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Abstract. In the present paper, we initiate the study of η-Ricci Soliton
on a Lorentzian Para-Kenmotsu manifold. At first we give the historical
background of the η-Ricci solitons and put down some curvature condi-
tions of Riemannian manifolds. Next, in section 2, we introduce the basic
formulas and rudimentary facts used in research work. The next section
3, deals with η-Ricci solitons on Lorentzian para-Kenmotsu manifold and
deduces some results. Again in section 4, we developed and proof the Re-
sults on harmonic and Weyl harmonic curvature tensor. Section 5, about
Ricci and η-parallel Ricci tensor on Ricci solitons. In the end section, we
emphasized results on Lorentzian para-Kenmotsu manifold with η-Ricci
soliton satisfying the curvature condition P.ϕ = 0.
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1 Introduction

The concept of Ricci flow, the notion of Ricci soliton and its existence introduced
by Hamilton [12]. We need this concept to answer Thurston’s geometric conjecture
that is a 3-dimensional manifold admits a geometric decomposition if it is closed.
All compact manifolds of dimensional –four with positive curvature also classified by
Hamilton. The equation of Ricci flow is as follows

∂g

∂t
= −2S.

Ricci soliton emerges as the limit of the soliton of Ricci flow. A soliton to the Ricci
flow to be a Ricci soliton ([19], [12], [13]) if it has only one moving parameter group
of diffeomorphism and scaling. The Ricci soliton equation is expressed as

`Xg + 2S − 2λg = 0,
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where S denotes the Ricci tensor, g is the Riemannian metric, `X is the Lie derivative,
X is a vector field, and λ is a scalar.

In the above equation if

(a) λ > 0 (positive) then it defines as shrinking Ricci soliton.
(b) λ < 0 (negative) then it is defined as expanding Ricci soliton.
(c) λ = 0 then it is defined as steady Ricci soliton.

Next, A. E. Fischler [10] invented a new concept of conformal Ricci flow, known
as modification of the classical Ricci flow equation, which transforms the unit volume
constraint of that equation to a scalar curvature constraint. The new equations defines
the conformal Ricci flow onM , whereM is regarded as a smooth connected n-manifold
and the equation is as follows [10]:

∂g

∂t
+ 2

(
S +

g

n

)
= −pg,

where r(g) is the scalar curvature of the manifold defined by r(g) = −1, p is a scalar
non-dynamical field and the dimension of the manifold is n.

Similarly, N. Basu and A. Bhattacharya [1] proposes as follows the definition of
the conformal Ricci soliton equation

`Xg + 2S =

[
2λ−

(
p+

2

n

)]
g.

The concept of Ricci almost soliton was firstly introduced by S. Pigola, M. Rigoli,
M. Rimoldi, A. G. Setti [15]. R. Sharma [17] also started the study of Ricci soliton
and done excellent work.

As a generalization of Ricci solitons, the notion of η-Ricci solitons was introduced
by Cho and Kimura [6], for Hopf hypersurfaces in complex space forms. An η-Ricci
soliton is a tuple (g, Υ, λ, µ), where Υ is a vector field on M , λ and µ are real scalars
and g is Riemannian metric satisfying the equation

`Υ g + 2S + 2λg + 2µη ⊗ η = 0,

where S is the Ricci tensor associated with g. In this connection, we mention the
works of Blaga ([2], [3], [4]), Prakasha et al. [16], De and De [8], Kar, D. et al. [14],
Eyasmin et al. [9] and many others on η-Ricci solitons.

In general

(i) If µ = 0 then η-Ricci soliton reduces to Ricci soliton.

(ii) If µ 6= 0 then the η-Ricci solitons is named proper η-Ricci solitons.

Gray [11] introduces the notion of cyclic parallel Ricci tensor and Codadazi type
of Ricci tensor. A Riemannian manifold or semi-Riemannian manifold is said to have
cyclic parallel Ricci tensor S of type (0, 2) is non-zero and satisfies the condition

(1.1) (∇XS)(Υ,Z) + (∇Υ )(Z,X) + (∇ZS)(X,Υ ) = 0.
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Assume that the curvature tensor is harmonic that is divR = 0, this implies

(1.2) (∇S)(Υ,Z) = (∇ΥS)(X,Z),

where div denotes divergence. It means that the Levi-Civita connection ∇ of such
a metric is Yang-Mills connection while keeping the metric on the manifold fixed.
Equation (1.2) implies that the Ricci tensor S is of Coddazi type.

Also, Weyl tensor is harmonic, then we get

(1.3) (∇XS)(Υ,Z)− (∇ΥS)(X,Z) =
1

2(n− 1)
[(Xr)g(Υ,Z)− (Υr)g(X,Z)],

where r is the scalar curvature.
The projective curvature tensor P [20] in a manifold (M, g) is defined by

(1.4) P (X,Υ )Z = R(X,Υ )Z − 1

n− 1
[g(Υ,Z)QX − g(X,Z)QΥ ] ,

whereQ is the Ricci tensor operator defined by S(X,Υ ) = g(QX,Υ ) andX,Y, Zεχ(M),
being the Lie algebra of vector fields of M .

2 Preliminaries

Let Mn be Lorentzian metric manifold, with a (1, 1) tensor field ϕ. We consider a
vector field ξ, a Lorentzian metric g, and a 1 form η on M and assume that the
structure tensor (ϕ, ξ, η, g) satisfies{

ϕ2X = X + η(X)ξ, η(ξ) = −1, η(ϕX) = 0,

g(ϕX,ϕΥ ) = g(X,Υ ) + η(X)η(Υ ),

provides a Lorentzian almost para-contact manifold for all X,Υ on M . In a Lorentzian
almost para-contact manifolds, we have

ϕξ = 0, g(X, ξ) = η(X), g(ξ, ξ) = −1

ϕ(X,Υ ) = ϕ(Υ,X), where ϕ(X,Υ ) = g(X,ϕΥ ).

Definition 2.1. A Lorentzian almost para-contact manifold M , is a Lorentzian para-
Kenmotsu manifold, if for any vector fields X,Υ on M , we have

(∇Xϕ)Υ = −g(ϕX, Υ )ξ − η(Υ )ϕX,

(2.1) ∇Xξ = −X − η(X)ξ,

(2.2) (∇Xη)Υ = −g(X,Υ )− η(X)η(Υ ),

where ∇ represents the covariant differentiation.
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Remark 2.2. In a Lorentzian para-Kenmotsu manifold M , the following relations
hold:

g(R(X,Υ ), Z, ξ) = η(R(X,Υ )Z) = g(Υ,Z)η(X)− g(X,Z)η(Υ ),

R(ξ,X)Υ = g(X,Υ )ξ − η(Υ )X,

(2.3) R(X,Υ )ξ = η(Υ )X − η(X)Υ,

R(ξ,X)ξ = X + η(X)ξ,

(2.4) S(X, ξ) = (n− 1)η(X),

Qξ = (n− 1)ξ,

S(ϕX,ϕΥ ) = S(X,Υ ) + (n− 1)η(X)η(Υ ),

where R is the Riemannian curvature tensor and S is the Ricci tensor.
pasn In a 3-dimensional Riemannian manifold M , we have

R(X,Υ )Z = g(Υ,Z)QX − g(X,Υ )QΥ + S(Υ,Z)X − S(X,Z)Υ(2.5)

−r
2

[g(Υ,Z)X − g(X,Z)Υ ], ,

where Q(g(QX,Υ )) = S(X,Υ ) and r are the Ricci operator and the scalar curvature,
respectively. Also

QX =
1

2
[(r − 2)X + (r − 6)η(X)η(Υ )].

3 η-Ricci soliton on Lorentzian para-Kenmotsu
manifold

Consider the equation
`ξg + 2S + 2λg + 2µη ⊗ η = 0,

where `ξ is the Lie derivative operator, ξ is a vector field, S is the Ricci curvature
tensor field, λ and µ are real constants. Expressing `ξg in terms of the Levi-Civita
connection ∇, we obtain:

(3.1) 2S(X,Υ ) = −g(∇Xξ, Υ )− g(X,∇Υ ξ)− 2λg(X,Υ )− 2µη(X)η(Υ ),

for any X,Υεχ(M).
The expression (g, ξ, λ, µ) which satisfies the relation (3.1) is said to be an η-Ricci
soliton over M . If µ = 0, (g, ξ, λ) forms a Ricci soliton [12] and differentiate shrinking,
steady, or expanding according to λ < 0, λ = 0, or λ > 0 respectively [7].

Now we know that in a Lorentzian para-Kenmotsu manifold ∇Xξ = −X − η(X)ξ, so
equation (3.1) becomes:

2S(X,Υ ) = −g(−X − η(X)ξ, Υ )− g(X,−Υ − η(Υ )ξ)− 2λg(X,Υ )− 2µη(X)η(Υ ).

Solving this, we get

(3.2) S(X,Υ ) = (1− λ)g(X,Υ )− (1 + µ)η(X)η(Υ ).
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Putting Υ = ξ in the above equation, we have

(3.3) S(X, ξ) = (2− λ+ µ)η(X).

By comparing equation (2.4) and (3.3), we have

(3.4) µ− λ = n− 3.

In this scenario, the description of the Ricci operator Q is define as

(3.5) QX = (1− λ)X − (1 + µ)η(X)ξ.

Taking into account α such a symmetrical (0, 2) type tensor field, parallel to the Levi-
Civita connection∇α = 0. From the Ricci identity∇2α(X,Υ ;Z,W )−∇2α(X,Υ ;W,Z) =
0, for any X,Υ,W,Zεχ(M) [18]. Then

α(R(X,Υ )Z,W ) + α(Z,R(X,Υ )W ) = 0.

If we replace Z = W = ξ, then from the symmetry of α follows α(R(X,Υ ), ξ, ξ) = 0,
for any X,Υεχ(M).
If (ϕ, ξ, η, g) will be a Lorentzian para-Kenmotsu structure on M , from remark (2.1)
we see that R(X,Υ )ξ = η(X)Υ − η(Υ )X and replacing this expression in α, we get:

α(Υ, ξ) + η(Υ )α(ξ, ξ) = 0,

for any Υεχ(M), equivalent to

α(Υ, ξ) + α(ξ, ξ)g(Υ, ξ) = 0.

Covariantly differentiating the later equation w.r.t. the vector field X, we obtain

α(∇XΥ, ξ) + α(Υ,∇Xξ) + α(ξ, ξ) [g(∇XΥ, ξ) + g(Υ,∇Xξ)] = 0.

Substituting from equation (2.1), we get

α(Υ,X) = −α(ξ, ξ)g(Υ,X),

for any X,Υεχ(M); as α is ∇-parallel, it follows that α(ξ, ξ) is constant, and we have:

Lemma 3.1. Under the hypothesis mentioned above, every symmetric (0, 2)-tensor
parallel field is a constant (negative) multiple of the metric.

4 Harmonic and Weyl harmonic curvature tensors
of LP-Kenmotsu manifold with η -Ricci soliton

Theorem 4.1. A Lorentzian para-Kenmotsu manifold admitting an η-Ricci solitons
is of harmonic curvature if and only if the manifold is an Einstien manifold. Also
µ = −1 and λ = 2− n.
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Proof. By covariantly differentiating (3.2) with respect to W , we obtain

(∇ZS)(X,Υ ) = −(1 + µ) [(∇Zη)Xη(Υ ) + (∇Zη)Υη(X)] .

Using (2.2) in the above equation, we get

(4.1) (∇ZS)(X,Υ ) = (1 + µ) [g(Z,X)η(Υ ) + g(Z, Υ )η(X) + 2η(X)η(Υ )η(Z)] .

Given (4.1), it follows that

(4.2) (∇ZS)(X,Υ )− (∇XS)(Υ,Z) = (1 + µ) [g(Z, Υ )η(X)− g(X,Υ )η(Z)] .

By hypothesis, the manifold is of harmonic curvature, that is

(∇ZS)(X,Υ ) = (∇XS)(Υ,Z).

Hence from (4.2), we get
(1 + µ)g(ϕX,ϕΥ ) = 0.

It follows that µ = −1, therefore (3.4) implies λ = 2− n. Thus from (3.2), we have

S(X,Υ ) = (n− 1)g(X,Υ ).

Conversely, suppose that the manifold is an Einstien manifold. Then obviously, we
have Codazzi type Ricci tensor. Therefore the manifold is of harmonic curvature,
which proves our statement. �

Theorem 4.2. Let M be a Lorentzian para-Kenmotsu manifold admitting an η-Ricci
soliton. The manifold M is of harmonic Weyl tensor if and only if the manifold is an
Einstein manifold, provided the scalar curvature r is invariant under the characteristic
vector field ξ. Also µ = −1 and λ = 2− n.

Proof. Let the Lorentzian para-Kenmotsu manifold M is of harmonic Weyl tensor.
Then (1.3) gives

(4.3) (∇XS)(Υ,Z)− (∇ΥS)(X,Z) =
1

2(n− 1)
[(Xr)g(Υ,Z)− (Υr)g(X,Z)] .

Making use of (4.1) in (4.3), we have

(1 + µ) [g(X,Z)η(Υ )− g(Υ,Z)η(X)] =
1

2(n− 1)
[(Xr)g(Υ,Z)− (Υr)g(X,Z)] .

Putting Υ = ξ in the above equation, gives

(1 + µ) [−g(X,Z)− η(Z)η(X)] =
1

2(n− 1)
[(Xr)η(Z)− (ξr)g(X,Z)] .

Replacing Z = ϕZ in the above equation provides

(4.4) (1 + µ) [−g(X,ϕZ)] = − 1

2(n− 1)
[(ξr)g(X,ϕZ)
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Taking ξr = 0, then the above equation implies

(1 + µ)g(X,ϕZ) = 0.

It follows that µ = −1. Then from (3.2), we have λ = 2− n, and hence (3.2) implies

S(X,Υ ) = (n− 1)g(X,Υ ).

In contrast, if the manifold is an Einstein manifold, then it is Ricci symmetric ∇S = 0
and the scalar curvature is constant. Hence the Weyl tensor is harmonic. This
completes the proof. �

5 Ricci tensors on Lorentzian para-Kenmotsu
manifold with η-Ricci soliton

Theorem 5.1. A Lorentzian para-Kenmotsu manifold satisfies cyclic parallel Ricci
tensor admitting an η-Ricci solitons if and only if the manifold is an Einstien mani-
fold. Moreover µ = −1 and λ = 2− n.

Proof. Using (4.1) in (1.1), we get

(1 + µ)[g(X,Υ )η(Z) + g(X,Z)η(Υ ) + 2η(X)η(Υ )η(Z)

+g(X,Υ )η(Z) + g(Υ,Z)η(X) + 2η(X)η(Υ )η(Z)

+g(X,Z)η(Υ ) + g(Υ,Z)η(X) + 2η(X)η(Υ )η(Z)] = 0.

Putting Z = ξ in the above equation, we obtain

(1 + µ) [−2g(X,Υ )] = 0.

Then it follows that 1 + µ = 0⇒ µ = −1. Hence from (3.4), we get λ = 2− n. Then
(3.2) implies

S(X,Υ ) = (n− 1)g(X,Υ ).

Conversely, if the manifold is an Einstien manifold, then the Ricci tensor can clearly
be shown as being cyclic parallel. This completes the proof. �

Lemma 5.1. In a 3-dimensional Lorentzian para-Kenmotsu manifold, we have

ξ(r) = −2(r − 6).

Proof. If we replace Υ = Z = ξ in equation (2.5) and using equation (2.3) and (2.4),
we get

(5.1) QX =
1

2
[(r − 2)X + (r − 6)η(X)ξ] ,

for any vector field Xεχ(M). Taking into account (5.1), (2.1), and (2.4) in the fol-
lowing formula for semi-Riemannian manifold, we get

traceΥ −→ (∇ΥQ)X =
1

2
∇Xr.

and we obtain the required equation. �
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We state the following consequence of this Lemma,

Corollary 5.2. A 3-dimensional Lorentzian para-Kenmotsu manifold admitting an
η-Ricci soliton is of harmonic Weyl tensor if and only if the manifold is of constant
positive sectional curvature 1.

Proof. Let us consider a 3-dimensional Lorentzian para-Kenmotsu manifold; it is
known that [5]

R(X,Υ )Z = g(Υ,Z)QX − g(X,Z)QΥ + S(Υ,Z)X − S(X,Z)Υ(5.2)

−r
2

[g(Υ,Z)X − g(X,Z)Υ ]

and

(5.3) QX =
1

2
[(r − 2)X − (r − 6)η(X)ξ] ,

for any vector fields X,Υ, Z, where r is the scalar curvature, Q is the Ricci operator,
and S is the Ricci tensor. Also from the lemma (4.1) in a 3-dimensional Lorentzian
para-Kenmotsu manifold, we have

(5.4) ξr = −2(r − 6).

Using the above result in (4.4), we get

(5.5) r = 2(µ+ 2) = constant,

which implies

(5.6) ξr = 0.

Using this in (5.4), we obtain r = 6, and hence from (5.3), we get

QX = 2X.

Therefore from (5.2) the manifold has a constant sectional curvature 1.

Hence the manifold is an Einstein manifold, and the scalar curvature (positive)
is constant. Therefore from (1.3), it follows that the manifold is of harmonic Weyl
tensor, which concludes the proof. �

Theorem 5.3. Let M be a Lorentzian para-Kenmotsu manifold admitting an η-Ricci
soliton with η-parallel Ricci tensor. Then µ = 1, λ = 2 − n and the manifold is an
Einstein manifold.

Proof. Let the Ricci tensor of a Lorentzian para-Kenmotsu manifold be η-parallel [5].
Then

(5.7) g ((∇ΥQ)X,Z) = 0,

for arbitrary vector fields X,Υ, Z. Taking the covariant derivative of (3.5) concerning
an arbitrary vector field Υ , we get

(∇ΥQ)X = ∇ΥQX −Q(∇ΥX) = −(1 + µ) [((∇Υ η)X)ξ − η(X)∇Υ ξ] .
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Using (2.1) and (2.2) in the above equation, we get

(∇ΥQ)X = −(1 + µ) [−g(X,Υ )ξ + η(X)Υ + 2η(X)η(Υ )ξ] .

Using the above equation in (5.7), we infer

(5.8) (1 + µ) [g(X,Υ )η(Z)− η(X)η(Υ ) + 2η(X)η(Υ )η(Z)] = 0.

Putting Z = ξ in (5.8) yields

(1 + µ) [−g(X,Υ )− 3η(X)η(Υ )] = 0.

It follows that µ = −1, and hence from (3.4), we get λ = 2− n. Therefore (3.2) gives

S(X,Υ ) = (n− 1)g(X,Υ ),

and consequently, the theorem is proved. �

6 η-Ricci solitons on Lorentzian para-Kenmotsu
manifold satisfying the condition P.ϕ = 0

We assume that the LP-Kenmotsu manifold admitting an η-Ricci soliton satisfies the
curvature condition

P.ϕ = 0.

This implies that
P (X,Υ )ϕZ − ϕ(P (X,Υ )Z) = 0.

Putting Z = ξ, we get

(6.1) ϕ(P (X,Υ )ξ) = 0.

Now putting Z = ξ in (1.4), we get

P (X,Υ )ξ = R(X,Υ )ξ − 1

n− 1
[η(Υ )QX − η(X)QΥ ] .

Now using (2.3) and (3.5) in the above equation, we have

P (X,Υ )ξ = η(Υ )X − η(X)Υ − 1

n− 1
[η(Υ )((1− λ)X − (1 + µ)η(X)ξ)

−η(X)((1− λ)Υ − (1 + µ)η(Υ )ξ)],

which implies

(6.2) P (X,Υ )ξ =

[
1− (1− λ)

(n− 1)

]
(η(Υ )X − η(X)Υ ).

Using (6.2) in (6.1), we get[
1− (1− λ)

(n− 1)

]
[η(Υ )ϕX − η(X)ϕΥ ] = 0.
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Replacing X = ϕX in the above expression yields(
1− (1− λ)

(n− 1)

)
η(Υ )ϕ2X = 0.

Putting Υ = ξ, we get

−
(

1− (1− λ)

(n− 1)

)
[X + η(X)ξ] = 0.

Again replacing X by ϕX in the following equation, we infer

(6.3)

(
1− (1− λ)

(n− 1)

)
ϕX = 0.

Taking the inner product of (6.3) with respect to W , we get(
1− (1− λ)

(n− 1)

)
g(ϕX,W ) = 0.

It follows that

(
1− (1− λ)

(n− 1)

)
= 0, which implies λ = 2−n. Therefore from (3.4), we

get µ = −1. Hence (3.2) infers

S(X,Υ ) = (n− 1)g(X,Υ ).

We conclude that

Theorem 6.1. If a Lorentzian para-Kenmotsu manifold admits an η-Ricci soliton
and satisfies the curvature condition P.ϕ = 0, then µ = −1, λ = 2 − n and the
manifold is an Einstein manifold.

Corollary 6.2. If a Lorentzian para-Kenmotsu manifold admits an η-Ricci soliton
and satisfies the curvature condition Q.P = 0, then µ = −1, λ = 2 − n and the
manifold is an Einstein manifold
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