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Abstract. Conformal submersion with horizontal distribution is defined
in this paper, which is a generalization of the affine submersion with hor-
izontal distribution. Then, proved a necessary and sufficient condition for
a semi-Riemannian manifold to become a statistical manifold in the case
of a conformal submersion with horizontal distribution. Also, obtained
a necessary and sufficient condition for the tangent bundle to become a
statistical manifold with respect to the Sasaki lift metric and the complete
lift connection.
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1 Introduction

Statistical manifolds play a central role in the discipline of information geometry
which has got application in various fields like statistical mechanics, machine learn-
ing, neural networks, statistics, neuroscience, etc.,[2]. Statistical manifold was orig-
inally introduced by S.L Lauritzen [9], later Kurose [8] reformulated this from the
viewpoint of the affine differential geometry. Riemannian submersions from a sta-
tistical viewpoint were first mentioned by Barndroff-Neilsen and Jupp [4]. O’Neill
[12] defined a Riemannian submersion and obtained the fundamental equations of
Riemannian submersions for Riemannian manifolds. Also in [13], O’Neill defined a
semi-Riemannian submersion. Abe and Hasegawa [1] defined an affine submersion
with horizontal distribution and obtained the fundamental equations. For the semi-
Riemannian submersion 7 : (M, ga) — (B,gp), Abe and Hasegawa [1] obtained a
necessary and sufficient condition for (M, V, gas) to become a statistical manifold with
respect to the affine submersion with horizontal distribution 7 : (M, V) — (B, V*).
Conformal submersion and the fundamental equations of conformal submersion were
also studied by many researchers, see [14], [6] for example. Harmonic morphisms
between Riemannian manifolds of arbitrary dimensions and horizontally conformal
submersions were introduced by Fuglede [5] and Ishihara [7] independently. Har-
monic morphisms are nothing but harmonic and horizontally conformal maps. Their
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study focuses on the conformality relation between the metrics on Riemannian man-
ifolds and the Levi-Civita connections. Our interest is on the conformal submersion
between Riemannian manifolds M and B and the conformality relation between any
two affine connections V and V* (not necessarily be Levi-Civita connections) on M
and B, respectively. In this paper, the concept of the conformal submersion with
horizontal distribution is defined, which is a generalization of the affine submersion
with horizontal distribution. Then, we study the statistical manifold structure for
affine and conformal submersions with horizontal distribution.

The projection from the tangent bundle TM to the manifold M can be considered
as a submersion. Matsuzoe and Inoguchi [10] obtained a necessary and sufficient
condition for the tangent bundle TM to become a statistical manifold with respect
to the Sasaki lift metric and the horizontal lift connection and also with respect to
the horizontal lift metric and the horizontal lift connection. In [3], V. Balan et al
studied statistical structures on the tangent bundle of a statistical manifold with the
Sasaki metric. We have shown that the submersion = : (TM,V°) — (M, V) is
an affine submersion with horizontal distribution and 7 : (TM, ¢*) — (M, g) is a
semi-Riemannian submersion. Also, obtained a necessary and sufficient condition for
TM to become a statistical manifold with respect to the Sasaki lift metric and the
complete lift connection for an affine submersion with horizontal distribution.

In section 2, a statistical structure is obtained on the manifold B induced by the
affine submersion 7 : M — B with the horizontal distribution H(M) = V+(M). In
section 3, we introduced the concept of conformal submersion with horizontal distri-
bution, which is a generalization of the affine submersion with horizontal distribution.
For a conformal submersion of semi-Riemannian manifolds 7 : (M, gas) — (B, gB), we
proved that 7 : (M, V) — (B, V*) is a conformal submersion with horizontal distri-
bution if and only if 7 : (M, V) — (B, V*) is a conformal submersion with horizontal
distribution. Then, proved a necessary and sufficient condition for (M, V, gas) to be-
come a statistical manifold for a conformal submersion with horizontal distribution.
This is a generalization of the theorem for an affine submersion with horizontal distri-
bution proved by Abe and Hasegawa [1]. In section 4, we proved that the submersion
m: (TM,V°) — (M, V) is an affine submersion with horizontal distribution and the
submersion 7 : (T'M, ¢°) — (M, g) is a semi-Riemannian submersion, where V¢ is the
complete lift of affine connection V on M and ¢° is the Sasaki lift metric. Then, we
obtained a necessary and sufficient condition for (TM, V¢, ¢g%) to become a statistical
manifold. Throughout this paper, all the objects are assumed to be smooth.

2 Statistical manifolds and semi-Riemannian
submersions

In this section, we show that the geometric structure (V/, g) induced by an affine
submersion of a statistical manifold 7 : M — B with the horizontal distribution
H(M) = V(M) is a statistical manifold structure.

A semi-Riemannian manifold (M, g) with a torsion-free affine connection V is
called a statistical manifold if Vg is symmetric. For a statistical manifold (M, V, g)
the dual connection V is defined by Xg(Y,Z) = ¢(VxY,Z) + g(Y,VxZ), for X,Y
and Z in X(M), where X' (M) denotes the set of all vector fields on M. If (V,g) is a
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statistical structure on M so is (V, g). Then (M, V, g) becomes a statistical manifold,
called the dual statistical manifold of (M, V,g). Let RV and RV be the curvature
tensors of V and V, respectively. Using the above relation of V and V one can show
that g(RY(X,Y)Z,W) = —g(Z,RV(X,Y)W) for X,Y,Z and W in X(M).

Let M be an n dimensional manifold and B be an m dimensional manifold (n >
m). An onto map 7 : M — B is called a submersion if m,, : T,M — TrpmB is
onto for all p € M. For a submersion 7 : M — B, 7~ 1(b) is a submanifold of M of
dimension (n —m) for each b € B. These submanifolds 7~1(b) are called the fibers.
Set V(M),, = Ker(m,,) for each p € M.

Definition 2.1. A submersion 7 : M — B is called a submersion with horizon-
tal distribution if there is a smooth distribution p — H(M), such that T,M =
VM), @ H(M),.

We call V(M), (H(M),) the vertical (horizontal) subspace of T,M. H and V
denote the projection of the tangent space of M onto the horizontal and vertical
subspaces, respectively.

Note 2.1. Let 7 : M — B be a submersion with horizontal distribution H(M). Then,
T |n(an),: H(M)p — TrpyB is an isomorphism for each p € M.

Definition 2.2. Let (M, gar), (B, gp) be semi-Riemannian manifolds of dimensions
n,m respectively (n > m). A submersion 7 : M — B is called a semi-Riemannian
submersion if all the fibers are semi-Riemannian submanifolds of M and 7, preserves
the length of horizontal vectors.

Note 2.2. A vector field Y on M is said to be projectable if there exists a vector field
Y. on B such that 7.(Y,) = Yix(p) for each p € M, that is, Y and Y, are 7- related.
A wvector field X on M is said to be basic if it is projectable and horizontal. FEvery
vector field X on B has a unique smooth horizontal lift, denoted by X, to M.

Definition 2.3. Let V and V* be affine connections on M and B, respectively.
m: (M, V) — (B, V*) is said to be an affine submersion with horizontal distribution

if m: M — B is a submersion with horizontal distribution and satisfies H(V 3Y) =

(V%Y), for X,Y € X(B).

Note 2.3. Abe and Hasegawa [1] proved that the connection V on M induces a
connection V' on B when © : M — B is a submersion with horizontal distribution
and H(VX}}) is projectable for all the vector fields X and Y on B.

A connection VVV on the subbundle V(M) is defined by (VVV)gV = V(VEgV)
for any vertical vector field V' and for any vector field E on M. For each b € B, VVV
induces a unique connection V° on the fiber 71 (b). Abe and Hasegawa [1] proved
that, if V is torsion-free then VP and V' are also torsion-free.

Definition 2.4. Let 7 : (M, V) — (B, V*) be an affine submersion with horizontal
distribution V(M), g be a semi-Riemannian metric on M and H(V Y) be pro-
jectable. Define the induced semi-Riemannian metric g and the induced connection
V' on Bas §(X,Y) = g(X,Y) and VyY = 7, (VY) where X,V are vector fields
on B.

Now, we show that (B, V,,g) is a statistical manifold.
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Theorem 2.1. Let (M, V,g) be a statistical manifold and 7 : M — B be an affine
submersion with horizontal distribution H(M) = V(M) and H(V 3Y) be projectable.

Then, (B, V/,g) s a statistical manifold.

Proof. Let X,Y, Z be vector fields on B, we have

(Vxd(Y,2) =

= (Vx9(Y,2).
Since (M, V, g) is a statistical manifold, (B, v, g) is also a statistical manifold. O

Definition 2.5. Let 7 : (M, V,gn) — (B, V*,gp) be an affine submersion with
horizontal distribution H(M). The fundamental tensors T and A are defined as

(2.1) TpF = H(VVEVF) +V(VVE'HF)7
ApF V(VHEHF) JrH(VHEVF),

for vector fields £ and F' on M. Also, we denote the fundamental tensors correspond
to the dual connection V of V by T and A.

Note that, T and A are (1, 2)-tensors. These tensors can be defined in a general sit-
uation, namely, it is enough that a manifold M has a splitting TM = V(M) @ H(M).
Also note that, Tr and Ag reverses the horizontal and vertical subspaces and T =
Tve, Ap = Aug. R

The inclusion map (7=%(b), V®) — (M, V) is an affine immersion in the sense of
[11] and the corresponding Guass and Weingarten formulae follow.

3 Conformal submersion with horizontal
distribution

In this section, we generalize the concept of an affine submersion with horizontal
distribution. Then, prove that 7 : (M,V) — (B, V*) is a conformal submersion
with horizontal distribution if and only if 7 : (M,V) — (B, V*) is a conformal
submersion with horizontal distribution. Also, a necessary and sufficient condition
for (M, V,gan) to become a statistical manifold for a conformal submersion with
horizontal distribution is obtained.

Definition 3.1. Let (M, gps) and (B, gg) be Riemannian manifolds. A submersion
m: (M, gn) — (B, gp) is called a conformal submersion if there exists a ¢ € C>°(M)
such that gy (X,Y) = €2?gp(m. X, 7.Y), for horizontal vector fields X, Y € X (M).

For m : (M,V) — (B,V*) an affine submersion with horizontal distribution,
m.(VgY) = V%Y, for X,Y € X(B). In the case of a conformal submersion we prove
the following theorem, which is the motivation for us to generalize the concept of an
affine submersion with horizontal distribution.
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Theorem 3.1. Let : (M, gpr) — (B, gg) be a conformal submersion. If V on M
and V* on B are the Levi-Civita connections, then

where X,Y,Z € X(B) and X,Y,Z denote the unique horizontal lifts on M.

Proof. We have the Koszul formula for the Levi-Civita connection,

20u(VY,Z) = XgM(Y/ Z)+Yyg (Z,
Y, +g

(3.1) m(X,[Y, 2))

Now consider

~h
A\

) = X(e*gr(Y,2))
X(e**)gn(Y, Z) + €** X (gn(Y, Z))
= 2e*dp(X)gs(Y, Z) + * X gp(Y, Z).

Xagm(

Similarly we have,

Yau(
Zgum(

lalial
~ N\

) = 2e7dp(YV)gn(X, Z) +€**Ygp(X, Z)
) = 26%%d¢(Z)gp(X,Y) + € Zgp(X,Y).

Also, gu (X, [Y, Z])
gu(Z,[X,Y]) = e* g(

g (X7 [Y7 Z])a gM(?7 [Z7 X]) = ezd)gB(}/’ [Z7 XD and
[X Y]). Then, from the equation (3.1) and the above equations

NH

20m(VY,2) = 2d¢(X)e*gn(Y,Z) +2d¢(Y)e* gn(X, Z)
2dp(2)e* gp(X,Y) + 26**gp(VXY, Z).

This implies

98(m(V5Y),Z) = gp(VXY,Z)—d¢(Z)gs(X,Y)
{do(X)gs(Y, Z) + do(Y)gs(Z, X)}.

+

O

Now, we generalize the concept of an affine submersion with horizontal distribution
as follows:

Definition 3.2. Let 7 : (M, gpr) — (B, gp) be a conformal submersion and let V
and V* be affine connections on M and B, respectively. Then, 7 : (M, V) — (B, V*)
is said to be a conformal submersion with horizontal distribution H(M) = V(M)* if

9p(m.(VY),Z) = gp(VxY.Z)—d¢(Z)gp(X,Y)
+{do(X)gp(Y, Z) + do(Y)gs(Z, X)},

for some ¢ € C*>°(M) and for all X,Y, Z € X(B).
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Note 3.1. If ¢ is constant, it turns out to be an affine submersion with horizontal
distribution.

Example 3.3. Let H" = {(z1,...,2,) € R" : 2, > 0} and g = %g be a Riemannian
metric on H", where g is the Euclidean metric on R™. Let 7 : H® — R" ! be defined
by m(x1,...,Zn) = (T1,...;Zn—1). Let ¢ : H* — R be defined by ¢(z1,...,2,) =
log(5). Then, we have

(2D e, (D0
g 83?/8.’1%‘ - g axi’axj

hence, 7 : (H",§) — (R™1,g) is a conformal submersion. Then, by the theorem
(3.1), m: (H",V) — (R""1,V*) is a conformal submersion with horizontal distri-
bution, where V and V* are Levi-Civita connections on H"™ and R"~! respectively.

Now, for semi-Riemannian manifolds (M, gxr), (B, gp) with affine connections V
and V* and the dual connections V and V* respectively, we prove

Proposition 3.2. Let 7 : (M, gy) — (B, gg) be a conformal submersion. Then,
m: (M, V) — (B, V") is a conformal submersion with horizontal distribution if and
only if m: (M, V) — (B, V*) is a conformal submersion with horizontal distribution.

Proof. Consider,

Xgu(Y,Z2) = 22%dp(X)gp(Y,Z) +e**Xgp(Y, 2)
2e*%do(X)gp (Y, Z) + € {g(ViY, Z) + gp(Y, V' x Z)}.
Now consider
Xgu(Y,2) = gu(ViY,Z)+gu(Y,VZ)
(3.2) = gp(m(VgY),2) + gV, 1. (Vi Z)).
Since,
gp(m(VY),Z) = gp(VyY,Z)—d¢(Z2)gs(X,Y)

(3.3) + {dp(X)gp(Y, Z) + d¢(Y)gr(Z,X)}

from (3.2) and (3.3) we get

95(m(V32),Y) = g5(V*xZ,Y)—dop(Y)gp(X,Z)
+ {do(X)gp(Y,Z) +dp(Z)gp(X,Y)}.

Hence, 7 : (M, V) — (B, V¥) is a conformal submersion with horizontal distribution.
Converse is obtained by interchanging V, V* with V, V* in the above proof. (]

Lemma 3.3. Let 7 : (M,gn) — (B,gp) be a conformal submersion and 7 :
(M, V) — (B, V*) be a conformal submersion with horizontal distribution V(M)*,
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then

(3.4) (Viogm) (X1, X2) = €**(Vign)(X1, Xa),

(3.5) (Vvgu)(X,Y) = —gu(SvX,Y),

(3.6) (Vxgm)(V,Y) = —gu(AxV,Y) 4+ gu(AxV,Y),
(3.7) (Vxgu)(V,\W) = —gu(SxV, W),

(3 8) (vaM)(X W) = 7gM(TvX W) + L(]M(TVAX7 W),
(3.9) (Vogn) (VW) = (Vugu)(V, W),

for horizontal vector fields X, Y on M and vertical vector fields U, V,W on M. X;
are the horizontal lifts of vector fields X; on B, g is the induced metric on the fibers
and SvX = VvX - va.

Proof. Consider
(Vgn)(X1,Xo) = Xgm(X1,X2) — gn(Vx X1, X2) — g (X1, Vx Xo)
= X€2¢QB(X1,X2) —62¢gB(7T*(V)”(X1),X2)
— 6 gB(Xl,w*(V XQ))

= 2e2%°dp(X)gp (X1, X2) + €2 Xgp(X1, Xy)
62¢g3(ﬂ'*(v)~(X1) ) — 62¢gB(X1,7T*<VXvX2)).

Since

9B(m. (V£ Xi), X)) = g8(ViXi. X;) — do(X;)gp(X, X;)
+ {dp(X)gp(Xi, X;) + dp(Xi)gn(X;, X)},

where 7,5 = 1,2 and i # j, we get
(Viegm)(X1,Xo) = €*(Vign)(Xi1, Xa).
Similarly, we can prove the other equations. O

Now, we prove a necessary and sufficient condition for (M, V, gar) to be a statis-
tical manifold for a conformal submersion with horizontal distribution.

Theorem 3.4. Let 7 : (M,gn) — (B,gp) be a conformal submersion and 7 :
(M, V) — (B, V*) be a conformal submersion with horizontal distribution H(M) =
V(M) and V be torsion-free. Then, (M, V,gar) is a statistical manifold if and only

if
1. H(SyX) = AxV — AxV.
2. V(SxV) =Ty X — Ty X.
3. (m=(b),V?, 38, is a statistical manifold for each b € B.

4. (B,V*,gB) is a statistical manifold.
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Proof. Suppose (M, V,gnr) is a statistical manifold, then Vg is symmetric. So
(Vvam)(X,Y) = (Vxgan)(V,Y), where X, Y are horizontal vector fields and V is a
vertical vector field. Then, from (3.5) and (3.6) of the above lemma gp(Syv X,Y) =
g (AxV,Y) — gu(AxV,Y). This implies, H(Sy X) = AxV — AxV. Similarly from
(3.7) and (3.8) of the above lemma, we have V(SxV) =Ty X — Ty X.

Since Vg is symmetric, from (3.9) of the above lemma, we get @bg is symmetric,
so (m71(b), Vb,f)M) is a statistical manifold. Also from (3.4) of the above lemma, we
get (Vggnm) (X1, Xo) = €2*(Vigp)(X1, Xa), where X; are the horizontal lift of the
vector fields X; on B. Since, Vgjs is symmetric V*gp is also symmetric. Hence,
(B, V*,gp) is a statistical manifold.

Conversely, if all the four conditions hold then from the above lemma
Vegu(F,G) = Vegu(E,G), for vector fields E, F and G on M. That is, Vg is
symmetric on M and hence (M, V, gps) is a statistical manifold. O

4 Statistical structures on the tangent bundle

In this section, we show that the submersion 7 : (TM, V°¢) — (M, V) is an affine sub-
mersion with horizontal distribution and 7 : (TM, ¢*) — (M, g) is a semi-Riemannian
submersion. Also, prove a necessary and sufficient condition for TM to become a sta-
tistical manifold with respect to the Sasaki lift metric and the complete lift connection
for an affine submersion with horizontal distribution.

Let M be an n dimensional manifold and TM = II,cmT,M denote the tangent
bundle on M. Let # : TM — M be the natural projection defined by X, €
T.M — x € M. Let (U;z?,...,2") be a local coordinate system on M and the
induced co-ordinate system on 7= 1(U) be (z!,..2";u!,..u™). Let (z;u) be a point on
TM, denote the kernel of 7, (,.u) by V(4;u) called the vertical subspace of T(L ) (TM)

at (z;u). Note that the vertical subspace Vs, is spanned by {%, %, . auw }. The
two linear spaces T, M and V(,.,) have the same dimension, so there is a canonical
linear isomorphism V' : T,M — V,.,,y called the vertical lift.

Let f: M — R be a smooth function on M. The vertical lift f* of f is defined
by fU = fom. For a vector field X = X? ai on M, the vertical lift X? is defined
by XV = (X%)";2;. Note that [X?,Y"] = 0, for any two vector fields X,Y on M.
The vertical lift of df is defined by (df)" = d(f“)7 in particular, (dz?)¥ = d(z%)" for
local co-ordinate functions z?. The vertical lift of 1-form w = w;dz’ is defined as
w¥ = (w;)¥d(z%)?, the vertical lift operation extends on the full tensor algebra 7 (M)
by the rule (P ® Q)" = P" ® Q", for tensor fields P and @ on M.

Let f: M — R be a smooth map, the complete lift f¢ of f on TM is defined
as f¢ = i(df) = u 88]:. The complete lift X°¢ on TM of the vector field X on
M is characterized by the formula X°¢(f¢) = (Xf)c for all f € C*°(M ) In local
co- ordmates the complete lift X¢ of X = X'5 i

(XZ) OxJ B?H :

The complete lift to the 1—from w is defined as w(X¢) = (w(X))c. More generally,
the complete lift to full tensor algebra 7 (M) is given by the rule (P ® Q)¢ = P°®
Q" + PY ® Q°, for tensor fields P and @@ on M. Let V be a linear connection on M,

then the complete lift V¢ on TM is defined as V.Y = (VxY)<, for X, Y € X(M).
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Remark 4.1. Matsuzoe and Inoguchi [10] have proved that if (M, V,g) is a statis-
tical manifold, then (TM, V¢, g°) is a statistical manifold. Moreover, the conjugate
connection of V¢ is (V¢) = (V)°.

Now, we look at the horizontal lifts on the tangent bundle. Let M be a smooth n
dimensional manifold and V be a torsion-free linear connection on M. The vertical
subspace V(z.y) of Tz;u) (TM) at (z;u) defines a smooth distribution ¥ on TM called
the vertical distribution. Also, there exists a smooth distribution © — H(TM),
depending on the linear connection V such that T(,.,)(TM) = H(TM), @ V(zw).-
This distribution is denoted by Hy, called the horizontal distribution. Let X be a
vector field on M, then the horizontal lift of X on TM is the unique vector field X
on TM such that ﬂ*(X(Ii;u)) = Xr((@u)) for all (z;u) € TM. In local co-ordinates,

XH = X a?ci — XjukF§-7kaim for X = X* 8?&' Here I‘;k are the connection coefficients
of V.

Let g be a semi-Riemannian metric on M, then the horizontal lift g/ on M is
defined as g/ (X YH) = g (X" YV) = 0 and g (XH,Y?) = g(X,Y), for X,Y €
X(M). The horizontal lift VH on M of linear connection V on M is defined as
VEY? =0, VELYH =0, VE, Y = (VxY)?, VE, YH = (VxY)#, for X,Y €
X (M). Note that even if V is torsion-free, its horizontal lift V¥ may have non-trivial
torsion.

Let g be a semi-Riemannian metric on (M, V). Define a semi-Riemannian metric
g% on TM as, Il (XH YH) =g,(X,Y), Yiwu) (XH y?) =0, Yiwu) (XU, YY)
= ¢.(X,Y). The metric g° is called the Sasaki lift metric.

In [15], Yano and Ishihara introduced « operator for defining the horizontal lift
from the complete lift. Let X be a vector field on M, with X = X? azﬂ VX =
X;%@dﬂ, where X! = 2% +X*T% . Define y(VX) = qu;a%i with respect to the
induced co-ordinate (z!,...,2™;u',...,u™). Then we can see that X = X¢ — v(VX),
note that v(VX) is the vertical part of X°.

Remark 4.2. Matsuzoe and Inoguchi [10] proved that if (M,V,g) is a statisti-
cal manifold, then (TM, V¥ ¢%) or (TM,V#,g") is a statistical manifold if and
only if Vg = 0. Also, they obtained that for a statistical manifold (M, V,g) both
(TM, g%, CH) and (TM, g, CH) are statistical manifolds, where C¥ is the horizontal
lift of the cubic form C = Vg.

A necessary and sufficient condition for TM to become a statistical manifold
with respect to the Sasaki lift metric and the complete lift connection for an affine
submersion with horizontal distribution is obtained in this section.

Consider the submersion 7 : TM — M. Let V be an affine connection on M.
Then, there is a horizontal distribution H such that T, (TM) = H(z.) (TM) 4V,
for every (z;u) € TM.

Now, we show that the submersion m of TM into M with the complete lift of the
affine connection is an affine submersion with horizontal distribution.

Proposition 4.1. The submersion 7 : (TM, V¢) — (M, V) is an affine submersion
with horizontal distribution.



Conformal submersion with horizontal distribution 43

Proof. We need to show that H(VS., Y) = (VxY)¥. Consider, X = X¢—~(VX),
then

Vg(HYH = Xey(vx) Y = Y(VY)

= Ve yvx)Y = Vi, wx)1(VY)
= VXY= Vigx)V" = V5 (VY) + Vg x)7(VY).

Using V&.Y"? =0 ([10]) we have

(4.1) Vin YT = (VxY) = [Vigx)Y + Vi (VY)].
By definition

(4.2) (VxY)* = (VxY)7 +4(V(VxY)).

From (4.1) and (4.2), H(V5xY") = (VxY)#. Hence the submersion
m: (TM,V¢) — (M, V) is an affine submersion with horizontal distribution. O

Proposition 4.2. The submersion 7w : (ITM, ¢°) — (M, g) is a semi Riemannian
submersion.

Proof. Clearly 7= 1(p) = T,M, for p € M, is a semi-Riemannian submanifold of
TM and by the definition of g% we have ¢%(X# YH#) = ¢g(X,Y). Hence 7 is a semi-
Riemannian submersion. g

Now, we give a necessary and sufficient condition for the tangent bundle to be a
statistical manifold with the Sasaki lift metric and the complete lift connection.

Theorem 4.3. (TM, V¢, ¢°) is a statistical manifold if and only if
1. H(SyX) = AxV — AxV.
2. V(SxV) =Ty X — Ty X.
3. (T,M, @C,gs) is a statistical manifold for each p € M.
4. (M, V,g) is a statistical manifold.
Note that, since g*(X,Y") = 0, we can take H(M) = V(M)=L.

Proof. From propositions (4.1) and (4.2), we get that 7w : (TM, V¢, ¢°) — (M, V, g)
is an affine submersion with horizontal distribution. Since ¢g%(X*,Y?) = 0, we can
take H(M) = V(M)+. First, we show that the following equations hold for horizontal
vector fields X,Y and vertical vector fields U, V, W

(4.3) (Vyg’)(X,Y) = —¢g°(SvX,Y),

(4.4) (Vi )( Y) = —g"(AxV)Y) +¢°(AxV)Y),
(4.5) (VxgHV,W) = —g*(SxV, W),

(4.6) (Vig ) (X, W) = —g*(Tv X, W)+ ¢"(TvX, W),
(4.7) (Vog ) (VW) = (VC )V, W),

(4.8) (V&) (X1, X2) = (Vxg)(X1, Xo),
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where X; are the horizontal lift of the vector fields X; on M, g® is the induced metric
on the fibers and Sy X = VX — Vi, X. To see (4.3) consider

( %’/gs)(va) = Vgs(va)_gs( %}X,Y)—gs(X,V%Y)
= (Vv X)Y) —g¢°(X,VyY)
= —gS(SvX,Y).

Similarly, we can prove the other equations. Now suppose (TM, V¢, ¢°) is a statistical
manifold, then V¢g® is symmetric. From (4.3) and (4.4), we get

H(SyX) = AxV — AxV.

From (4.5) and (4.6), we get V(SxV) = Ty X — Ty X, from (4.7) V¢§* is symmetric,
so (T,M, V¢, %) is a statistical manifold for each p € M. Also, from (4.8) (M, V, g)
is a statistical manifold.

Conversely, if all the four conditions hold then from the above equations V€¢g* is
symmetric, so (TM, V¢, g®) is a statistical manifold. O
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