Symplectic diffeomorphisms and Weinstein 1-form #### Fidele Balibuno Luganda and Leonard Todjihounde Abstract. In [5] the authors showed that the Liouville 1-form lying on the cotangent bundle is derived from physical potential and is related to the symplectomorphism through the flux homomorphism. On the other hand, in [7, 8], A. Weinstein constructed a chart from the group of symplectic diffeomorphisms isotopic to the identity by using Lagrangian sub-manifolds geometry and from which he derived a closed 1-form called the Weinstein 1-form. In this paper, we establish a relation between the Liouville 1-form and the Weinstein 1-form through an explicit formula from which we derive a new characterization of symplectomorphism and a new formula of the flux homomorphism. ¹¹ **M.S.C. 2010**: 53D12, 37J10, 53D05. ¹² **Key words**: Lagrangian submanifolds; Weinstein chart; symplectic diffeomorphism; ## Weinstein neighborhood. #### 1 Introduction Symplectic geometry, as defined by Dusa M. Duff, is an even dimensional geometry living on an even manifold. It is a geometry of a non degenerated and closed 2-form. It arose in the 1800's with the work of Joseph Louis Lagrange, Simeon Denis Poisson and William Rowan Hamilton. The word symplectic have been introduced to the 19 mathematical society by Hermann Weyl in 1946. In 1953, J.M. Souriau introduced 20 21 symplectic geometry as a strong tool to study mechanic by geometrical methods. Concerning symplectic diffeomorphisms, they appeared the first time in the work of 22 H. Poincaré studying celestial mechanic. After then, they become a subject of further studies in symplectic geometry. In this paper, we mainly focus on their modern development. Especially, on one hand, we establish the relationship between the Weinstein 25 1-form and symplectomorphisms. On the other hand, we establish the relationship between the Liouville 1-form and symplectic diffeomorphism by using the flux homo-27 morphism. 28 $_{30}$ The relation between symplectomorphism isotopic to the identity and Weinstein Balkan Journal of Geometry and Its Applications, Vol.26, No.2, 2021, pp. 13-22. [©] Balkan Society of Geometers, Geometry Balkan Press 2021. 1-form appears in A. Banyaga's monography [1] from which the Weinstein 1-form has been deduced from Lagrangian submanifolds and from the Kostant-WeinsteinSternberg theorem. Unfortunately, the problem of the A. Banyaga and A. Bounemoura [2] presentation of the Weinstein 1-form doesn't give explicitly it's existence. Herein, we exhibit explicit formulas related to the Weinstein 1-form and study the local geometry of the Weinstein chart at the identity. Related to the group of symplectic diffeomorphisms is the flux homomorphism introduced by E. Calabi and studied by T. Rybicki [4] to characterize Poisson isotopies. 39 In this paper, we give a new formula of the flux homomorphism from the composition of the universal cover of the group of symplectomorphisms with the *Weinstein*1-form and the projection of the space of closed 1-forms on the *De Rham* cohomology. 43 - In the context of the flux homomorphism, the relationship between the *Liouville*1-form and symplectic diffeomorphisms is a measure to the obstruction of diffeomorphisms to preserve the *Liouville* 1-form. In other words, this obstruction is expressed by the non triviality of the cohomology class of the *Weinstein* 1-form defined by the use of the flux homomorphism. - This work is organized as follows: - 1. A review of symplectic geometry and the Weinstein chart. - 51 2. Statements of the main results. - 3. Flux homomorphism associated with the Weinstein chart. - ⁵³ 4. Conclusion and perspective. - 5. References. # A brief review of the Weinstein chart and symplectic geometry - Definition 2.1. A symplectic form on the manifold M of even dimension is a 2-form Ω on M such that: - 1. for $x \in M$, $$\widetilde{\Omega}_x: T_xM \longrightarrow T_x^*M$$ $$X_x \longmapsto \widetilde{\Omega}_x(X_x),$$ - with $\widetilde{\Omega}_x(X_x): T_xM \longrightarrow \mathbb{R}, Y_x \longmapsto \widetilde{\Omega}_x(X_x)(Y_x) = \Omega_x(X_x, Y_x)$, is an isomorphism i.e. Ω is non degenerated. - 2. $d\Omega = 0$ i.e Ω is a closed 2-form. - The pair (M,Ω) with M a C^{∞} manifold of even dimension and Ω a symplectic form on M is called a symplectic manifold. **Proposition 2.1.** Let (M_1, Ω_1) and (M_2, Ω_2) be symplectic manifolds. Then, the product $(M_1 \times M_2, \Omega_{\lambda,\mu})$ with $$\Omega_{\lambda,\mu} = \lambda \pi_1^* \Omega_1 + \mu \pi_2^* \Omega_2$$ is a symplectic manifold. 65 68 - In particular, $(M \times M, \Omega_{1,-1})$ is a symplectic manifold with $\Omega_{1,-1} = \pi_1^* \Omega \pi_2^* \Omega$ it's symplectic form. - Among the examples of symplectic manifolds, the cotangent bundle plays a crucial role. In fact, let the projection $q: T^*M \longrightarrow M$ be given. - The Liouville 1-form denoted λ_M on T^*M is defined by $\lambda_M(a) = \langle \theta_x, (d_a q)(\xi) \rangle$ with - $\xi \in T_a(T^*M)$ and $a = (x, \theta_x)$, with $x \in M$ and $\theta_x \in T_x^*M$. - Locally, the *Liouville* 1-form is given by the proposition below: **Proposition 2.2.** There exists local coordinates of T^*M such that in these coordinates $(x_1,\ldots,x_n,y_1,\ldots,y_n)$, the Liouville 1-form is locally written: $$\lambda_M = \sum_{i=1}^n y_i dx_i.$$ - Hence, $\Omega_M = d\lambda_M$ is a symplectic form on T^*M . - Example 2.2. The pair (T^*M, Ω_M) is a symplectic manifold. - **Definition 2.3.** Let (M,Ω) be a symplectic manifold. A diffeomorphism $\phi:M\longrightarrow M$ - is said to be a *symplectomorphism* if $\phi^*\Omega = \Omega$. The set of symplectic diffeomorphisms is a group of infinite dimension denoted by $Diff_{\Omega}^{\infty}(M)$. - A. Weinstein has shown [7, 8] that this group is locally arcwise connected using Lagrangian submanifolds geometry we explore in the sequel. - Denote by 80 (2.1) $$\Gamma_{\phi} = \{(x, y) \in M \times M, \ y = \phi(x).\}$$ - The graph of the diffeomorphism ϕ . - 85 About Lagrangian submanifolds, we have: - Definition 2.4. Let N be a submanifold of (M,Ω) . An immersion $j:N\hookrightarrow M$ is said to be Lagrangian if $j^*\Omega=0$ and $dimN=\frac{1}{2}dimM$. - The submanifold j(N) is called a Lagrangian submanifold. - so Sniatyki and W. M. Tulczjew obtained the characterization of symplectic diffeomor- - 90 phisms by Lagrangian submanifolds. Precisely, they stated the following theorem: - Theorem 2.3 (Sniatyki, Tulczjew). A diffeomorphism is symplectic iff it's graph Γ_{ϕ} is a Lagrangian submanifold. *Proof.* 1. The condition is necessary. Let $j: M \hookrightarrow \Gamma_{\phi} \subset M \times M$ be the immersion of the graph Γ_{ϕ} in $M \times M$. Then, setting $\underline{\Omega} = \pi^*\Omega - \pi^*\Omega$, we have: $$j^*\underline{\Omega} = j^*(\pi_1^*\Omega - \pi_2^*\Omega) = j^*\pi^*\omega - j^*\pi_2^*\Omega$$ $$= (\pi_1 \circ j)^*\Omega - (\pi_2 \circ j)^*\Omega = \Omega - \phi^*\Omega = 0.$$ 2. Conversely, suppose the graph Γ_{ϕ} is a Lagrangian submanifold of $M \times M$. Then, by a straighforward calculation, we have: $$0 = i^*\Omega = \Omega - \phi^*\Omega.$$ Hence, $\phi^*\Omega = \Omega$ i.e. ϕ is a symplectomorphism. A particular case of Lagrangian submanifold of $M \times M$ is provided by the diagonal (2.2) $$\Delta = \{(x, x) \in M \times M, \ \phi = id\}.$$ - We herein call the first characterization of symplectomorphism the Sniatyki -Tulczjew theorem. - When ϕ is a symplectic diffeomorphism C^0 -close to the identity, the Lagrangian immersion will be denoted by the pair (id, ϕ) . #### 2.1 One-forms as sections of the cotangent bundles Lagrangian submanifolds of the cotangent bundle are obtained this way: Theorem 2.4. The image $\alpha(M) \subset T^*M$ of a 1-form α , seen as section, is a Lagrangian submanifold of T^*M if and only if α is a closed 1-form. *Proof.* Let $v \in T_xM$. The pull-back of α gives the following: $$\alpha^*(\lambda_M)(x)(v) = \lambda_M(\alpha(x)) ((d\alpha)_x(v))$$ = $\alpha(x) (d(q \circ \alpha)_x(v))$ = $\alpha(x)(v)$. Therefore, $\alpha^* \lambda_M = \alpha$, $x \in M$ and $v \in T_x M$. Corollary 2.5. Let $(T^*M, \Omega_M = d\lambda_M)$ be the symplectic structure on T^*M . Then $\alpha^*\Omega_M = d\alpha$. *Proof.* As $\alpha^* \lambda_M = \alpha$; we've: $$d\alpha^* \lambda_M = d\alpha \Longrightarrow \alpha^* d\lambda_M = d\alpha$$ $$\Longrightarrow \alpha^* \Omega_M = d\alpha.$$ - Hence $\alpha(M)$ is a Lagrangian submanifold of T^*M if and only if α is a closed 1-form. - Example 2.5. The zero section \mathcal{O}_M of the cotangent bundle is a Lagrangian submanifold. #### 2.2 The Weinstein's chart 111 119 122 126 127 128 129 A. Weinstein, Kostant and Sternberg have related the above theorems relying on the first characterization of symplectic diffeomorphism and that of the characterization of Lagrangian submanifold by closed 1-forms. Mainly, they stated the following theorem: Theorem 2.6. (Kostant - Weinstein - Sternberg) Let S be a Lagrangian submanifold of a symplectic manifold (M,Ω) . Let S be regarded as the zero section in (T^*S,Ω_S) . There exists a diffeomorphism k of a neighborhood U(S) of S in $M\times M$ into a neighborhood $\mathcal{W}(\mathcal{O}(S))\subset T^*S$ such that k/S=id and $k^*\Omega_S=\Omega$. In fact, S can be regarded both as a graph of $M \times M$ and a Lagrangian submanifold of T^*M by means of the *Kostant* map k. Inspired by the theorem 2.3 ([5]), the theorem 2.4 ([2]) and the Kostant - Weinstein - Sternberg theorem 2.6 ([1]), we have the following construction due to A. Banyaga [1] and related to the existence of the Weinstein chart and hence the Weinstein 1-form. **Theorem 2.7** (A. Banyaga). Let ϕ be a symplectic diffeomorphism isotopic to the identity in the C^0 -topology. Then, there exists a chart i.e $$\mathcal{W}: \mathcal{V} \subset Diff_{\Omega}^{\infty}(M)_{0} \longrightarrow \mathcal{Z}_{c}^{1}(M)$$ $\phi \longrightarrow \mathcal{W}(\phi).$ Proof. Let ϕ be a symplectic diffeomorphism C^1 -close to the identity and Γ_{ϕ} it's Lagrangian submanifold C^1 -close to the diagonal in $M \times M$. By the Kostant-Weinstein-Sternberg theorem 2.6 and the preservation of Lagrangian submanifolds by symplectomorphism, $k(\Gamma(\phi))$ is a Lagrangian submanifold in T^*M . Hence, by the theorem 2.4 on the characterization of Lagrangian submanifolds in T^*M by closed 1-form, there exists a closed 1-form whose Lagrangian submanifold is $k(\Gamma(\phi))$ and denoted by $W(\phi)$. In [3] and [1], the authors, from the above proof, deduced the Weinstein chart denoted too by the correspondance: $$\mathcal{W}: \mathcal{V} \subset Diff^{\infty}_{\Omega}(M)_{0} \longrightarrow \mathcal{Z}^{1}_{c}(M)$$ $\phi \longrightarrow \mathcal{W}(\phi).$ Let U_0 be a neighborhood of the zero section in $\mathcal{Z}_c^1(M)$ and $\mathcal{V} = \mathcal{W}^{-1}(U_0)$ the Weinstein domain at id_M . In the sequel, we will be studying the local geometry of the group $Diff_{\Omega}^{\infty}(M)_0$ using the identity of the Weinstein domain. #### 3 Main results In this section, we explicitly show the existence of the Weinstein 1-form. After then, we study the local geometry of the group of symplectic diffeomorphism isotopic to the identity which lies in the Weinstein domain. The local geometry of the group of symplectic diffeomorphisms isotopic to the identity defined by the *Weinstein* chart is well understood by the following proposition. **Proposition 3.1.** Let ϕ be a symplectomorphism C^0 -close to the identity and (W, V) be the Weinstein chart with V the Weinstein domain. Then, $$W(id) = 0_M$$ with 0_M the zero section of the cotangent bundle. *Proof.* A straightforward calculation gives: $$\mathcal{W}(id) = \left(\gamma^{-1} \circ (id, id)\right) \circ \left(\pi \circ \gamma^{-1} \circ (id, id)\right)$$ $$= \left(\gamma^{-1} \circ 0_M\right) \circ \left(\pi \circ \gamma^{-1} \circ 0_M\right)$$ $$= 0_M.$$ 137 Beside of this result, we have the following which relates the *Weinstein* 1-form to the Liouville 1-form by an explicit formula: #### Proposition 3.2. 142 - 1. The Weinstein 1-form $W(\phi)$ is d-exact. - 2. The pull-back of the Liouville 1-form θ_M on the Lagrangian submanifold $L = \mathcal{W}(\phi)(M)$ is d-exact on the Lagrangian submanifold $\Gamma(\phi)$ of ϕ i.e. $(id, \phi)^*\theta_1$ is d-exact on M. *Proof.* The proof relies on Sniatyki-Tulczjew theorem, the theorem on the characterization of Lagrangian submanifolds in T^*M by means of closed 1-form and the Kostant-Weinstein-Sternberg theorem. Set $$\theta_1 = (\gamma)^* \theta_M$$ A straightforward computation gives the following: $$\mathcal{W}(\phi)^* \theta_1 = \mathcal{W}(\phi)^* \gamma^* \theta_M = [\gamma \circ \mathcal{W}(\phi)]^* \theta_M = (id, \phi)^* \theta_M = \phi^* (\pi_1 \theta_M - \pi_2^* \theta_M) = \phi^* \pi_1 \theta_M - \phi^* \pi_2^* \theta_M) = (\pi_1 \circ \phi)^* \theta_M - (\pi_2 \circ \phi)^* \theta_M = \theta_M - \phi^* \theta_M = \mathcal{W}(\phi).$$ Therefore, the relation between the *Liouville* 1-form and the *Weinstein* 1-form is given by the formula: $$(3.1) \mathcal{W}(\phi) = \theta_M - \phi^* \theta_M.$$ - Hence, the Weinstein 1-form is d-exact i.e. there exists $S \in C^{\infty}(M)$, $\mathcal{W}(\phi) = dS$, if and only if $\theta_M \phi^* \theta_M$ is d-exact Γ_{ϕ} if and only if θ_M is d-exact on the Lagrangian submanifold $L = \mathcal{W}(\phi)(M)$. - Theorem 3.3. Let ϕ be a symplectic diffeomorphism isotopic to the identity in the C^1 -topology. Then, there exists a closed 1-form denoted by $W(\phi)$ and whose graph is a Lagrangian submanifold $\Gamma_{W(\phi)}$. Figure 1: Existence of the Weinstein chart. Proof. 1. Existence of the Weinstein 1-form is guaranteed by the commutative diagram on the figure 1: Set $$\mathcal{W}(\phi) = \left(\gamma^{-1} \circ (id, \phi) \circ \left(\pi \circ \gamma^{-1} \circ (id, \phi)\right)\right).$$ The 1-form $W(\phi)$ is closed since $\phi \in Diff_{\Omega}^{\infty}(M)_0$ and satisfies Proposition 3.1. 157 158 159 156 More, relying on the *Sniatyki* and *W. M. Tulczjew* theorem characterization of the symplectic diffeomorphisms, the theorem on the characterization of the Lagrangian submanifolds by closed 1-forms and *Kostant-Weinstein-Sternberg* theorem, we have established the formula (3.1). 165 166 160 From this formula, we have restated and proved the new characterisation of symplectic diffeomorphisms by means of the *Weinstein* 1-form. We have obtained the following result, thanks to *A. Weinstein*; 167 168 **Theorem 3.4.** Let ϕ be a diffeomorphism C^0 -close to the identity so that it's graph is close enough with the diagonal. 169 170 Then ϕ is a symplectomorphism if and only if the Weinstein 1-form $\mathcal{W}(\phi)$ is a closed 1-form. *Proof.* The Weinstein 1-form $W(\phi)$ is closed if and only if $dW(\phi) = 0$; and $$d\mathcal{W}(\phi) = 0 \iff d\theta_M - d\phi^*\theta_M = 0$$ $$\iff \Omega_M - \phi^*\Omega = 0$$ $$\iff \phi^*\Omega = \Omega.$$ Thus, ϕ is a symplectomorphism. 174 175 181 182 186 187 188 Thus, $De\ Rham$ cohomology class of the $Weinstein\ 1$ -form $W(\phi)$ is non trivial. Hence, this non trivial class of $De\ Rham$ cohomology is an obstruction to the diffeomorphism ϕ to be a symplectomorphism. We asked whether the above formula agrees with the local geometry of the $Weinstein\ chart$. We calculated at the identity. #### Corollary 3.5. $$W(id) = 0_M.$$ *Proof.* As $W(\phi) = \theta_M - \phi^* \theta_M$, at the identity, we still have: $$W(id) = \theta_M - id^*\theta_M = 0_M.$$ 177 Therefore, we've proved that the symplectomorphism in the formula (3.1) lies in the *Weinstein* domain. In other words, we have shown that it agrees with the local geometry induced by the *Weinstein* chart. # 4 The flux homomorphism associated with the Weinstein chart We introduce herein the relation between the Weinstein 1-form and the flux homomorphism studied in great details by A. Banyaga in [1], C. Viterbo in [6], A. Bounemoura in [2] and T. Rybicki in [4]. A new formulation of the flux homomorphism is given. The link between the flux homomorphism and the Weinstein 1-form is summarized in the following statement: **Proposition 4.1.** Let θ be a closed 1-form on M and \tilde{S}_{θ} the flux homomorphism. Denote by $Diff_{\theta}^{\infty}(M)_0$ the universal cover of $Diff_{\theta}^{\infty}(M)_0$ and $\pi: Diff_{\theta}^{\infty}(M)_0 \longrightarrow Diff_{\theta}^{\infty}(M)_0$ the projection of $Diff_{\theta}^{\infty}(M)_0$ into $Diff_{\theta}^{\infty}(M)_0$. Let $\mathcal{Z}^1_c(M)$ be the space of closed 1-forms and $p:\mathcal{Z}^1_c(M)\longrightarrow H^1_c(M)$ the projection of $\mathcal{Z}^1_c(M)$ into the De Rham cohomology $H^1_c(M)$ with compact support. We denote by \mathcal{W} the Weinstein parametrization. The following formula holds: $$\tilde{S}_{\theta} = p \circ \mathcal{W} \circ \pi.$$ Proof. We have to prove that the diagram below is commutative: П In other words; $$\tilde{S}_{\theta} = p \circ \mathcal{W} \circ \pi.$$ So, let $\{\phi_t\}$ be the homotopy class of the symplectic isotopy (ϕ_t) . We have by direct computation: $$(p \circ \mathcal{W} \circ \pi) (\{\phi_t\}) = (p \circ \mathcal{W}) (\pi(\phi_t))$$ $$= p \circ \mathcal{W}(\phi_t)$$ $$= [\mathcal{W}(\phi_t)]$$ $$= \tilde{S}_{\theta}(\{\phi_t\})$$ i.e., 195 196 203 $$\tilde{S}_{\theta} = p \circ \mathcal{W} \circ \pi.$$ Since the Calabi invariant \tilde{S}_{θ} descends to the homomorphism S_{θ} and the relation $\pi' \circ \tilde{S}_{\theta} = S_{\theta} \circ \pi$ holds, by a straightforward calculation, we have $$\pi' \circ \tilde{S}_{\theta} = \pi' \circ (p \circ \mathcal{W} \circ \pi)$$ $$= (\pi' \circ p \circ \mathcal{W}) \circ \pi = S_{\theta} \circ \pi.$$ Therefore, $S_{\theta} = \pi' \circ p \circ \mathcal{W}$. A. Banyaga in his marvelous monograph [1] obtained the same result using the Moser 1-form and Lagrangian immersions. A. Bounemoura obtained the same formula in [2] and C. Viterbo in [6]. ### 5 Conclusion and perspective to the development of symplectic topology. diffeomorphism by means of the Weinstein 1-form and Lagrangian submanifolds. In the counterpart of this work, the characterization of symplectic diffeomorphism have been obtained before by Śniatycki and Tulczyjew in their joint work. We also found new formulas which link the flux homomorphism to the Weinstein chart. However, we suspect that these formulas can be used to show that the flux homomorphism kernel is arc wise connected, and hope that our results greatly contribute In this paper, we have mainly stated and proved the characterization of symplectic 206 207 208 211 212 213 214 215 216 217 218 #### References - [1] A. Banyaga, The Structure of Classical Diffeomorphism Groups, Springer, 1997. - [2] A. Bounemoura, Simplicite des groupes de transformations de surfaces, Technical report, 2008. - [3] A. S. Demir, On Relative Hamiltonian Diffeomorphisms, Technical report. - ²⁰⁹ [4] T. Rybicki, On foliated, Poisson and Hamiltonian diffeomorphisms, Differential Geometry and its Applications, 15 (1) (2001), 33-46. - [5] J. Śniatycki and W. Tulczyjew, Generating forms of Lagrangian submanifolds, Indiana University Mathematics Journal, 22(3), (1972), 267-275. - [6] C. Viterbo, An Introduction to Symplectic Topology through Sheaf Theory, Technical report, Princeton, 2010. - [7] A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advances in Mathematics, 6 (3) (1971), 329-346. - [8] A. Weinstein Lagrangian submanifolds and Hamiltonian systems, The Annals of Mathematics, 98 (3) (1973), 377. #### 219 Authors' address: - 220 Fidele Balibuno Luganda and Leonard Todjihounde - Université d'Abomey Calavi, - 222 Institut de Mathématiques et de Sciences Physiques(IMSP), - 223 01 BP 613, Porto-Novo, Bénin. - E-mail: fidelelugandabalibuno@gmail.com , leonardt@imsp-uac.org