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Abstract. In [5] the authors showed that the Liouville 1-form lying on the1

cotangent bundle is derived from physical potential and is related to the2

symplectomorphism through the flux homomorphism. On the other hand,3

in [7, 8], A. Weinstein constructed a chart from the group of symplectic dif-4

feomorphisms isotopic to the identity by using Lagrangian sub-manifolds5

geometry and from which he derived a closed 1-form called the Weinstein6

1-form. In this paper, we establish a relation between the Liouville 1-form7

and the Weinstein 1-form through an explicit formula from which we de-8

rive a new characterization of symplectomorphism and a new formula of9

the flux homomorphism.10
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1 Introduction15

Symplectic geometry, as defined by Dusa M. Duff, is an even dimensional geometry16

living on an even manifold. It is a geometry of a non degenerated and closed 2-form.17

It arose in the 1800’s with the work of Joseph Louis Lagrange, Simeon Denis Poisson18

and William Rowan Hamilton. The word symplectic have been introduced to the19

mathematical society by Hermann Weyl in 1946. In 1953, J.M. Souriau introduced20

symplectic geometry as a strong tool to study mechanic by geometrical methods.21

Concerning symplectic diffeomorphisms, they appeared the first time in the work of22

H. Poincaré studying celestial mechanic. After then, they become a subject of further23

studies in symplectic geometry. In this paper, we mainly focus on their modern devel-24

opment. Especially, on one hand, we establish the relationship between the Weinstein25

1-form and symplectomorphisms. On the other hand, we establish the relationship26

between the Liouville 1-form and symplectic diffeomorphism by using the flux homo-27

morphism.28

29

The relation between symplectomorphism isotopic to the identity and Weinstein30
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1-form appears in A. Banyaga’s monography [1] from which the Weinstein 1-form31

has been deduced from Lagrangian submanifolds and from the Kostant-Weinstein-32

Sternberg theorem. Unfortunately, the problem of the A. Banyaga and A. Bounemoura33

[2] presentation of the Weinstein 1-form doesn’t give explicitly it’s existence. Herein,34

we exhibit explicit formulas related to the Weinstein 1-form and study the local ge-35

ometry of the Weinstein chart at the identity. Related to the group of symplectic36

diffeomorphisms is the flux homomorphism introduced by E. Calabi and studied by37

T. Rybicki [4] to characterize Poisson isotopies.38

39

In this paper, we give a new formula of the flux homomorphism from the compo-40

sition of the universal cover of the group of symplectomorphisms with the Weinstein41

1-form and the projection of the space of closed 1-forms on the De Rham cohomology.42

43

In the context of the flux homomorphism, the relationship between the Liouville44

1-form and symplectic diffeomorphisms is a measure to the obstruction of diffeomor-45

phisms to preserve the Liouville 1-form. In other words, this obstruction is expressed46

by the non triviality of the cohomology class of the Weinstein 1-form defined by the47

use of the flux homomorphism.48

This work is organized as follows:49

1. A review of symplectic geometry and the Weinstein chart.50

2. Statements of the main results.51

3. Flux homomorphism associated with the Weinstein chart.52

4. Conclusion and perspective.53

5. References.54

2 A brief review of the Weinstein chart and55

symplectic geometry56

Definition 2.1. A symplectic form on the manifold M of even dimension is a 2-form57

Ω on M such that:58

1. for x ∈M ,

Ω̃x : TxM −→ T ∗xM

Xx 7−→ Ω̃x(Xx),

with Ω̃x(Xx) : TxM −→ R, Yx 7−→ Ω̃x(Xx)(Yx) = Ωx(Xx, Yx), is an isomor-59

phism i.e. Ω is non degenerated.60

2. dΩ = 0 i.e Ω is a closed 2-form.61

The pair (M,Ω) with M a C∞ manifold of even dimension and Ω a symplectic62

form on M is called a symplectic manifold.63
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Proposition 2.1. Let (M1, Ω1) and (M2, Ω2) be symplectic manifolds. Then, the
product (M1 ×M2, Ωλ,µ) with

Ωλ,µ = λπ∗1Ω1 + µπ∗2Ω2

is a symplectic manifold.64

65

In particular, (M × M, Ω1,−1) is a symplectic manifold with Ω1,−1 = π∗1Ω − π∗2Ω66

it’s symplectic form.67

68

Among the examples of symplectic manifolds, the cotangent bundle plays a crucial69

role. In fact, let the projection q : T ∗M −→ M be given.70

The Liouville 1-form denoted λM on T ∗M is defined by λM (a) = 〈θx, (daq)(ξ)〉 with71

ξ ∈ Ta(T ∗M) and a = (x, θx), with x ∈M and θx ∈ T ∗xM .72

Locally, the Liouville 1-form is given by the proposition below:73

Proposition 2.2. There exists local coordinates of T ∗M such that in these coordi-
nates
(x1, . . . , xn, y1, . . . , yn), the Liouville 1-form is locally written:

λM =

n∑
i=1

yidxi.

Hence, ΩM = dλM is a symplectic form on T ∗M .74

Example 2.2. The pair (T ∗M, ΩM ) is a symplectic manifold.75

Definition 2.3. Let (M,Ω) be a symplectic manifold. A diffeomorphism φ : M −→ M76

is said to be a symplectomorphism if φ∗Ω = Ω.77

The set of symplectic diffeomorphisms is a group of infinite dimension denoted by78

Diff∞Ω (M).79

80

A. Weinstein has shown [7, 8] that this group is locally arcwise connected using81

Lagrangian submanifolds geometry we explore in the sequel.82

Denote by83

(2.1) Γφ =
{

(x, y) ∈M ×M, y = φ(x).
}

The graph of the diffeomorphism φ.84

About Lagrangian submanifolds, we have:85

Definition 2.4. Let N be a submanifold of (M,Ω). An immersion j : N ↪→ M is86

said to be Lagrangian if j∗Ω = 0 and dimN = 1
2 dimM .87

The submanifold j(N) is called a Lagrangian submanifold.88

Sniatyki and W. M. Tulczjew obtained the characterization of symplectic diffeomor-89

phisms by Lagrangian submanifolds. Precisely, they stated the following theorem:90

Theorem 2.3 (Sniatyki, Tulczjew). A diffeomorphism is symplectic iff it’s graph Γφ91

is a Lagrangian submanifold.92
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Proof. 1. The condition is necessary.
Let j : M ↪→ Γφ ⊂M ×M be the immersion of the graph Γφ in M ×M . Then,
setting Ω = π∗Ω− π∗Ω, we have:

j∗Ω = j∗(π∗1Ω− π∗2Ω) = j∗π∗ω − j∗π∗2Ω
= (π1 ◦ j)∗Ω− (π2 ◦ j)∗Ω = Ω− φ∗Ω = 0.

2. Conversely, suppose the graph Γφ is a Lagrangian submanifold of M×M . Then,
by a straighforward calculation, we have:

0 = j∗Ω = Ω− φ∗Ω.

Hence, φ∗Ω = Ω i.e. φ is a symplectomorphism. A particular case of Lagrangian93

submanifold of M ×M is provided by the diagonal94

(2.2) ∆ =
{

(x, x) ∈M ×M, φ = id
}
.

We herein call the first characterization of symplectomorphism the Sniatyki -95

Tulczjew theorem.96

When φ is a symplectic diffeomorphism C0-close to the identity, the Lagrangian97

immersion will be denoted by the pair (id, φ).98

�99

2.1 One-forms as sections of the cotangent bundles100

Lagrangian submanifolds of the cotangent bundle are obtained this way:101

Theorem 2.4. The image α(M) ⊂ T ∗M of a 1-form α, seen as section, is a La-102

grangian submanifold of T ∗M if and only if α is a closed 1-form.103

Proof. Let v ∈ TxM . The pull-back of α gives the following:

α∗(λM )(x)(v) = λM (α(x))
(
(dα)x(v)

)
= α(x)

(
d(q ◦ α)x(v)

)
= α(x)(v).

Therefore, α∗λM = α, x ∈M and v ∈ TxM . �104

Corollary 2.5. Let (T ∗M,ΩM = dλM ) be the symplectic structure on T ∗M . Then105

α∗ΩM = dα.106

Proof. As α∗λM = α; we’ve:

dα∗λM = dα =⇒ α∗dλM = dα

=⇒ α∗ΩM = dα.

Hence α(M) is a Lagrangian submanifold of T ∗M if and only if α is a closed 1-form.107

�108

Example 2.5. The zero section OM of the cotangent bundle is a Lagrangian sub-109

manifold.110
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2.2 The Weinstein’s chart111

A. Weinstein, Kostant and Sternberg have related the above theorems relying on the112

first characterization of symplectic diffeomorphism and that of the characterization of113

Lagrangian submanifold by closed 1-forms. Mainly, they stated the following theorem:114

Theorem 2.6. (Kostant - Weinstein - Sternberg) Let S be a Lagrangian submanifold115

of a symplectic manifold (M,Ω). Let S be regarded as the zero section in (T ∗S,ΩS).116

There exists a diffeomorphism k of a neighborhood U(S) of S in M × M into a117

neighborhood W(O(S)) ⊂ T ∗S such that k/S = id and k∗ΩS = Ω.118

119

In fact, S can be regarded both as a graph of M ×M and a Lagrangian submanifold120

of T ∗M by means of the Kostant map k.121

122

Inspired by the theorem 2.3 ([5]) , the theorem 2.4 ([2]) and the Kostant - Weinstein -123

Sternberg theorem 2.6 ([1]), we have the following construction due to A. Banyaga [1]124

and related to the existence of the Weinstein chart and hence the Weinstein 1-form.125

Theorem 2.7 (A. Banyaga). Let φ be a symplectic diffeomorphism isotopic to the
identity in the C0-topology. Then, there exists a chart i.e

W : V ⊂ Diff∞Ω (M)0 −→ Z1
c (M)

φ −→W(φ).

Proof. Let φ be a symplectic diffeomorphism C1-close to the identity and Γφ it’s La-
grangian submanifold C1-close to the diagonal in M×M . By the Kostant-Weinstein-
Sternberg theorem 2.6 and the preservation of Lagrangian submanifolds by symplec-
tomorphism, k(Γ(φ)) is a Lagrangian submanifold in T ∗M . Hence, by the theorem
2.4 on the characterization of Lagrangian submanifolds in T ∗M by closed 1-form,
there exists a closed 1-form whose Lagrangian submanifold is k

(
Γ(φ)

)
and denoted

by W(φ). In [3] and [1], the authors, from the above proof, deduced the Weinstein
chart denoted too by the correspondance:

W : V ⊂ Diff∞Ω (M)0 −→ Z1
c (M)

φ −→W(φ).

�126

Let U0 be a neighborhood of the zero section in Z1
c (M) and V = W−1(U0) the127

Weinstein domain at idM . In the sequel, we will be studying the local geometry of128

the group Diff∞Ω (M)0 using the identity of the Weinstein domain.129

3 Main results130

In this section, we explicitly show the existence of the Weinstein 1-form. After then,131

we study the local geometry of the group of symplectic diffeomorphism isotopic to132

the identity which lies in the Weinstein domain.133

The local geometry of the group of symplectic diffeomorphisms isotopic to the identity134

defined by the Weinstein chart is well understood by the following proposition.135
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Proposition 3.1. Let φ be a symplectomorphism C0-close to the identity and (W,V)
be the Weinstein chart with V the Weinstein domain. Then,

W(id) = 0M

with 0M the zero section of the cotangent bundle.136

Proof. A straightforward calculation gives:

W(id) =
(
γ−1 ◦ (id, id)

)
◦
(
π ◦ γ−1 ◦ (id, id)

)
= (γ−1 ◦ 0M ) ◦ (π ◦ γ−1 ◦ 0M )

= 0M .

�137

138

Beside of this result, we have the following which relates the Weinstein 1-form to the139

Liouville 1-form by an explicit formula:140

Proposition 3.2.141

1. The Weinstein 1-form W(φ) is d-exact.142

2. The pull-back of the Liouville 1-form θM on the Lagrangian submanifold L =143

W(φ)(M) is d-exact on the Lagrangian submanifold Γ(φ) of φ i.e. (id, φ)∗θ1 is144

d-exact on M .145

Proof. The proof relies on Sniatyki-Tulczjew theorem, the theorem on the charac-
terization of Lagrangian submanifolds in T ∗M by means of closed 1-form and the
Kostant-Weinstein-Sternberg theorem. Set

θ1 = (γ)∗θM .

A straightforward computation gives the following:

W(φ)∗θ1 =W(φ)∗γ∗θM = [γ ◦W(φ)]∗θM = (id, φ)∗θM
= φ∗(π1θM − π∗2θM ) = φ∗π1θM − φ∗π∗2θM ) = (π1 ◦ φ)∗θM − (π2 ◦ φ)∗θM
= θM − φ∗θM =W(φ).

Therefore, the relation between the Liouville 1-form and the Weinstein 1-form is given146

by the formula:147

(3.1) W(φ) = θM − φ∗θM .

Hence, the Weinstein 1-form is d-exact i.e. there exists S ∈ C∞(M), W(φ) = dS, if148

and only if θM − φ∗θM is d-exact Γφ if and only if θM is d-exact on the Lagrangian149

submanifold L =W(φ)(M). �150

Theorem 3.3. Let φ be a symplectic diffeomorphism isotopic to the identity in the151

C1-topology. Then, there exists a closed 1-form denoted by W(φ) and whose graph is152

a Lagrangian submanifold ΓW(φ).153
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M M ×M T ∗M

π

MM ×MT ∗M

W(φ)

(id, φ) γ−1

(id, φ)γ−1

Figure 1: Existence of the Weinstein chart.

Proof. 1. Existence of the Weinstein 1-form is guaranteed by the commutative154

diagram on the figure 1:155

Set
W(φ) =

(
γ−1 ◦ (id, φ) ◦

(
π ◦ γ−1 ◦ (id, φ)

))
.

The 1-form W(φ) is closed since φ ∈ Diff∞Ω (M)0 and satisfies Proposition 3.1.156

�157

158

More, relying on the Sniatyki and W. M. Tulczjew theorem characterization of the159

symplectic diffeomorphisms, the theorem on the characterization of the Lagrangian160

submanifolds by closed 1-forms and Kostant-Weinstein-Sternberg theorem, we have161

established the formula (3.1).162

163

From this formula, we have restated and proved the new characterisation of sym-164

plectic diffeomorphisms by means of the Weinstein 1-form. We have obtained the165

following result, thanks to A. Weinstein;166

Theorem 3.4. Let φ be a diffeomorphism C0-close to the identity so that it’s graph167

is close enough with the diagonal.168

169

Then φ is a symplectomorphism if and only if the Weinstein 1-form W(φ) is a closed170

1-form.171

Proof. The Weinstein 1-form W(φ) is closed if and only if dW(φ) = 0; and

dW(φ) = 0⇐⇒ dθM − dφ∗θM = 0

⇐⇒ ΩM − φ∗Ω = 0

⇐⇒ φ∗Ω = Ω.

Thus, φ is a symplectomorphism. �172
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Thus, De Rham cohomology class of the Weinstein 1-form W(φ) is non trivial.173

Hence, this non trivial class of De Rham cohomology is an obstruction to the diffeo-174

morphism φ to be a symplectomorphism. We asked whether the above formula agrees175

with the local geometry of the Weinstein chart. We calculated at the identity.176

Corollary 3.5.

W(id) = 0M .

Proof. As W(φ) = θM − φ∗θM , at the identity, we still have:

W(id) = θM − id∗θM = 0M .

�177

Therefore, we’ve proved that the symplectomorphism in the formula (3.1) lies in178

the Weinstein domain. In other words, we have shown that it agrees with the local179

geometry induced by the Weinstein chart.180

4 The flux homomorphism associated with the181

Weinstein chart182

We introduce herein the relation between the Weinstein 1-form and the flux homomor-183

phism studied in great details by A. Banyaga in [1], C. Viterbo in [6], A. Bounemoura184

in [2] and T. Rybicki in [4]. A new formulation of the flux homomorphism is given.185

186

The link between the flux homomorphism and the Weinstein 1-form is summarized187

in the following statement:188

Proposition 4.1. Let θ be a closed 1-form on M and S̃θ the flux homomorphism.
Denote by ˜Diff

∞
θ (M)0 the universal cover of Diff∞θ (M)0 and π : ˜Diff

∞
θ (M)0 −→

Diff∞θ (M)0 the projection of ˜Diff
∞
θ (M)0 into Diff∞θ (M)0.

Let Z1
c (M) be the space of closed 1-forms and p : Z1

c (M) −→ H1
c (M) the projec-

tion of Z1
c (M) into the De Rham cohomology H1

c (M) with compact support. We
denote by W the Weinstein parametrization. The following formula holds:

S̃θ = p ◦W ◦ π.

Proof. We have to prove that the diagram below is commutative:189



Symplectic diffeomorphisms and Weinstein 1-form 21

π

Diff∞θ (M)0

WS̃θ

p

˜Diff
∞
θ (M)0

Z1
c (M)H1

c (M)

190

In other words;
S̃θ = p ◦W ◦ π.

So, let {φt} be the homotopy class of the symplectic isotopy (φt). We have by direct
computation:

(p ◦W ◦ π)
(
{φt}

)
= (p ◦W)

(
π(φt)

)
= p ◦W(φt)

= [W(φt)]

= S̃θ({φt})

i.e.,
S̃θ = p ◦W ◦ π.

Since the Calabi invariant S̃θ descends to the homomorphism Sθ and the relation
π′ ◦ S̃θ = Sθ ◦ π holds, by a straightforward calculation, we have

π′ ◦ S̃θ = π′ ◦
(
p ◦W ◦ π

)
=
(
π′ ◦ p ◦W

)
◦ π = Sθ ◦ π.

Therefore, Sθ = π′ ◦ p ◦W. �191

A. Banyaga in his marvelous monograph [1] obtained the same result using the Moser192

1-form and Lagrangian immersions. A. Bounemoura obtained the same formula in [2]193

and C. Viterbo in [6].194

5 Conclusion and perspective195

In this paper, we have mainly stated and proved the characterization of symplectic196

diffeomorphism by means of the Weinstein 1-form and Lagrangian submanifolds. In197

the counterpart of this work, the characterization of symplectic diffeomorphism have198

been obtained before by Śniatycki and Tulczyjew in their joint work.199

We also found new formulas which link the flux homomorphism to the Weinstein200

chart. However, we suspect that these formulas can be used to show that the flux ho-201

momorphism kernel is arc wise connected, and hope that our results greatly contribute202

to the development of symplectic topology.203
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