The Einstein-Hilbert type action on
almost multi-product manifolds

V. Rovenski

Abstract. A Riemannian manifold endowed with & > 2 complemen-
tary orthogonal distributions (called a Riemannian almost multi-product
structure) appears in such topics as multiply twisted or warped products,
the webs or nets composed of several foliations, Ricci curvature and Ein-
stein equations, multi-time geometric dynamics and Dupin hypersurfaces.
In the paper we consider the mixed scalar curvature of such structure,
derive Euler-Lagrange equations for the Einstein-Hilbert type action with
respect to adapted variations of metric, and present them in a nice form
of Einstein equation.
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1 Introduction

Many examples of Riemannian metrics come (as critical points) from variational prob-
lems, a particularly famous of which is the Finstein-Hilbert action, e.g., [5]. The
Euler-Lagrange equation for this action (called the Einstein equation) is

(1.1) Ric— (1/2)S-g+ Ag=a-=

where ¢ is a pseudo-Riemannian metric on a smooth manifold M, Ric — the Ricci
curvature, S — the scalar curvature, A — a constant (the “cosmological constant”), £
— Lagrangian describing the matter contents, a — the coupling constant involving the
gravitational constant and the speed of light and = — the energy-momentum tensor.
The solution of (1.1) is a metric, satisfying this equation, where the tensor E is given.
The classification of solutions of (1.1) is a deep and largely unsolved problem [5].
Distributions on a manifold (i.e., subbundles of the tangent bundle) appear in var-
ious situations, e.g., [4, 8] and are used to build up notions of integrability, and specif-
ically of a foliated manifold. On a manifold equipped with an additional structure,
e.g., almost product or contact, one can consider an analogue of the Einstein-Hilbert
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action adjusted to that structure. This approach was taken in [2, 3, 11, 14, 15], for
M endowed with a distribution D or a foliation.

In this article, continuing our study [2, 3, 11, 14, 14], a similar change in the
classical action is considered on an almost multi-product structure (M, g; Dy, ..., Dk),
see [13], i.e., a connected smooth n-dimensional manifold endowed with & > 2 pairwise
orthogonal n;-dimensional distributions with Y n; = n. The notion of a multiply
warped product, e.g., [6], is a special case of this structure, which can be also viewed
in the theory of webs and nets composed of different foliations, see [1], in studies of the
curvature and Einstein equations, see [7], multi-time geometric dynamics and Dupin
hypersurfaces. The mized Finstein-Hilbert action on (M, D, ..., Dy), defined by

1
(1.2) JD.gH/M{%(sD“__,Dk 72A)+£}dvolg,

is an analog of the Einstein-Hilbert action, where S is replaced by the mixed scalar cur-
vature Sp, .. p,, see (2.1). To deal also with non-compact manifolds (“spacetimes”),
it is assumed that the integral above is taken over M if it converges; otherwise, one
integrates over arbitrarily large, relatively compact domain 2 C M, which also con-
tains supports of variations of g. The geometrical part of (1.2) is the total mized
scalar curvature of (M, g;D1,...,Dy)

(13) J% g — / SDl,..‘,’Dk dVOlg.
M

The mixed scalar curvature is the simplest curvature invariant of a pseudo-Riemannian
almost product structure, which can be defined as an averaged sum of sectional curva-
tures of planes that non-trivially intersect with both of the distributions. Investigation
of Sp D& led to multiple results regarding the existence of foliations and submersions
with interesting geometry, e.g., integral formulas and splitting results, curvature pre-
scribing and variational problems, see [12, 16, 18]. Varying (1.2) as a functional of
adapted metric g, we obtain the FEuler-Lagrange equations in the beautiful form of
Einstein equation (1.1), i.e.,

(1.4) Ricp — (1/2)Sp-g+ Ag=a-E,

where the Ricci tensor and the scalar curvature are replaced by the Ricci type tensor
Ricp, see (3.16), and its trace Sp, and E is given by =, = —29L/0¢"" + g, L.
Using the equality
S=2 SDl,...,Dk + Zi S(Dl),

where S(D;) is the scalar curvature of the distribution D;, one can combine the
Einstein-Hilbert action on (M, D,..., D) (e.g., [9] for multiply warped products)
with our action (1.2). The result is the perturbed Einstein-Hilbert action, whose
critical points describe the “space-times” in an extended theory of gravity. The geo-
metrical part of this action is Jp e : g — fM(S +¢eSp,,. p,)dvoly, € €R.

Our action (1.2) can also be useful in studying the interaction of several m-flows
(m-dimensional distributions) in multi-time geometric dynamics, e.g., [10, 17].

We delegate the following questions for further study:

a) generalize our results for arbitrary variations of metrics;

b) extend our results for metric-affine manifolds (as in Einstein-Cartan theory);

¢) find applications of our results in geometry, dynamics and physics.
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2 The mixed scalar curvature

Here, we recall the properties of the mixed scalar curvature of a Riemannian multi-
product manifold (M, g; Dy,..., D), see [13]. A pseudo-Riemannian metric g = (-, -)
of index ¢ on a smooth manifold M is an element g € Sym?(M) (of the space of
symmetric (0, 2)-tensors) such that each g, (x € M) is a non-degenerate bilinear
form of index ¢ on the tangent space T, M. For ¢ = 0 (i.e., g, is positive definite)
g is a Riemannian metric and for ¢ = 1 it is called a Lorentz metric. A distribution
D on (M,g) is non-degenerate, if g, is non-degenerate on D, C T,M for all z €
M: in this case, the orthogonal complement of D+ is also non-degenerate. Denote
by Riem(M; Dy, ... D) the subspace of adapted pseudo-Riemannian metrics, that is
making {D;} pairwise orthogonal and non-degenerate. Let P; : TM — D; be the
orthoprojector, then PiJ- = idrp —P; is the orthoprojector onto D;-. The second
fundamental form h; : D; x D; — DiL and the skew-symmetric integrability tensor
T; : D; x D; — Dj of D; are defined by

1
hi(X,Y) = 5 PH(VxY + VyX),
1 1
Ty(X,Y) = 5 PH(VxY = VyX) = S PF[X,Y].

Similarly, h;-, Hi* = Tr, hi-, T;- are the second fundamental forms, mean curvature
vector fields and the integrability tensors of distributions D in M. Note that H; =
Zjﬂ P;H;, etc. Recall that a distribution D; is called integrable if T; = 0, and D; is
called totally umbilical, harmonic, or totally geodesic, if h; = (H;/n;)g, H; = 0, or
h; = 0, respectively.

Given g € Riem(M;Dy,...Dy), there is a local orthonormal frame {E4,..., E,}
on M, where {Ey,...,E,,} C D; and {E,, ,4+1,...,En,} C D; for 2 <i <k, and
€a = (Fa, E,) € {—1,1}. All quantities defined below using such frame do not depend
on the choice of this frame.

A plane X AY in TM spanned by two vectors belonging to different distri-
butions D; and D; will be called mized, and the sectional curvature K(X,Y) =
R(X,)Y X, Y))/({X, X){(Y,Y) — (X,Y)?) is said to be mixed. The mixed scalar cur-
vature of (M, g; D1, ..., Dy) is defined as an averaged mixed sectional curvature.

Definition 2.1 (see [13]). Given g € Riem(M;D;,...,Dy) with k > 2, the following
function on M will be called the mized scalar curvature:

(21) SD17~~»7Dk = Z Z K(Eava)a

1<j mi—1<a<n;, nj_1<b<n;

where K(E,, Ey) = €46, (R(Eq, Ep) Eq, Ep) is the mixed sectional curvature of the
plane E,AE}. The following symmetric (0, 2)-tensor r is called the partial Ricci tensor:

1
r(XY) =5 mp(XY), XY €Xy,

where the partial Ricci tensor related to D; is

(2.2) rp (X,Y) =Y ca(Rp, prx B PY), XY €Xuy.

1
n;_1<a <n;
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Proposition 2.1. We have

Sp,,..D, = %ZiSthfDiL =Try 7.
Proof. This follows from definitions (2.1)~(2.2) and the equality Tryrp, = Sp, p1. 0
Recall that the divergence of a (1, s)-tensor field S on (M, g) is a (0, s)-tensor field
div S = trace(Y — VyS).

For s = 0, we get the divergence div X = Tr(VX) of a vector field X, e.g., [5].
The squares of norms of tensors are obtained using

(hisha) =3 et (hi(Bay By), hi(Ea, By)),

(TuTy =" o 20ty (Ti(Ea, ), T (Ba, By)).

The following formula for a Riemannian manifold (M, ¢g) endowed with two comple-
mentary orthogonal distributions D and D+, see [18]:

le(H + HL) = S'D,DJ-
(23) + <h7 h> + <hLa hL) - <Ha H> - <Hl7 HL> - <Ta T> - <TL7Tl>a
has many interesting global corollaries (e.g., decomposition criteria using the sign
of S, [16]). In [13], we generalized (2.3) to (M, g) with k& > 2 distributions and gave
applications to splitting and isometric immersions of manifolds, in particular, multiply
warped products. Set
(24) Q(Dvg) = <HLle> + <H7 H> - <h‘ah> - <h’la hl> + <T7 T> + <TLaTl>7
then (2.3) can be written as

(2.5) Sppi =Q(D,g) +div(H + H*).
The mixed scalar curvature of a pair of distributions (D;, D;-) on (M, g) is
Sp,pr = anmgm, bt 5050 (R, 5y Ea, Eb).
If D; is spanned by a unit vector field N, i.e., (N, N) = ey, then
SDhD# = enRicy, N,
where Ricy n is the Ricci curvature in the N-direction. We have
SDL,,DI_L =Trgrp, = Trgrp..

If dimD; = 1 then rp, = ey Ry, where Ry = R(N, -) N is the Jacobi operator, and
rp. = Ricy y gi, where g (X,Y) := (P X, P1Y) for all X,Y € Xp.
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The D;-deformation tensor of Z € X, is the symmetric part of VZ restricted
to Di,
2Defp, Z(X,Y) =(VxZ,Y)+ (Vv Z,X), X,Y e€D,.

The “musical” isomorphisms # and b will be used for rank one and symmetric rank 2
tensors. For example, if w € A1(M) is a 1-form and X,Y € X/ then w(Y) = (w#Y)
and X°(Y) = (X,Y). For arbitrary (0,2)-tensors B and C we also have

(B,C) = Tr,(B*C*) = (B, C").
The shape operator (4;)z of D; with Z € D, and the operator (TZ)ﬁZ are defined by
(A)2(X),Y) = W(X,Y), Z), (T)3(X),Y) =(T(X,Y), Z), X,Y €D

The Casorati type operators A; : D; — D; and T; : D; — D;, and the (0, 2)-tensor
U,;, see [3, 14], are defined using A; and T; by

= — #

A= pepe Sal(A0R) T=30 . el

Ui(X,Y) = Tr((A)y (Ai)x + (THH(T)), XY € D}
We define a self-adjoint (1, 1)-tensor KC; : D; — D; by the formula with Lie bracket,

— #
K=", o celTDpn (A)e,]
For any (1,2)-tensors Q1, Q2 and a (0, 2)-tensor S define the (0, 2)-tensor Y, g, by
(T01,0.:5) = ZA L ENEn [S(Q1(ex, en), Qaler, en)) + S(Qa(er, en), Qiler, en))],

where on the left-hand side we have the inner product of (0, 2)-tensors induced by g,
{ex} is a local orthonormal basis of TM and ) = (ey,ex) € {—1,1}.

Remark 2.2. If g is definite then Yy, 5, = 0 if and only if ~; = 0. Indeed, we have
(Thion, X" @ X7) =2 (X hi(Ea, By))®, X €Dj-.

The above sum is equal to zero if and only if every summand vanishes. This yields
h; = 0. Thus, Tp, n, is a “measure of non-total geodesy” of the distribution D;.
Similarly, Y, 7, can be viewed as a “measure of non-integrability” of D;.

The following presentation of the partial Ricci tensor in (2.2) is valid, see [3, 14]:
(2.6) rp, = div hy + (hy, H;) — A? — T7 — U + Defp Hi-.
Tracing (2.6) over D; and applying the equalities

Tr, (div hy) = div H;, Tr(h;, H;) = (H;, H;), Try U = (hi-, hi) — (T;5, T,

7 (]

Tr A = (hihi), TvTi=—(T;,Ti), Trg(Defpy HiY) = div Hi + g(H;, Hib),

we get (2.3) with D = D;.
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Remark 2.3. For an almost multi-product manifold (M, g; D, ..., Dx) we have

(2.7) divy " (Hi+Hj) =2Sp,..0, — » Q(Dig).

see [13]. To illustrate the proof of (2.7) for k > 2, consider the case of k = 3. Using
(2.3) for two distributions, D; and D = Dy @ Ds, according to (2.4) and (2.5) with
D =D, we get

div(Hy + Hi") = 2Sp, pr —Q(D1,9),
and similarly for (Dy, Dy) and (D3, D3 ). Summing 3 copies of (2.8), we obtain (2.7)

for k = 3. Applying Stokes’ Theorem for (2.7) on a closed manifold M yields the
integral formulas for all k € {2,...,n}, which for k = 2 directly follows from (2.3).

3 Adapted variations of metric

We consider smooth 1-parameter variations {g: € Riem(M) : [t| < e} of the metric
go = g. Let the infinitesimal variations, represented by a symmetric (0, 2)-tensor

B(t) = dg:/0t,

be supported in a relatively compact domain 2 in M, i.e., g; = g and By = 0 outside
Q for [t| < e. We adopt the notations 0; = 9/0t, B = 0rgt|,—0 = g, but we shall also
write B instead of B; to make formulas easier to read, wherever it does not lead to
confusion. Since B is symmetric, then (C, B) = (Sym(C'), B) for any (0, 2)-tensor C.
Denote by ® the product of tensors.

Definition 3.1. A family of adapted pseudo-Riemannian metrics
{g(t) € Riem(M;Dy,...Dy) : |t| < e}

will be called an adapted variation. In other words, D; and D; are g;-orthogonal for
all i # j and t. An adapted variation g, is called a D;-variation (for some j € [1,k]) if

— i
9(X,Y) = go(X,Y), X,Y € Dy, [t] <e.

For an adapted variation we have g; = g1(t) @ ... ® gx(t), where g;(t) = g¢|p,.
Thus, the tensor By = 0 g; of an adapted variation of metric on (M;Dy,...,Dy) is

decomposed into the sum of derivatives of D;-variations; namely, B; = le'zl B;(t),
where B;(t) = 0, g;(t) = Bi|p; .

Lemma 3.1. Let a local adapted frame {E,} evolve by g € Riem(M;Dy,...Dy)
according to
O E, = —(1/2) B{(E,).

Then, {E.(t)} is a g:-orthonormal adapted frame for all t.
Proof. For {E,(t)} we have

O1(9¢(Ba: Ey)) = 910 Ba(t), Eo()) + 90(Ba(t), 0 Ey(1)) + (9r9:) (Ba(0), Eb(1))
= Bu(Eu(), Bo(t)) — 5 0:(BHELD), Eu() ~ 3 0u(Falt), Bi(Bu(1))) = 0.

From this the claim follows. |
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Lemma 3.2. If g; is a Dj-variation of g € Riem(M; Dy, ..., Dy), then
e(hy hy) = —((1/2)Yp1 s, By),
8 (hy, hy) = (divh; + K}, B;) — div(h;, B;),
g(Hy, Hj) = —((H}")" ® (H}")", Bj),
Ovg(H;, Hy) = ((div H;) g;, B;) — div((Tr BY)H;),
OUTH T = (/2 Yt s By),
(3.1) Ty, Tj) = 2T7, By),
and for i # j (when k > 2) we have dual equations
Oe(his hi) = (=(1/2)Th; n;» Bj),
Ou(hi, hiv) = (divhi + (KF), By) —div(hi', By),
Oig(Hy, Hy) = —(H; ® H;, Bj),
Ovg(Hi, Hi") = ((div H;") g;, Bj) — div((Tr BY)H;"),
0T, Ti) = ((1/2)Yz, 13, Bj),

(32) 8t<T'L'L7 Tll> = <2 (ﬁl)b7 Bj>7
Proof. The equations (3.1) coincide with equations from [15, Proposition 2] for a pair
(Dj,Dj"), and equations (3.2) are dual to (3.1). O

For any variation g; of metric g on M with B = 0;g we have, e.g., [14],
1 1
(3.3) 9y (dvoly) = 3 (Try, B)dvol, = 3 (B, g)dvol, .

By (3.3), using the Divergence Theorem, for any variation g; with supp (9;g) C Q,
and t-dependent X € X s with supp (9, X) C 2 we have

(3.4) % /M(div X)dvol, = /M div (0,X + % (Try B)X) dvol, = 0.

From Lemmas 3.1 and 3.2 and the equality, see (2.4),

we obtain the following.

Proposition 3.3. For a Dj-variation of metric g € Riem(M; Dy, ..., Dy) we have

(3.5) Oy ZiQ(Di’g) =(Qj, B;) — div X},

where Bj = 0igi|4—g, and (0,2)-tensors Q; on D; x D; and vector fields X; are
given by

2 = (h, Bi) = (T B H; + 3 ((hi", By) = (Tr B)H),
. 1 1 .
Q) = —divh; = Kj+ 5T 0 + 5t gs + 277 = (H}) @ (H})’ + (div H;) g5
. 1 1
+Zi¢j (= divhilo, — (PKT) + §Tp.ihivpjhi + ETPJ'TiijTi +2 (BT
—(PiH)’ ® (P H:) + (div Hi) g;).
The summation part related to DJJ-- (in X; and Q;) is dual to the part related to D;.
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The next theorem allows us to restore the partial Ricci curvature, see (1.4). It
is based on calculating the variations with respect to g of components in (2.3) and
using (3.4) for divergence terms. By this theorem and Definition 3.5 in what follows
we conclude that an adapted metric g is critical for the action (1.2) with respect to
adapted variations of metric preserving the volume of Q, i.e., Vol(Q, g;) = Vol(2, g)
for all ¢, if and only if (1.4) holds.

Theorem 3.4 (see [15]). An adapted metric g € Riem(M; Dy, ..., Dy) is critical for
the geometrical part of (1.2) (i.e., A = 0 = L) with respect to adapted variations
preserving the volume of Q if and only if the following Euler-Lagrange equations hold:

1 1
div by + K — 5 Thtat = 3 Trras = 2T + (HE) ® (HE)

. 1 1
+Zi;ﬁj (divhi|p, + (P) = §ijhiijhi - §TPjT777PjTi —2(FTi)

(3.6) +(PjH;) ® (PjH;)") = (Sps...D, —div(HjJrZi# H )+ X) g

.....

for some A€ R and 1 < j <k, or, in a short form,
1 . )
(3.7) Qj=—(Sp,,.0p — 5 d1vzi(Hl- +HN N g, 1<j<k

Proof. Let g: be a Dj-variation of g compactly supported in §2 C M. Using Divergence
theorem to (3.5) and removing integrals of divergences of vector fields supported in
Q C M, we get

(3.8) /Z 0:Q(Di, gt) | 1= Odvolgf/@j, B;)dvol,, .
Q
By (3.4) with X =3 ,(H; + H}*) we get
d ) n
T levzi(Hi + H;")dvol, = 0.
Thus, for the action (1.3), using (2.7), (3.3), (3.5) and (3.8), we get
d
dt JD(gt [t=0 = dt Z Di, g dVOlqt\t 0
/Z 9:Q(D;, gt)) 1=0 d vol, +/Z 9) 9¢(dvolg, ) 1=0
(39) = [10+53, 009, By)dva,.

If ¢ is critical for the action J with respect to Dj-variations of g, then the integral
in (3.9) is zero for any symmetric (0, 2)-tensor B;. This yields the D;-component of
Euler-Lagrange equation

1 .
(3.10) Q+5) ,QDiglg; =0, 1<j<k
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For adapted variations preserving the volume of €2, using (3.3), we have

1 1
0=(9t/ dvolg:/ 6tdvolg=/ §(TrB)dVOIQZ§/(g7 B) dvol, .
M M M Q

Thus, the Euler-Lagrange equation of (1.3) with respect to D;-variations preserving
the volume of 2 are

1
Q; + (5 ZiQ(Dizg) +A)g;=0
instead of (3.10). Replacing here ). Q(D;, g) according to (2.7), we get (3.6). O

Remark 3.2. Using the partial Ricci tensor (2.2) and replacing div h; and div hi
for i # j in (3.6) according to (2.6), we can rewrite (3.6) as

ro, = (hy, H) + A} =T} + ¥} = Defpi Hif + K} + (Hj )’ © (Hj )"

1 1 ,
=5 Tnpnt =5 Trprp+ D (rop o, = (Wi, Hi) + (AT = (BT
1 1

+Wi|p,~Defp, Hi+(P;K") +(P H;)" & (PjHi)b—§TPjhi,Pjhi—*

QTPjTi,PjTi)

(3.11) = (Sp,,..p, — div(H; +Z HL +A) g, j=1,...,k

Example 3.3. A pair (D;,D;) with ¢ 75 j of distributions on a Riemannian almost

multi-product manifold (M, g; D1, ..., Dg) is called mized integrable, see [13], if
TiJ'(X,Y) =0 (XGDi, YGDj).

Let (M,g;D1,...,Dy) with k£ > 2 has integrable distributions D, ..., Dy and each
pair (D;,D;) is mixed integrable. Then TZL(X, Y)=0foralll<kand X €D;, Y €
D; with i # j, see [13, Lemma 2|. In this case, (3.11) reads as

ro, = (hy, Hy) + A} + V5 — Defp. Hj — % Tys gt + (Hf) © (H )
+ Z TDL|D (hif|p,, H) + (PjAF) + W;|p, — Defp, H; — %TPjh,;,Pjh,;
(PjHi) (PjH;)’) = (Sp,,. p,—div(H; +Zi¢j HY 4N gi j=1,...,k
Definition 3.4. The Ricci type symmetric (0, 2)-tensor Ricp in (1.4) is defined by
its restrictions Ricp|p,xp, on k subbundles D; of T'M,
(3.12) Ricp|p;xp;, = —9Qj+1ig;, J=1...,k

(in a short form, using Q; in the LHS of (3.7)), where (u;) are uniquely determined
(see (3.15) and Theorem 3.5 below) so that critical metrics satisfy Einstein type
equation (1.4). Using (2.6), this can be written in more detail as

Ricp|p,xp, =D, — (h;, H~> + A} + T+ —Defps Hi + K5 + (H}f) © (H} )
1
— 5Tt =275 = TTJ- T+ + Z (roslp, = (hilp;, Hi) + (PrAT)

+ (P T + | p, — Defp H; + (szcf) + (PjH;)’ ® (PjH;)

1
— = Yph, Pih — 3 Ypr.pr — 2(PT0)) + 1 g5

(3.13) 5
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Theorem 3.5. A metric g € Riem(M;Dy,...Dy) is critical for the geometrical part
of (1.2), i.e., A =0 = L, with respect to adapted variations if and only if g satisfies
Einstein type equation (1.4), where the tensor Ricp is defined in (3.12).

Proof. The Euler-Lagrange equations (3.6) consist of D; x D;-components. Thus, for
(1.3) we obtain (3.13). If n = 2 (and k& = 2), then we take pu; = p2 = 0, see [11].
Assume that n > 2. Substituting (3.13) with arbitrary (p;) into (1.4) along D;, we
conclude that if the Euler Lagrange equations

Qj=-bjg; (1<j<k)
hold, where b; g; is the RHS of (3.6), then Ricp — (1/2)Sp - g = 0, see (1.4) with
A =0=E, if and only if (u;) satisfy the linear system
(3.14) > onipi—2p=a;, j=1,...k

with coefficients a; = Try(>", Qi) —2Q;. The matrix of (3.14) is invertible. Its
determinant 2¥~1(2 — n) is negative when n > 2. Hence, the system (3.14) has a
unique solution (p1, ..., ug) given by

(315) ,LL1:72n1_4(ZJ (a,-faj)nijai),

and Ricp|p,xp, satisfies (3.13). |

Example 3.5 (see [11]). The symmetric Ricci type tensor Ricp in (1.4) with k = 2,
is defined by its restrictions on two complementary subbundles D and D+ of TM,

Ricp|prxpr =1 — (b, HY) + (AF)" — (TH)" + ¥ — Defp H + (K*)”
1 1
+H @ H — 5 T =5 Trr+mgh,
Ricp|pxp =1 — (h, H) + A’ = T° + U+ — Defp. H + K

1 1
(3.16) +(HY) ® (HY) - 5 This — 5 Tro e + iz 9",

where p; = =51 div(H* — H) and pp = 22=F div(H* — H). Here (3.16); is dual
to (3.16); with respect to interchanging distributions D and D+, and their last terms
vanish if n; = ny = 1. Also, we have

f2 7 72“ div(H* — H).

SD = T‘I'g RZCD = SD,DL +
Example 3.6. Totally umbilical and totally geodesic integrable distributions appear
on multiply twisted products. A multiply twisted product Fy X, Fo X ... Xy, Fy of
Riemannian manifolds (F, gr,), 1 <@ < k, is the product M = [], F; with the metric
g =gr, ®ulgr, ® ... ®usgr,, where u; : Fi x F; — (0,00) for i > 2 are smooth
functions, see [19]. Twisted products (i.e., k = 2) and multiply warped products (i.e.,
u; » F1 — (0,00), see [6]) are special cases of multiply twisted products. Let D; be the
distribution on M obtained from vectors tangent to horizontal lifts of F;. The leaves
tangent to D; (i > 2), are totally umbilical, with the mean curvature vector fields

Hi = —niP1V(log ui),
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and the fibers (tangent to D;) are totally geodesic (hqy = 0). For k > 2 each pair of
distributions is mixed totally geodesic (since M is the product and the Lie bracket
does not depend on metric). Using

where A; is the Laplacian on (F, gr, ), we find
(317) S Di1,....,Dy — Zi>2 n; (Al ui)/ui .

Let a multiply twisted product Fi X,, Fa X ... X, Fj with k > 2, see Example 3.6,
be critical for (1.3) with respect to adapted variations of g. Then the system (3.6)
takes the form

div hj — T,ﬁ ni o (HF) © (Hf ) +Z (div hit|p, — —Th e+ H @ HY)
(3.18) = (SDL.“,DA@ — div(H; + Zi# HY) + )\) g;-
(a) Let dim F} = n; > 2 and dim F; = n; > 1 for ¢ # 1. In addition, assume that
(Hi, Hj) =0, i#j.
From (3.18) with j = 1, using Hj- = > iz1 Hi and equalities

1 1 ,

5 Uit :Zz# an ©H; = QZ#le,h“
1

vt =~ (-2Y L
: 1y v H.
dw(Z# H; ) = (k—2) Zi# div H;,
(Hi)’ =D, HieH,

we obtain

1y
(3.19) 22 1_7 VH? @ HY = (spl,,,,,pk—(k—z)z#l(1+n—) div H; +\) g1

Comparing ranks (2 and n; > 2) of matrices H’ ® H’ and g; in (3.19), we get
H; =0 (i > 1). Hence, each distribution D; is totally geodesic, and our multiply
twisted product is the product of (F1, gr, ) and (F;, u?gp,) for i > 1.

(b) Let dim F; =1 for ¢ # 1. Then the system (3.6) takes the form
(3.20) Spi,..pp —diV2H; +3 ] HY)+A=0, 1<j<k
Using (3.17) and equality div H; = —(Aj u;)/u;, we get the linear system
3.21 kE—2)y; + (k-1 i+A=0, 1<j<k,
(3.21) k= 2y + (= 1)Y wit j
where y; = (A u;)/u;. The unique solution of (3.21) is y; = A, where X\ = N (k).

Thus, ) is the eigenvalue of the laplacian Ay on (Fi,gr, ), and u; are the eigenfunc-
tions: Aj u; = Au;. The mixed scalar curvature in this case is constant:

Sp.pe =D, (Brw)fui = (k= DA

Similarly, we can find critical multiply twisted products for the action (1.2).
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