where (x, y, z) are the standard coordinates in R3. Let e1, e2 and e3 be the vector
fields on M given by

e1 = ez
∂

∂x
, e2 = ez

∂

∂y
, e3 = −ε ∂

∂z
,

which are linearly independent at each point of M. Let g be the indefinite Riemannian
metric defined by

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0, g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = ε,
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where ε = ±1. Let η be the 1-form on M defined by η(X) = εg(X, e3) = εg(X, ξ) for
all X ∈ χ(M). Let φ be the (1, 1)-tensor field on M defined by

φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0.

Then by the linearity property of φ and g, we have

φ2X = −X + η(X)e3, η(e3) = 1 and g(φX, φY ) = g(X,Y )− εη(X)η(Y )

for any vector fields X,Y ∈ χ(M). Thus for e3 = ξ, the structure (φ, ξ, η, g, ε)
defines an indefinite almost contact metric structure on M . Let ∇ be the Levi-Civita
connection with respect to the indefinite metric g. Then we have

[e1, e2] = 0, [e1, e3] = εe1, [e2, e3] = εe2.

The Riemannian connection ∇ with respect to the metric g is given by

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y ) + g([X,Y ], Z)

−g([Y,Z], X) + g([Z,X], Y ).

From above equation which is known as Koszul’s formula, we can easily calculate

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = εe1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = εe2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Using the above relations, it follows that

∇Xξ = ε(X − η(X)ξ)

for ξ = e3. Hence the manifold is an ε−Kenmotsu manifold of dimension three. It is
known that

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

By using the above results, one can easily obtain the components of the curvature
tensor as follows:

R(e1, e2)e1 = εe2, R(e1, e2)e2 = −εe1, R(e1, e2)e3 = 0,

R(e2, e3)e1 = 0, R(e2, e3)e2 = εe3, R(e2, e3)e3 = −e2
R(e1, e3)e1 = εe3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −e1.

From these curvature tensors, we calculate the components of Ricci tensor as follows:

(4.15) S(e1, e1) = S(e2, e2) = −2ε, S(e3, e3) = −2.

In [11], the authors proved that an ε−Kenmotsu 3−manifold admitting a ∗−conformal
η−Ricci soliton is an η−Einstein manifold of the form S(Y,Z) = −(λ + 2ε − 1

2 (p +
2
3 ))g(Y,Z)−µη(Y )η(Z). From this equation, we have S(e3, e3) = −ελ−µ−2+ ε

2 (p+ 2
3 ).

By equating both the values of S(e3, e3), we obtain

λ+ εµ =
1

2

(
p+

2

3

)
.

Hence λ and µ satisfies the equation (3.15) and so g defines a ∗−conformal η−Ricci
soliton on the 3−dimensional ε−Kenmotsu manifold.
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5 Conclusions

In recent years, the study of ∗−Ricci solitons and gradient ∗ − η−Ricci solitons on
Riemannian (as well as, semi-Riemannian) manifolds became of major importance
in the area of differential geometry, physics and relativity as well. The problem of
studying ∗−Ricci solitons in a Kaehler manifold was initiated by Kaimakamis and
Panagiotidou. Recently, S. Roy with other geometers introduced the notion of a
special type of metric on Sasakian manifold, called ∗−conformal η−Ricci soliton. As
a continuation of this study, we made an effort to study ∗−conformal η−Ricci solitons
in the frame-work of ε−Kenmotsu geometry.

Acknowledgements. The authors are thankful to the editor and anonymous referees
for their valuable suggestions in the improvement of the paper.
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