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Abstract. In the present paper, we consider homogeneous Finsler spaces
with two (α, β)-metrics. Taking a Killing vector field X on one of these
spaces, we find necessary and sufficient conditions for X to be Killing on
the other space. Further, by taking a Killing vector field X of constant
length on one of these spaces, we find the condition under which the Killing
vector filed X has constant length w.r.t. other space also. Taking Killing
vector fields of constant length, we find CW translations on these spaces.
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1 Introduction

According to S. S. Chern [5], Finsler geometry is just Riemannian geometry without
quadratic restriction. Finsler geometry is an interesting and active area of research
for both pure and applied reasons [2, 1, 10, 13]. One of the current topics of research
in Riemann-Finsler geometry is Clifford-Wolf translation which was first introduced
by J. A. Wolf [25] for Riemannian manifolds in 1964. If d is the distance function
on a Riemannian manifold M, then (M,d) becomes a metric space. An isometry ρ
of M is called a Clifford-Wolf translation, or in short, CW-translation if the distance
between a point x ∈ M and its image, i.e., d(x, ρ(x)) is same for all x ∈ M. A Rie-
mannian manifold M is called Clifford-Wolf homogeneous, or CW-homogeneous if for
any two points x, y of M , there is a CW-translation taking x to y. Wolf proved that
only bounded isometries of a Riemannian manifold are CW-translations. V. Ozols
[19] worked on CW-translations in Riemannian symmetric spaces in 1974. Almost
after three decades, in 2009, V. N. Berestovskii and Y. G. Nikonorov [4] worked on
CW-translations on homogeneous Riemannian manifolds and they found necessary
and sufficient condition for a simply connected (connected) Riemannian manifolds to
be CW-homogeneous.
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The concept of CW-translations in Finsler spaces is similar to as in Riemannian
spaces. Let (M,F ) be a Finsler space, where F is positively homogeneous function
of degree 1 but not absolute homogeneous in general. If d is the distance function
defined on M which is not symmetric in general, then a CW-translation on M is an
isometry ρ on M that moves each point of M , the same distance, i.e., d(x, ρ(x)) is
constant. If for every two points a, b ∈M, there exists a CW-translation ρ such that
ρ(a) = b, then the Finsler space (M,F ) is called CW-homogeneous. Recently, S. Deng
and M. Xu ([8, 26, 9]) have worked on CW-translations in homogeneous Finsler spaces
and have found necessary and sufficient condition for an isometry on a homogeneous
Randers space to be a CW-translation.

CW-translations are closely related to Killing vector fields of constant length. If
the manifold (Riemannian or Finsler) is compact, then CW-translation is generated
by a Killing vector field of constant length.

The paper is organized as follows:
In Section 2, we discuss some basic definitions and results to be used in subsequent
sections. In Section 3, we consider Finsler spaces with two well known (α, β)-metrics:
Matsumoto metric and infinite series metric. Taking a Killing vector field X on one
of these spaces, we find necessary and sufficient conditions for X to be Killing on the
other space. Further, in Section 4, by taking a Killing vector field X of constant length
on one of these spaces, we find the condition under which the Killing vector filed X
has constant length w.r.t. other space also. Finally, we characterize CW-translations
on these spaces with the help of Killing vector fields of constant length.

2 Preliminaries

First, we discuss some basic definitions and results required to study afore said spaces.
We refer [3, 6, 7, 14] for notations and further details.

Definition 2.1. Let X be a vector field on a smooth manifold M and I be any open
interval containing 0. The differentiable curve γ : I −→ M on M is said to be an
integral curve if and only if

(2.1) γ′(t) = Xγ(t) or X(γ(t)) ∀ t ∈ I,

i.e., an integral curve is the solution curve of ODE (2.1). The point γ(0) = p is called
the starting point of the curve.

Suppose for each p ∈ M, and X ∈ χ(M), X has a unique integral curve ψ(p)

starting at p and is defined all over R,
i.e., ψ(p) : R −→M such that

(ψ(p))′(t) = X(ψ(p)(t)) ∀ t ∈ R, and ψ(p)(0) = p.

For each t ∈ R, define ψt : M −→M as

ψt(p) = ψ(p)(t),
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i.e., t 7−→ ψt(p) is an integral curve starting at p.
For the additive group R, the continuous R-action ψ : R×M −→M on M satisfying

ψ(t1, ψ(t2, p)) = ψ(t1 + t2, p), ψ(0, p) = p

is called global flow (one-parameter group action) of X, where ψ(t, p) = ψt(p).

Example 2.2. Consider a vector field X =
∂

∂x
or (1, 0) on R2 with standard coordi-

nate system (x, y). Then the integral curve of X is

γ : R −→ R2 such that γ′(t) = X(γ(t))∀ t ∈ I

which starts at γ(0).
We have γ(t) = (x(t), y(t)). The condition γ′(t) = X(γ(t)) reduces to

x′(t)
∂

∂x
|γ(t) +y′(t)

∂

∂y
|γ(t)=

∂

∂x
|γ(t)

which implies
x′(t) = 1, y′(t) = 0,

i.e.,
x(t) = t+ a, y(t) = b for some constants a and b.

Therefore, the integral curve of X is given by

γ(t) = (t+ a, b)

whose starting point is γ(0) = (a, b).

The flow of X is the map ψ : R × R2 −→ R2 such that ψ(t, p) = ψt(p), where
p = (x, y) ∈ R2 satisfies

ψt(x, y) = ψ(x,y)(t) = integral curve of X starting at (x, y),

i.e.,
ψt(x, y) = (t+ x, y).

Definition 2.3. For a Riemannian space (M, g), a vector field X is said to be Killing
if flow of X acts by isometries of g, i.e., g is invariant under the flow of X.

Equivalently, we say that X is Killing if and only if LXg = 0, where LX denotes
the Lie derivative with respect to X. With the help of properties of Lie derivative,
one can easily prove that in smooth local coordinate chart, a smooth vector field X
is Killing if and only if

Xk ∂gij
∂xk

+ gjk
∂Xk

∂xi
+ gik

∂Xk

∂xj
= 0

or

(2.2) Xgij + gjk
∂Xk

∂xi
+ gik

∂Xk

∂xj
= 0.

If ∇ is the Riemannian connection on M, then the condition (LXg)(Y, Z) = 0 is
equivalent to g(∇YX,Z) + g(Y,∇ZX) = 0 for any smooth vector fields Y and Z on
M.
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Example 2.4. Let g be the Euclidean metric on Rn. The necessary and sufficient
condition (2.2) for a vector field X to be Killing, in standard coordinates, on (Rn, g)
becomes

(2.3)
∂Xj

∂xi
+
∂Xi

∂xj
= 0.

One can easily check that the vector fields y
∂

∂x
−x ∂

∂y
and y2x

∂

∂x
−x2y ∂

∂x
are Killing

on the Euclidean space (R2, g).

Definition 2.5. A Killing vector field X on a Riemannian space (M, g) has constant
length if every integral curve of X is a geodesic on (M, g).

Definition 2.6. An n-dimensional real vector space V is said to be a Minkowski
space if there exists a real valued function F : V −→ [0,∞), called Minkowski norm,
satisfying the following conditions:

� F is smooth on V \{0},

� F is positively homogeneous, i.e., F (λv) = λF (v) ∀ λ > 0,

� For any basis {u1, u2, ..., un} of V and y = yiui ∈ V , the Hessian matrix(
g
ij

)
=

(
1

2
F 2
yiyj

)
is positive-definite at every point of V \{0}.

Definition 2.7. Let M be a connected smooth manifold. If there exists a function
F : TM −→ [0,∞) such that F is smooth on the slit tangent bundle TM\{0} and
the restriction of F to any TxM, x ∈ M , is a Minkowski norm, then M is called a
Finsler space and F is called a Finsler metric.

In 1972, M. Matsumoto [16] introduced the concept of (α, β)-metrics. An (α, β)-
metric on a connected smooth manifold M is a Finsler metric F constructed from a
Riemannian metric α =

√
aij(x)yiyj and a one-form β = bi(x)yi on M and is of the

form F = αφ

(
β

α

)
, where φ is a smooth function on M .

Basically, (α, β)-metrics are the generalizations of Randers metric introduced by G.
Randers [20]. The simplest non-Riemannian metrics are the Randers metrics given
by F = α + β with ‖β‖α < 1. Besides Randers metrics, other interesting kind of
non-Riemannian metrics are Matsumoto metric, infinite series metric, square metric
etc.
Matsumoto metric (slope of mountain metric) was introduced by M. Matsumoto [17]

and is of the form
α2

α− β
. There is one more interesting (α, β)-metric, called rth series

(α, β)-metric [15] defined as follows:

(2.4) F (α, β) = β

r∑
i=0

(
α

β

)i
; |α| < |β|.

r = 1 gives us well known Randers metric F (α, β) = α+ β.

r =∞ gives us the metric F (α, β) =
β2

β − α
which is called infinite series metric. Being
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the difference of Randers metric and Matsumoto metric, this metric is remarkable.
Many authors [11, 12, 21, 22, 23, 24, 27] have worked on (α, β)-metrics. Let us recall
Shen’s lemma [6] which provides necessary and sufficient condition for a function of
α and β to be a Finsler metric.

Lemma 2.1. Let F = αφ(s), s = β/α, where φ is a smooth function on an open
interval (−b0, b0), α is a Riemannian metric and β is a 1-form with ‖β‖α < b0. Then
F is a Finsler metric if and only if the following conditions are satisfied:

φ(s) > 0, φ(s)− sφ′(s) +
(
b2 − s2

)
φ′′(s) > 0 ∀ |s| ≤ b < b0.

Let (M,F ) be a Finsler space and x be any point in M. Let σy(t) be a unit speed
curve passing through x at t = 0 having initial velocity y. Let F (x, y) = 1, i.e.,
y ∈ SxM (indicatrix at x). The cut value iy of y is defined as follows:

iy = sup {r : the segment σy |[0,r] is globally minimized}.

Definition 2.8. The injectivity radius of M at x is defined as follows:

ix = inf
y∈SxM

iy,

and the injectivity radius iM or i(M) of M is defined as follows:

iM = min{ix : x ∈M}.

Definition 2.9. Let (M,F ) be a Finsler space. An isometry φ is a diffeomorphism
on M satisfying:

F (x, y) = F (φ(x), dφx(y)) ∀ x ∈M and y ∈ TxM.

Definition 2.10. Let (M,F ) be a Finsler space and d the distance function on M
which is not symmetric in general as F is not absolute homogeneous in general. A
Clifford-Wolf translation (CW-translation) on M is an isometry ρ on M such that
d(x, ρ(x)) is constant for all x ∈M.

Definition 2.11. A Finsler space (M,F ) is called Clifford-Wolf homogeneous (CW-
homogeneous) if for any a, b ∈M, there exists a CW-translation ρ such that ρ(a) = b.

Before defining homogeneous Finsler spaces, below we discuss some basic concepts
required.

Definition 2.12. Let G be a smooth manifold having the structure of an abstract
group. G is called a Lie group, if the maps i : G −→ G and µ : G×G −→ G defined
as i(g) = g−1, and µ(g, h) = gh respectively, are smooth.

Let G be a Lie group and M , a smooth manifold. Then a smooth map f :
G×M −→M satisfying

f(g2, f(g1, x)) = f(g2g1, x), for all g1, g2 ∈ G, and x ∈M

is called a smooth action of G on M.
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Definition 2.13. LetM be a smooth manifold andG, a Lie group. IfG acts smoothly
on M , then G is called a Lie transformation group of M .

The following theorem gives us a differentiable structure on the coset space of a
Lie group.

Theorem 2.2. Let G be a Lie group and H, its closed subgroup. Then there exists a
unique differentiable structure on the left coset space G/H with the induced topology
that turns G/H into a smooth manifold such that G is a Lie transformation group of
G/H.

Definition 2.14. Let (M,F ) be a connected Finsler space and G = I(M,F ) the
group of isometries of (M,F ). If G acts transitively on M, then (M,F ) is said to be
a homogeneous Finsler space.

Let G be a Lie group acting transitively on a smooth manifold M . Then for
a ∈ M , the isotropy subgroup Ga of G is a closed subgroup and by Theorem 2.2, G
is a Lie transformation group of G/Ga. Further, G/Ga is diffeomorphic to M .

Theorem 2.3. [7] Let (M,F ) be a Finsler space. Then G = I(M,F ), the group of
isometries of M is a Lie transformation group of M . Let a ∈M and Ia(M,F ) be the
isotropy subgroup of I(M,F ) at a. Then Ia(M,F ) is compact.

Let (M,F ) be a homogeneous Finsler space, i.e., G = I(M,F ) acts transitively
on M . For a ∈ M , let H = Ia(M,F ) be a closed isotropy subgroup of G which is
compact. Then H is a Lie group itself being a closed subgroup of G. Write M as the
quotient space G/H.

Definition 2.15. [18] Let g and h be the Lie algebras of the Lie groups G and H
respectively. Then the direct sum decomposition of g as g = h + k, where k is a
subspace of g such that Ad(h)(k) ⊂ k ∀ h ∈ H, is called a reductive decomposition of
g, and if such decomposition exists, then (G/H,F ) is called reductive homogeneous
space.

Therefore, we can write, any homogeneous Finsler space as a coset space of a
connected Lie group with an invariant Finsler metric. Here, the Finsler metric F is
viewed as G invariant Finsler metric on M .
In case of reductive homogeneous manifold, we can identify the tangent space TH(G/H)
of G/H at the origin eH = H with k through the map

Y 7−→ d

dt
exp(tX)H|t=0, Y ∈ k,

since M is identified with G/H and Lie algebra of any Lie group G is viewed as TeG.

3 Killing vector fields on Finsler spaces

Let (M,F ) be a Fisnler space and X be a vector field on M. Further, let {ψt} be
one-parameter group generated by X, i.e., ψt is flow of X on M, then ψ̃t is also flow
on TM0 = TM\{0} defined by

ψ̃t(x, y) = (ψt(x)), ψt∗(y), for x ∈M, y ∈ TxM
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which we call lift of ψt. So, there is a vector field X̃ (called complete lift of X) on
TM induced by ψ̃t, which is defined, in local coordinates, as follows:

X̃ = Xi ∂

∂xi
+ yk

∂Xi

∂xk
∂

∂yi
or Xi∂i + yk(∂kX

i)∂̇i.

Definition 3.1. A vector field X on a Finsler space (M,F ) is called an infinitesimal
isometry or Killing vector field if the flow ψt generated by X is an isometry, i.e., the
flow ψ̃t fixes F, i.e., ψ̃t(F ) = F.

Equivalently, X is said to be Killing if LX̃F = 0, where LX̃ denotes the Lie

derivative with respect to X̃.

Theorem 3.1. Let X be a Killing vector field on a Finsler space M with infinite

series metric F̃ =
β2

β − α
. Then X is a Killing vector field on M with Matsumoto

metric F =
α2

α− β
if and only if X is a Killing vector field for α and LXβ = 0.

Proof. Since X is a Killing vector field on a Finsler space M with infinite series metric

F̄ =
β2

β − α
, the flow ψ̃t fixes F̄ , i.e.,

(3.1) ψ̃tF̄ = F̄ .

Also,

F̄ =
β2

β − α
=
β2 − α2

β − α
+

α2

β − α
= α+ β − F.

Firstly suppose X is a Killing vector field on M with Matsumoto metric F =
α2

α− β
,

i.e.,

(3.2) ψ̃tF = F.

From equation (3.1), we have

ψ̃t(α+ β − F ) = α+ β − F

which implies
ψ̃tα+ ψ̃tβ − ψ̃tF = α+ β − F.

Using equation (3.2) in above relation, we get

(3.3) ψ̃tα+ ψ̃tβ = α+ β.

Replacing the pair (x, y) by (x,−y) in equation (3.3), we have

(3.4) ψ̃tα− ψ̃tβ = α− β.

Addition of equations (3.3) and (3.4) gives us

ψ̃tα = α,
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and subtraction of equation (3.4) from the equation (3.3) gives us

ψ̃tβ = β =⇒ LXβ = 0.

For the converse part, let us suppose that LXβ = 0, and X be Killing vector field
for α, i.e., ψ̃tα = α. Then

ψ̃tF =ψ̃t(α+ β − F̄ )

=ψ̃tα+ ψ̃tβ − ψ̃tF̄
=α+ β − F̄
=F,

which shows that X is a Killing vector field on M with Matsumoto metric F =
α2

α− β
.

�

In similar manner, we can prove following:

Theorem 3.2. Let X be a Killing vector field on a Finsler space M with Matsumoto

metric F =
α2

α− β
. Then X is a Killing vector field on M with infinite series metric

F̃ =
β2

β − α
if and only if X is a Killing vector field for α and LXβ = 0.

Thus for above discussed two Finsler spaces with (α, β)-metrics, taking a Killing
vector field X on one of these spaces, we have found necessary and sufficient conditions
for X to be Killing on the other space.

4 Killing vector fields on homogeneous Finsler spaces

As we have already discussed that a Finsler space M with either of the afore said
metrics is homogeneous if the group G of isometries of M acts transitively on M, the
space M can be identified with G/H, where H is compact isotropy subgroup of G at
some point x. The metrics under consideration can be determined from the data at
tangent space at x which is isomorphic to g/h = k. Recall that [8] α can be determined
by an inner product and V, the dual of β is a vector of k, both are invariant under
Ad-action of H. The decomposition of any X ∈ g is given as X = Xh + Xk, and
consequently both the metrics are given by

Matsumoto metric F =
〈(AdgX)k, (AdgX)k〉

〈(AdgX)k, (AdgX)k〉1/2 − 〈(AdgX)k, V 〉
,

infinite series metric F̄ =
〈(AdgX)k, V 〉2

〈(AdgX)k, V 〉 − 〈(AdgX)k, (AdgX)k〉1/2
.

Theorem 4.1. Let X be a Killing vector field of constant length on a connected

homogeneous Finsler space G/H with infinite series metric F̄ =
β2

β − α
as well as on
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Matsumoto metric F =
α2

α− β
. Then X satisfies

(4.1)
〈[Y,AdgX]k, (AdgX)k〉
〈(AdgX)k, (AdgX)k〉1/2

+ 〈[Y,AdgX]k, V 〉 = 0, for Y ∈ g and g ∈ G.

Proof. We have

F = α+ β − F̄ ,

i.e.,

F = 〈(AdgX)k, (AdgX)k〉1/2 + 〈(AdgX)k, V 〉 − F̄ .

For a family gt = exp(tY ).g, Y ∈ g, differentiating for t at 0 gives us

d

dt
F |

t=0
=
〈[Y,AdgX]k, (AdgX)k〉
〈(AdgX)k, (AdgX)k〉1/2

+ 〈[Y,AdgX]k, V 〉+
d

dt
F̄ |

t=0
,

which gives us required result. �

Theorem 4.2. Let X be a Killing vector field of constant length on a connected

homogeneous Finsler space G/H with infinite series metric F̄ =
β2

β − α
. If H is con-

nected, then (4.1) is the sufficient condition for the Killing vector field X to be of

constant length on G/H with respect to Matsumoto metric F =
α2

α− β
.

Theorem 4.3. Let X be a Killing vector field of constant length on a connected ho-

mogeneous Finsler space G/H with Matsumoto metric F =
α2

α− β
. If H is connected,

then (4.1) is the sufficient condition for the Killing vector field X to be of constant

length on G/H with respect to infinite series metric F̄ =
β2

β − α
.

Recall [8] the following theorem:

Theorem 4.4. Let (M,F ) be a complete Finsler space with positive injectivity radius.
Let X be a Killing vector field of constant length on M, and ψt be the flow generated
by X, then ψt is a CW translation for all sufficiently small t > 0.

From Theorem 4.4, we have the following theorem:

Theorem 4.5. Let G/H be a complete homogeneous Finsler space with infinite series
metric or Matsumoto metric having positive injectivity radius. Let X be a Killing
vector field of constant length on G/H. If ψt is the flow generated by X, then ψt is a
CW translation for all sufficiently small t > 0.
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