On CW-translations of homogeneous Finsler spaces
with («, 8)-metrics
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Abstract. In the present paper, we consider homogeneous Finsler spaces
with two («, 8)-metrics. Taking a Killing vector field X on one of these
spaces, we find necessary and sufficient conditions for X to be Killing on
the other space. Further, by taking a Killing vector field X of constant
length on one of these spaces, we find the condition under which the Killing
vector filed X has constant length w.r.t. other space also. Taking Killing
vector fields of constant length, we find CW translations on these spaces.
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1 Introduction

According to S. S. Chern [5], Finsler geometry is just Riemannian geometry without
quadratic restriction. Finsler geometry is an interesting and active area of research
for both pure and applied reasons [2, 1, 10, 13]. One of the current topics of research
in Riemann-Finsler geometry is Clifford-Wolf translation which was first introduced
by J. A. Wolf [25] for Riemannian manifolds in 1964. If d is the distance function
on a Riemannian manifold M, then (M,d) becomes a metric space. An isometry p
of M is called a Clifford-Wolf translation, or in short, CW-translation if the distance
between a point x € M and its image, i.e., d(z, p(x)) is same for all z € M. A Rie-
mannian manifold M is called Clifford-Wolf homogeneous, or CW-homogeneous if for
any two points z,y of M, there is a CW-translation taking = to y. Wolf proved that
only bounded isometries of a Riemannian manifold are CW-translations. V. Ozols
[19] worked on CW-translations in Riemannian symmetric spaces in 1974. Almost
after three decades, in 2009, V. N. Berestovskii and Y. G. Nikonorov [4] worked on
CW-translations on homogeneous Riemannian manifolds and they found necessary
and sufficient condition for a simply connected (connected) Riemannian manifolds to
be CW-homogeneous.
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The concept of CW-translations in Finsler spaces is similar to as in Riemannian
spaces. Let (M, F) be a Finsler space, where F' is positively homogeneous function
of degree 1 but not absolute homogeneous in general. If d is the distance function
defined on M which is not symmetric in general, then a CW-translation on M is an
isometry p on M that moves each point of M, the same distance, i.e., d(z, p(z)) is
constant. If for every two points a,b € M, there exists a CW-translation p such that
p(a) = b, then the Finsler space (M, F) is called CW-homogeneous. Recently, S. Deng
and M. Xu ([8, 26, 9]) have worked on CW-translations in homogenecous Finsler spaces
and have found necessary and sufficient condition for an isometry on a homogeneous
Randers space to be a CW-translation.

CW-translations are closely related to Killing vector fields of constant length. If
the manifold (Riemannian or Finsler) is compact, then CW-translation is generated
by a Killing vector field of constant length.

The paper is organized as follows:

In Section 2, we discuss some basic definitions and results to be used in subsequent
sections. In Section 3, we consider Finsler spaces with two well known (¢, 3)-metrics:
Matsumoto metric and infinite series metric. Taking a Killing vector field X on one
of these spaces, we find necessary and sufficient conditions for X to be Killing on the
other space. Further, in Section 4, by taking a Killing vector field X of constant length
on one of these spaces, we find the condition under which the Killing vector filed X
has constant length w.r.t. other space also. Finally, we characterize CW-translations
on these spaces with the help of Killing vector fields of constant length.

2 Preliminaries

First, we discuss some basic definitions and results required to study afore said spaces.
We refer [3, 6, 7, 14] for notations and further details.

Definition 2.1. Let X be a vector field on a smooth manifold M and I be any open
interval containing 0. The differentiable curve v : I — M on M is said to be an
integral curve if and only if

(2.1) Y'(t) = Xy or X(y(t) Vitel,

i.e., an integral curve is the solution curve of ODE (2.1). The point v(0) = p is called
the starting point of the curve.

Suppose for each p € M, and X € x(M), X has a unique integral curve (P
starting at p and is defined all over R,
ie., ¥ : R — M such that

P (t) = X(W(t)) ¥ t € R, and %P (0) = p.
For each t € R, define ¥y : M — M as

de(p) = v P (1),
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i.e., t — 1;(p) is an integral curve starting at p.
For the additive group R, the continuous R-action ¢ : R x M — M on M satisfying

w(tla ¢(t27p)) = w(tl =+ t27p)a w(07p) =Pp
is called global flow (one-parameter group action) of X, where (¢, p) = ¢ (p).

Example 2.2. Consider a vector field X = 82 or (1,0) on R? with standard coordi-

x
nate system (x,y). Then the integral curve of X is
v : R — R? such that v/(t) = X(y(t))\Vt € T
which starts at v(0).
We have ~(t) = (z(t),y(t)). The condition 7' (t) = X (y(t)) reduces to
0 0 0
1) 2 1) 2 _ Y
P gy ho g ho=5; ho

which implies

ie.,
x(t) =t + a, y(t) = b for some constants a and b.

Therefore, the integral curve of X is given by
V() = (t+a,b)
whose starting point is v(0) = (a, b).
The flow of X is the map v : R x R? — R? such that (¢, p) = ¢:(p), where
p = (z,y) € R? satisfies
Yi(x,y) = w(m’y)(t) = integral curve of X starting at (z,y),

i.e.,
Yi(z,y) = (t+2,9).

Definition 2.3. For a Riemannian space (M, g), a vector field X is said to be Killing
if flow of X acts by isometries of g, i.e., g is invariant under the flow of X.

Equivalently, we say that X is Killing if and only if Lxg = 0, where Lx denotes
the Lie derivative with respect to X. With the help of properties of Lie derivative,
one can easily prove that in smooth local coordinate chart, a smooth vector field X
is Killing if and only if

0gi; oxXk oxk
XF 2L 4 g+ gik—a— =0
oxk + ik ozt + 9ik oxI
or
oxk oxk
(2.2) Xgij + gjk% + gikﬁ =0

If V is the Riemannian connection on M, then the condition (Lxg)(Y,Z) = 0 is
equivalent to g(Vy X, Z) + g(Y,VzX) = 0 for any smooth vector fields Y and Z on
M.
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Example 2.4. Let g be the Euclidean metric on R™. The necessary and sufficient
condition (2.2) for a vector field X to be Killing, in standard coordinates, on (R™, g)
becomes

oxi X'

(2.3) o T 5y = 0.

0 0 0 0
One can easily check that the vector fields Yom —xa—y and ny% — ny% are Killing

on the Euclidean space (R?, g).

Definition 2.5. A Killing vector field X on a Riemannian space (M, g) has constant
length if every integral curve of X is a geodesic on (M, g).

Definition 2.6. An n-dimensional real vector space V is said to be a Minkowski
space if there exists a real valued function F' : V' — [0, 00), called Minkowski norm,
satisfying the following conditions:

e F'is smooth on V\{0},
e [ is positively homogeneous, i.e., F(Av) = AF(v) V A >0,

e For any basis {uy, ug, ..., u,} of V and y = y'u; € V, the Hessian matrix
1
(9,,) = (F;y]> is positive-definite at every point of V\{0}.

Definition 2.7. Let M be a connected smooth manifold. If there exists a function
F : TM — [0,00) such that F' is smooth on the slit tangent bundle TM\{0} and
the restriction of F' to any T, M, x € M, is a Minkowski norm, then M is called a
Finsler space and F' is called a Finsler metric.

In 1972, M. Matsumoto [16] introduced the concept of («, 3)-metrics. An (a, 3)-
metric on a connected smooth manifold M is a Finsler metric F' constructed from a
Riemannian metric a = /a;;(z)y’y? and a one-form 3 = b;(z)y’ on M and is of the

form F = a¢ (ﬂ> , where ¢ is a smooth function on M.
@

Basically, («, §)-metrics are the generalizations of Randers metric introduced by G.
Randers [20]. The simplest non-Riemannian metrics are the Randers metrics given
by F = a+ f with ||8|la < 1. Besides Randers metrics, other interesting kind of
non-Riemannian metrics are Matsumoto metric, infinite series metric, square metric
etc.

Matsumoto metric (slope of mountain metric) was introduced by M. Matsumoto [17]
2

. There is one more interesting (o, 3)-metric, called r** series

and is of the form

(«, B)-metric [15] defined as follows:

(2.4) Flo.)= 8y (“)i; ol < 18]

r = 1 gives us well known Randers metric F(a, 8) = a + S.
2

r = oo gives us the metric F(«, 8) = ﬂL which is called infinite series metric. Being
-«
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the difference of Randers metric and Matsumoto metric, this metric is remarkable.
Many authors [11, 12, 21, 22, 23, 24, 27] have worked on (a, §)-metrics. Let us recall
Shen’s lemma [6] which provides necessary and sufficient condition for a function of
a and B to be a Finsler metric.

Lemma 2.1. Let F = a¢(s), s = B/«a, where ¢ is a smooth function on an open
interval (—bg, bo), « is a Riemannian metric and 8 is a 1-form with ||5]|o < bo. Then
F is a Finsler metric if and only if the following conditions are satisfied:

d(s) >0, ¢(s)—s¢'(s)+ (b —s*)¢"(s) >0 V |s| <b< by.

Let (M, F) be a Finsler space and x be any point in M. Let o, (t) be a unit speed
curve passing through z at ¢ = 0 having initial velocity y. Let F(z,y) = 1, i.e.,
y € Sp M (indicatrix at ). The cut value i, of y is defined as follows:

iy = sup {r: the segment o, ||, is globally minimized}.
Definition 2.8. The injectivity radius of M at x is defined as follows:

i, = inf 14
T yes,m Y

and the injectivity radius iy or i(M) of M is defined as follows:
iy = min{iy :x € M}.

Definition 2.9. Let (M, F') be a Finsler space. An isometry ¢ is a diffeomorphism
on M satisfying:

F(z,y) = F ($(x),dé,(y) Vo eMand yeT,M.

Definition 2.10. Let (M, F) be a Finsler space and d the distance function on M
which is not symmetric in general as F' is not absolute homogeneous in general. A
Clifford-Wolf translation (CW-translation) on M is an isometry p on M such that
d(x, p(x)) is constant for all x € M.

Definition 2.11. A Finsler space (M, F') is called Clifford-Wolf homogeneous (CW-
homogeneous) if for any a,b € M, there exists a CW-translation p such that p(a) = b.

Before defining homogeneous Finsler spaces, below we discuss some basic concepts
required.

Definition 2.12. Let G be a smooth manifold having the structure of an abstract
group. G is called a Lie group, if the maps i : G — G and p: G X G — G defined
as i(g) = g1, and u(g, h) = gh respectively, are smooth.

Let G be a Lie group and M, a smooth manifold. Then a smooth map f :
G x M — M satisfying

f(927f(gl>x)) = f(glghm)? for all g1,92 € G7 and zeM

is called a smooth action of G on M.
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Definition 2.13. Let M be a smooth manifold and G, a Lie group. If G acts smoothly
on M, then G is called a Lie transformation group of M.

The following theorem gives us a differentiable structure on the coset space of a
Lie group.

Theorem 2.2. Let G be a Lie group and H, its closed subgroup. Then there exists a
unique differentiable structure on the left coset space G/H with the induced topology
that turns G/H into a smooth manifold such that G is a Lie transformation group of

G/H.

Definition 2.14. Let (M, F) be a connected Finsler space and G = I(M, F') the
group of isometries of (M, F). If G acts transitively on M, then (M, F) is said to be
a homogeneous Finsler space.

Let G be a Lie group acting transitively on a smooth manifold M. Then for
a € M, the isotropy subgroup G, of G is a closed subgroup and by Theorem 2.2, G
is a Lie transformation group of G/G,. Further, G/G, is diffeomorphic to M.

Theorem 2.3. [7] Let (M, F) be a Finsler space. Then G = I(M, F), the group of
isometries of M is a Lie transformation group of M. Let a € M and I,(M, F) be the
isotropy subgroup of I(M, F) at a. Then I,(M,F) is compact.

Let (M, F) be a homogeneous Finsler space, i.e., G = I(M, F) acts transitively
on M. Fora € M, let H=I1,(M,F) be a closed isotropy subgroup of G which is
compact. Then H is a Lie group itself being a closed subgroup of G. Write M as the
quotient space G/H.

Definition 2.15. [18] Let g and h be the Lie algebras of the Lie groups G and H
respectively. Then the direct sum decomposition of g as g = § + €, where ¢ is a
subspace of g such that Ad(h)(¥) C € V h € H, is called a reductive decomposition of
g, and if such decomposition exists, then (G/H, F') is called reductive homogeneous
space.

Therefore, we can write, any homogeneous Finsler space as a coset space of a
connected Lie group with an invariant Finsler metric. Here, the Finsler metric F' is
viewed as G invariant Finsler metric on M.

In case of reductive homogeneous manifold, we can identify the tangent space Tx (G/H)
of G/H at the origin eH = H with ¢ through the map

d
Y +— %exp(tX)Hh:O, Y e¢,

since M is identified with G/H and Lie algebra of any Lie group G is viewed as T,G.

3 Killing vector fields on Finsler spaces

Let (M, F) be a Fisnler space and X be a vector field on M. Further, let {1} be
one-parameter group generated by X, i.e., ¢, is flow of X on M, then 9 is also flow
on TMy = TM\{0} defined by

ﬁt(ﬂj,y) = (¢t($))a¢t*(y)7 for z € M7 Y€ .M
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which we call lift of ;. So, there is a vector field X (called complete lift of X) on
TM induced by v, which is defined, in local coordinates, as follows:

o L0X' 0

Foxid 60X 0
ozt 7 Duk oyt

or X'0; + yk(akXi)éi.

Definition 3.1. A vector field X on a Finsler space (M, F) is called an infinitesimal
isometry or Killing vector field if the flow 1), generated by X is an isometry, i.e., the
flow ¢y fixes F, i.e., ¥4 (F) = F.

Equivalently, X is said to be Killing if L¢F = 0, where Ly denotes the Lie
derivative with respect to X.

Theorem 3.1. Let X be a Killing vector field on a Finsler space M with infinite

2
series metric F' = 56 . Then X is a Killing vector field on M with Matsumoto
—«
2
metric F = 3 if and only iof X is a Killing vector field for a and Lx 8 = 0.
o —
Proof. Since X is a Killing vector field on a Finsler space M with infinite series metric
2
F = " the flow 1y fixes F, i.e.,
b —a
(3.1) U F =F.
Also,
_ ,82 ,82 _ a2 042
F= = = - F.
f-a B-a B-a TP
2
Firstly suppose X is a Killing vector field on M with Matsumoto metric F' = a 5
o —
ie.,
(3.2) W F =F.

From equation (3.1), we have

o+ —F)=a+pB—-F

which implies ~ ~ ~
Yra+ P — P F=a+ 3 —F.

Using equation (3.2) in above relation, we get

(3.3) e+ B = o+ B.
Replacing the pair (z,y) by (x, —y) in equation (3.3), we have
(3.4) Pra— B = o — B.

Addition of equations (3.3) and (3.4) gives us

¢t04 =,
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and subtraction of equation (3.4) from the equation (3.3) gives us
pB=8 = LxB=0.

For the converse part, let us suppose that Lx/3 = 0, and X be Killing vector field
for a, i.e., ¥Y;a = a. Then

'(/;tF 21/315(04 +B8-F)
:@/;ta + dtﬁ - &tF
=a+B—-F
=F

)

which shows that X is a Killing vector field on M with Matsumoto metric F' =
@
|

In similar manner, we can prove following:

Theorem 3.2. Let X be a Killing vector field on a Finsler space M with Matsumoto
metric F' = ’
82
b —«
Thus for above discussed two Finsler spaces with («, 3)-metrics, taking a Killing

vector field X on one of these spaces, we have found necessary and sufficient conditions
for X to be Killing on the other space.

5 Then X is a Killing vector field on M with infinite series metric
o —

F= if and only if X is a Killing vector field for a and Lx = 0.

4 Killing vector fields on homogeneous Finsler spaces

As we have already discussed that a Finsler space M with either of the afore said
metrics is homogeneous if the group G of isometries of M acts transitively on M, the
space M can be identified with G/H, where H is compact isotropy subgroup of G at
some point z. The metrics under consideration can be determined from the data at
tangent space at x which is isomorphic to g/b = €. Recall that [8] o can be determined
by an inner product and V, the dual of § is a vector of £ both are invariant under
Ad-action of H. The decomposition of any X € g is given as X = Xy + X¢, and
consequently both the metrics are given by

((Ady X)e, (Adg X)e)
((AdgX)e, (AdgX)e)'/? = ((AdgX)e, V)’
(AdyX)e, V)2
(AdgX)e, V) = ((Adg X)e, (Adg X)e) /2

Matsumoto metric F' =

infinite series metric F' =

Theorem 4.1. Let X be a Killing vector field of constant length on a connected
2

homogeneous Finsler space G/H with infinite series metric F = as well as on

—
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a2

a—fB"

([Y, Ady X]e, (Ady X))
((AdgX)e, (Adg X )e) /2

Matsumoto metric F' =

Then X satisfies

(4.1)

+([Y,AdyX]e,V) =0, forY €g and g€ G.
Proof. We have
F=a+p-F,

ie.,

F = ((AdyX)e, (AdyX)e)? + ((Ady X )¢, V) — F.

For a family g; = exp(tY).g, Y € g, differentiating for ¢ at 0 gives us

d ([Y, Ady X e, (Ady X )e) d -
—F = kL g Y, Ad, X —F
dt |t:0 <(Ang)B7 (Ang)g>1/2 + <[ s g ]?7 V> + dt |t:07
which gives us required result. (I

Theorem 4.2. Let X be a Killing vector field of constant length on a connected

2
homogeneous Finsler space G/H with infinite series metric F' = p . If H is con-
-«
nected, then (4.1) is the sufficient condition for the Killing vector field X to be of
2
constant length on G/H with respect to Matsumoto metric F' = a 5
a —

Theorem 4.3. Let X be a Killing vector field of constant length on a connected ho-
2

mogeneous Finsler space G/H with Matsumoto metric F = @ If H is connected,
a —

then (4.1) is the sufficient condition for the Killing vector field X to be of constant
ﬁ2

length on G/H with respect to infinite series metric F = .
-«

Recall [8] the following theorem:

Theorem 4.4. Let (M, F) be a complete Finsler space with positive injectivity radius.
Let X be a Killing vector field of constant length on M, and vy be the flow generated
by X, then ¢y is a CW translation for all sufficiently small t > 0.

From Theorem 4.4, we have the following theorem:

Theorem 4.5. Let G/H be a complete homogeneous Finsler space with infinite series
metric or Matsumoto metric having positive injectivity radius. Let X be a Killing
vector field of constant length on G/H. If 14 is the flow generated by X, then iy is a
CW translation for all sufficiently small t > 0.
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