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Abstract. The aim of present paper is to analyze geometric character-
istics of screen slant lightlike submanifolds of indefinite nearly Kaehler
manifolds. We establish the existence theorem for screen slant lightlike
submanifolds in indefinite nearly Kaehler manifolds. We also derive con-
ditions for the integrability of distributions for such submanifolds. Conse-
quently, we find several characterization results for totally umbilical screen
slant lightlike submanifolds in indefinite nearly Kaehler manifolds. Sub-
sequently, minimal screen slant lightlike submanifolds of indefinite nearly
Kaehler manifolds are also investigated.
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1 Introduction

Slant immersions and slant submanifolds is one of the most significant contribution in
differential geometry. Chen [2] initiated the idea of slant immersions by generalizing
invariant and anti-invariant immersions. Further, in [3] the author generalized the
concept of slant immersions to define slant submanifolds in complex geometry. After-
wards, Lotta [9, 10] explored slant submanifolds in contact geometry. On the similar
note, semi-slant submanifolds, bi-slant submanifolds, hemi-slant submanifolds came
into existence and the subject matter was significantly investigated by Papaghiuc [11],
Carriazo [1] and Sahin [13].

One may note that most of the work of slant submanifolds has been considered
with positive definite metric. But, from last two decades, due to interesting geometric
properties of lightlike geometry, the focus of geometers shifted towards lightlike sub-
manifolds. In this context, Sahin [12] played a significant role, when he defined slant
lightlike submanifolds in indefinite Hermitian manifolds and further extended this
concept in indefinite Sasakian manifolds in [15]. Later on, many authors investigated
some other generalized classes of slant lightlike submanifolds viz. pointwise slant
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lightlike submanifolds, semi-slant lightlike submanifolds etc. in indefinite Kaehler
manifolds (for detail, see [8], [16], [17]).

In addition, Sahin [14] brought up the concept of screen slant lightlike subman-
ifolds in indefinite Hermitian manifolds. But the concept of screen slant lightlike
submanifolds is yet to be explored in indefinite nearly Kaehler manifolds. For this
reason, due to broader application area of indefinite nearly Kaehler manifolds, we
focus on study of screen slant lightlike submanifolds of indefinite nearly Kaehler man-
ifolds.

To this end, the geometry of screen slant lightlike submanifolds of indefinite nearly
Kaehler manifolds is investigated. Consequently, we obtain the existence theorem for
such submanifolds. We also establish conditions for the integrability of distributions
for such submanifolds. Further, we derive several characterization results for totally
umbilical screen slant lightlike submanifolds in indefinite nearly Kaehler manifolds.

2 Preliminaries

In this section, we define indefinite nearly Kaehler manifolds and present the basic
notations and formulae for lightlike submanifolds [4].

Consider a submanifold (Kn, g) of semi-Riemannian manifold (K̄m+n, ḡ) such that
ḡ is metric with index q satisfying m,n ≥ 1 and m + n − 1 ≥ q ≥ 1. If metric ḡ is
degenerate on TK, then TpK and TpK

⊥ both are degenerate and there exists a radical
(null) subspace Rad(TpK) such that Rad(TpK) = TpK ∩ TpK

⊥. If Rad(TK) : p ∈
K → Rad(TpK) is smooth distribution on K with rank r > 0, 1 ≤ r ≤ n, then K is
called r-lightlike submanifold of K̄. While the radical distribution Rad(TK) of TK
is defined as:

Rad(TK) = ∪p∈K{ξ ∈ TpK|g(u, ξ) = 0, ∀ u ∈ TpK, ξ 6= 0}.

Further, S(TK) be the screen distribution in TK such that TK = Rad(TK) ⊥
S(TK) and similarly S(TK⊥) is screen transversal vector bundle in TK⊥ such that
TK⊥ = Rad(TK) ⊥ S(TK⊥).
Moreover, there exists a local null frame {Ni} of null sections with values in the
orthogonal complement of S(TK⊥) in S(TK⊥)⊥ such that

(2.1) ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = 0, for any i, j ∈ {1, 2, .., r},

where {ξi} is any local basis of Γ(Rad(TK)). It implies that tr(TK) and ltr(TK),
respectively, be vector bundles in TK̄|K and S(TK⊥)⊥ with the property

tr(TK) = ltr(TK) ⊥ S(TK⊥),

and

(2.2) TK̄|K = TK ⊕ tr(TK) = S(TK) ⊥ (Rad(TK)⊕ ltr(TK)) ⊥ S(TK⊥).

Considering decomposition Eq. (2.2), the Gauss and Weingarten formulae are

(2.3) ∇̄PQ = ∇PQ+ hl(P,Q) + hs(P,Q),
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(2.4) ∇̄PN = −ANP +∇lPN +Ds(P,N),

(2.5) ∇̄PW = −AWP +Dl(P,W ) +∇sPW,

where P,Q ∈ Γ(TK), N ∈ Γ(ltr(TK)) and W ∈ Γ(S(TK⊥)). Further, employing
Eqs. (2.3) and (2.5), we have

(2.6) g(AWP,Q) = ḡ(hs(P,Q),W ) + ḡ(Q,Dl(P,W )).

Let us denote the projection morphism of TK on screen distribution S(TK) by S, it
follows that

(2.7) ∇PSQ = ∇∗PSQ+ h∗(P, SQ), ∇P ξ = −A∗ξP +∇∗tP ξ,

where {h∗(P, SQ),∇∗tP ξ} ∈ Γ(Rad(TK)) and {∇∗PSQ,A∗ξP} ∈ Γ(S(TK)). Then
considering Eqs. (2.4), (2.5) and (2.7), we attain

(2.8) ḡ(hl(P, SQ), ξ) = g(A∗ξP, SQ).

Let us denote by R̄ and R, the curvature tensors of ∇̄ and ∇, respectively, then the
Codazzi equation is given by

(R̄(P,Q)Z)⊥ = (∇Phl)(Q,Z)− (∇Qhl)(P,Z) + (∇Phs)(Q,Z)

−(∇Qhs)(P,Z) +Dl(P, hs(Q,Z))−Dl(Q, hs(P,Z))

+Ds(P, hl(Q,Z))−Ds(Q, hl(P,Z)),(2.9)

where

(2.10) (∇Phs)(Q,Z) = ∇sPhs(Q,Z)− hs(∇PQ,Z)− hs(Q,∇PZ),

(2.11) (∇Phl)(Q,Z) = ∇lPhl(Q,Z)− hl(∇PQ,Z)− hl(Q,∇PZ),

for P,Q,Z ∈ Γ(TK).

Definition 2.1. [7] An indefinite almost Hermitian manifold K̄ with an almost com-
plex structure J̄ and Hermitian metric ḡ, is said to be an indefinite nearly Kaehler
manifold if

(2.12) J̄2 = −I, ḡ(J̄P, J̄Q) = ḡ(P,Q), (∇̄P J̄)Q+ (∇̄QJ̄)P = 0,

where P,Q ∈ Γ(TK̄) and ∇̄ denotes the Levi-Civita connection on K̄.

An indefinite RK-manifold of constant holomorphic sectional curvature c and of
constant type α is called a generalized complex space form and is denoted by K̄(c, α).
For a generalized complex space form K̄(c, α), the curvature tensor R̄ is given by

R̄(P,Q)W =
c+ 3α

4
{ḡ(Q,W )P − ḡ(P,W )Q}+

c− α
4
{ḡ(P, J̄W )J̄Q

−ḡ(Q, J̄W )J̄P + 2ḡ(P, J̄Q)J̄W},(2.13)

where P,Q,W ∈ Γ(TK̄).
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3 Screen slant lightlike submanifolds

Following [14], we define screen slant lightlike submanifolds of indefinite nearly Kaehler
manifolds as follows.

Definition 3.1. A 2q - lightlike submanifold (K, g, S(TK)) of an indefinite nearly
Kaehler manifold K̄ (provided, 2q < dim(K)) is said to be a screen slant lightlike
submanifold of K̄ if

(i) J̄(Rad(TK)) = Rad(TK), that is, Rad(TK) is invariant with respect to J̄ .

(ii) For each non-zero vector field Y tangent to S(TK) at y ∈ U ⊂ K, the angle
θ(Y ) between J̄Y and S(TK) is constant, that is, it is independent of the choice
of y and Y ∈ (S(TK)).

In view of Definition (3.1), TK and S(TK⊥) of K have following decomposition

(3.1) TK = Rad(TK) ⊥ S(TK), S(TK⊥) = J̄(S(TK)) ⊥ µ.

Moreover, for Q ∈ Γ(S(TK)) and W ∈ Γ(S(TK⊥)), we have

(3.2) J̄Q = tQ+ nQ, J̄W = bW + cW,

where tQ and nQ, respectively, represent tangential and transversal component of J̄Q
and similarly bW ∈ Γ(S(TK)) and cW ∈ Γ(µ).

Note: In the forthcoming part, we shall denote a screen slant lightlike submanifold by
s.st.l.s. and an indefinite nearly Kaehler manifold by K̄, unless otherwise mentioned.
For a s.st.l.s. K of K̄, let R and S be the projection morphisms of TK on distributions
Rad(TK) and S(TK), respectively. Then for any Q ∈ Γ(TK), we have

(3.3) Q = RQ+ SQ.

Further, applying J̄ , Eq. (3.3) yields to

(3.4) J̄Q = J̄RQ+ J̄SQ = tRQ+ tSQ+ nSQ.

Theorem 3.1. A 2q- lightlike submanifold K of K̄ (provided, 2q < dim(K)), is a
s.st.l.s, if and only if

(i) ltr(TK) is invariant w.r.t. J̄ .

(ii) (Sot)2Q = −cos2θQ for Q ∈ Γ(S(TK)).

Proof. Let K be a s.st.l.s of K̄, therefore employing Eq. (3.4), for Q ∈ Γ(S(TK))
and N ∈ Γ(ltr(TK)), we acquire

ḡ(J̄N,Q) = −ḡ(N, J̄Q) = −ḡ(N, tQ)− ḡ(N,nQ) = 0.

Hence, J̄N does not belong to S(TK). Moreover, from Eq. (3.2), forW ∈ Γ(S(TK⊥)),
we get

ḡ(J̄N,W ) = −ḡ(N, J̄W ) = −ḡ(N, bW )− ḡ(N, cW ) = 0.
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Thus J̄N does not belong to S(TK⊥). Next, taking J̄N ∈ Γ(Rad(TK)), we get
J̄2N = −N ∈ Γ(ltr(TK)). As Rad(TK) is invariant, this leads to a contradiction,
which proves (i). In view of statement (ii) and hypothesis, we arrive at

(3.5) cosθ(Q) =
ḡ(J̄Q, tSQ)

|J̄Q| |tSQ|
= − ḡ(Q, J̄tSQ)

|J̄Q| |tSQ|
= − ḡ(Q, (S ◦ t)2Q)

|Q| |tSQ|
.

On the other hand, we also have

(3.6) cosθ(Q) =
|tSQ|
|J̄Q|

.

Thus from Eqs. (3.5) and (3.6), we obtain

(3.7) cos2θ(Q) = −g(Q, (S ◦ t)2Q)

|Q2|
.

Since angle is constant, we conclude (Sot)2Q = −cos2θQ, which proves (ii).
Conversely, assume that (i) and (ii) hold, then condition (i) implies that ltr(TK)
is invariant w.r.t. J̄ . By virtue of Lemma 3.1 of [14], the vector bundle S(TK) is
Riemannian, therefore

(3.8) g(tSQ, tSQ) = −g(t2SQ, SQ) = cos2θ(SQ)g(SQ, SQ),

for any Q ∈ Γ(S(TK)), which gives

(3.9) cos2θ(Q) =
g(tSQ, tSQ)

g(SQ, SQ)
.

Hence, the result follows. �

Corollary 3.2. [14] For a s.st.l.s. K of K̄, one has

(3.10) g(tSQ1, tSQ2) = cos2θg(SQ1, SQ2),

and

(3.11) g(nSQ1, nSQ2) = sin2θg(SQ1, SQ2),

for Q1, Q2 ∈ Γ(TK).

4 Integrability of the distributions

In this part, we will examine some conditions for integrability of distributions associ-
ated with a s.st.l.s of K̄. Firstly, we prove the following lemma for later use.

Lemma 4.1. Consider a s.st.l.s. K of K̄, then

(4.1) (∇P t)Q+ (∇Qt)P = AnSQP +AnSPQ+ 2bhs(P,Q),
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2J̄hl(P,Q) = hl(P, J̄RQ) + hl(P, tSQ) +Dl(P, nSQ)

+hl(Q, J̄RP ) + hl(Q, tSP ) +Dl(Q,nSP ),(4.2)

and

(∇Pn)Q+ (∇Qn)P = −hs(P, J̄RQ)− hs(P, tSQ)− hs(Q, J̄RP )

−hs(Q, tSP ) + 2chs(P,Q),(4.3)

where
(∇P t)Q = ∇P J̄RQ+∇P tSQ− J̄R∇PQ− tS∇PQ,
(∇Qt)P = ∇QJ̄RP +∇QtSP − J̄R∇QP − tS∇QP,

(∇Pn)Q = ∇sPnSQ− nS∇PQ, (∇Qn)P = ∇sQnSP − nS∇QP,
for any P,Q ∈ Γ(TK).

Proof. Employing Eqs. (2.12), (3.2) and (3.4) and then equating the tangential and
transversal components, the result follows. �

Theorem 4.2. Assume that K be a s.st.l.s. of K̄. Then Rad(TK) is integrable, if
and only if

hs(P, J̄RQ) + hs(Q, J̄RP )− 2chs(P,Q) = 2nS∇QP,
where P,Q ∈ Γ(Rad(TK)).

Proof. Employing Eq. (4.3), for any P,Q ∈ Γ(Rad(TK)), we acquire

nS∇PQ− nS∇QP + nS∇QP = hs(P, J̄RQ) + hs(Q, J̄RP )

−2chs(P,Q)− nS∇QP.(4.4)

Then Eq. (4.4) yields to

nS[P,Q] = hs(P, J̄RQ) + hs(Q, J̄RP )− 2chs(P,Q)− 2nS∇QP,(4.5)

which gives result. �

Theorem 4.3. For a s.st.l.s. K of K̄, S(TK) is integrable, if and only if

2J̄R∇QP = R(∇P tSQ+∇QtSP )−R(AnSQP +AnSPQ)

where P,Q ∈ Γ(S(TK)).

Proof. For P,Q ∈ Γ(S(TK)), using Eq. (4.1), we obtain

J̄R∇PQ+ tS∇PQ = ∇P tSQ−AnSQP +∇QtSP −AnSPQ
−J̄R∇QP − tS∇QP − 2bhs(P,Q),(4.6)

which yields to

J̄R[P,Q] + tS[P,Q] = ∇P tSQ−AnSQP +∇QtSP −AnSPQ
−2J̄R∇QP − 2tS∇QP − 2bhs(P,Q).(4.7)

Thus

J̄R[P,Q] = R(∇P tSQ+∇QtSP )−R(AnSQP +AnSPQ)− 2J̄R∇QP.

�
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5 Totally umbilical screen slant lightlike
submanifolds

Definition 5.1. [5] A lightlike submanifold (K, g) of a semi-Riemannian manifold
(K̄, ḡ) is called totally umbilical, if there is a smooth transversal vector field H ∈
Γ(tr(TK)) on K such that

(5.1) h(P,Q) = Hḡ(P,Q),

where P,Q ∈ Γ(TK). Then following Eqs. (2.3) and (2.5), K is totally umbilical, if
and only if, there exist smooth vector fields H l ∈ Γ(ltr(TK)) and Hs ∈ Γ(S(TK⊥))
such that

(5.2) hl(P,Q) = H lg(P,Q); hs(P,Q) = Hsg(P,Q); Dl(P,W ) = 0,

for P,Q ∈ Γ(TK) and W ∈ Γ(S(TK⊥)).

Theorem 5.1. Assume that K be a totally umbilical s.st.l.s. of K̄. Then at least one
of the following assertions hold:

(a) K is an anti-invariant submanifold.

(b) S(TK) = {0}.

(c) If K is a proper s.st.l.s., then Hs ∈ Γ(µ).

Proof. For any P ∈ Γ(S(TK)), from Eqs. (3.11) and (5.1), we have

(5.3) h(tP, tP ) = cos2θg(P, P )H.

Using Gauss formula, we obtain

(5.4) ∇̄tP tP −∇tP tP = cos2θg(P, P )H.

Then applying J̄ on both sides of Eq. (5.4) and in view of nearly Kaehlerian property
of K̄, we get

∇̄tP J̄ tP − J̄∇tP tP = cos2θg(P, P )J̄H,

which on using Eq. (3.2) yields

∇̄tP t2P + ∇̄tPntP − t∇tP tP − n∇tP tP = cos2θg(P, P )J̄H.(5.5)

Taking into account Theorem (3.1), we have t2P = −cos2θP and hence Eq. (5.5)
reduces to

cos2θg(P, P )J̄H = −cos2θ∇̄tPP −AntP tP +Dl(tP, ntP )

+∇stPntP − t∇tP tP − n∇tP tP.(5.6)

Further employing Eq. (5.2) in Eq. (5.6) and then equating transversal components
on both sides, one has

cos2θg(P, P )J̄H = −cos2θg(tP, P )H l − cos2θg(tP, P )Hs +∇stPntP
−n∇tP tP.(5.7)
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Then, taking the inner product w.r.t. nP in above equation, we obtain

−cos2θḡ(J̄Hs, nP )g(P, P ) + ḡ(∇stPntP, nP )− ḡ(n∇tP tP, nP ) = 0.(5.8)

Employing Eq. (3.11) for Q1, Q2 ∈ Γ(S(TK)) and then considering covariant deriva-
tive w.r.t. tP , we obtain

(5.9) ḡ(∇stPnP, nP ) = sin2θg(∇tPP, P ),

which further gives

(5.10) ḡ(∇stPntP, nP ) = sin2θg(∇tP tP, P ).

Next using Eqs. (3.11) and (5.10) in Eq. (5.8), we obtain

(5.11) cos2θg(P, P )ḡ(Hs, nP ) = 0.

Thus Eq. (5.11) yields that either P = 0 or θ = π/2 or Hs ∈ Γ(µ), which completes
the proof. �

Theorem 5.2. For a proper totally umbilical s.st.l.s. K of K̄, we must have H l = 0.

Proof. For Q ∈ Γ(S(TK)), from Eq. (2.12), we have ∇̄QJ̄Q = J̄∇̄QQ, which implies

∇QtQ+ hl(Q, tQ) + hs(Q, tQ)−AnQQ+∇sQnQ+Dl(Q,nQ)

= t∇QQ+ n∇QQ+ J̄hl(Q,Q) + bhs(Q,Q) + chs(Q,Q).(5.12)

Further, taking inner product w.r.t. J̄ξ ∈ Γ(Rad(TK)) on both sides in above equa-
tion and using the hypothesis, we obtain ḡ(hl(Q, tQ), J̄ξ) = ḡ(J̄hl(Q,Q), J̄ξ). Again
using the hypothesis, we acquire g(Q,Q)ḡ(H l, ξ) = g(Q, tQ)ḡ(H l, J̄ξ) = 0 and using
non-degeneracy of S(TK), we obtain ḡ(H l, ξ) = 0, this yields

(5.13) H l = 0.

�

Theorem 5.3. Consider a proper totally umbilical s.st.l.s. of K̄ along with ∇sQZ ∈
Γ(µ), then we have

Hs = 0,

for Q ∈ Γ(S(TK)) and Z ∈ Γ(S(TK⊥)).

Proof. From Theorem (5.1), for a proper totally umbilical s.st.l.s. of K̄, we have
Hs ∈ Γ(µ). Comparing transversal components on both sides of Eq. (5.12), we
obtain

hl(Q, tQ) + hs(Q, tQ) +∇sQnQ+Dl(Q,nQ)

= n∇QQ+ J̄hl(Q,Q) + J̄hs(Q,Q).(5.14)

Then, using Eq. (5.2), we acquire

g(Q, tQ)H l + g(Q, tQ)Hs +∇sQnQ
= n∇QQ+ g(Q,Q)J̄H l + g(Q,Q)J̄Hs.(5.15)
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On taking inner product on both sides w.r.t J̄Hs, above equation yields to

(5.16) ḡ(∇sQnQ, J̄Hs) = g(Q,Q)ḡ(Hs, Hs).

As ∇̄ is a metric connection on K̄, thus taking (∇̄Qg)(nQ, J̄Hs) = 0, we obtain

(5.17) ḡ(∇sQnQ, J̄Hs) = −ḡ(∇sQJ̄Hs, nQ) = 0.

Thus, from Eqs. (5.16) and (5.17), we derive

(5.18) g(Q,Q)ḡ(Hs, Hs) = 0.

As S(TK) is non-degenerate, therefore

(5.19) Hs = 0.

Hence the proof follows. �

Theorem 5.4. Every totally umbilical proper s.st.l.s. of K̄ provided, ∇sQZ ∈ Γ(µ),

for any Q ∈ Γ(S(TK)) and W ∈ Γ(S(TK⊥), is totally geodesic.

Proof. The result follows directly from Theorem (5.2) and Theorem (5.3). �

Theorem 5.5. There does not exist any proper totally umbilical s.st.l.s. in a gener-
alized complex space form K̄(c, α) provided, c 6= α.

Proof. For P ∈ Γ(S(TK)), Z ∈ Γ(ltr(TK)) and ξ ∈ Γ(Rad(TK)), employing Eq.
(2.13), we get

(5.20) ḡ(R̄(P, J̄P )Z, ξ) = −c− α
2

g(P, P )ḡ(J̄Z, ξ).

On the other hand, from equation of Codazzi (2.9), we derive

(5.21) ḡ(R̄(P, J̄P )Z, ξ) = ḡ((∇Phl)(J̄P, Z), ξ)− ḡ((∇J̄Phl)(P,Z), ξ).

Then from Eqs. (5.20) and (5.21), we acquire

(5.22) −c− α
2

g(P, P )ḡ(J̄Z, ξ) = ḡ((∇Phl)(J̄P, Z), ξ)− ḡ((∇J̄Phl)(P,Z), ξ).

By hypothesis along with Eqs. (2.11) and (5.2), we obtain

(5.23) (∇Phl)(J̄P, Z) = −ḡ(∇P J̄P, Z)H l − ḡ(J̄P,∇PZ)H l.

As ḡ(J̄P, Z) = 0, for P ∈ Γ(S(TK)) and Z ∈ Γ(ltr(TK)), then taking covariant
derivative w.r.t. P , we obtain ḡ(∇P J̄P, Z) = −ḡ(J̄P,∇PZ). Thus, Eq. (5.23)
reduces to

(5.24) (∇Phl)(J̄P, Z) = 0.

Similarly, it follows that

(5.25) (∇J̄Phl)(P,Z) = 0.

Then using Eqs. (5.24) and (5.25) in Eq. (5.22), we acquire − c−α2 g(P, P )ḡ(J̄Z, ξ) = 0.
Hence, in view of non-degeneracy of S(TK), we conclude c = α, which completes the
proof. �
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6 Minimal screen slant lightlike submanifolds

Definition 6.1. A lightlike submanifold (K, g, S(TK)) isometrically immersed in a
semi-Riemannian manifold (K̄, ḡ) is called minimal if the following conditions hold:

(i) hs(P,Q) = 0, for all P,Q ∈ Γ(Rad(TK)).

(ii) trace h|S(TK) = 0.

Note. In view of Definition (5.1), a s.st.l.s. of K̄ is minimal, if it is a totally
geodesic.

Theorem 6.1. A necessary and sufficient condition for totally umbilical proper s.st.l.s.
of K̄ to be minimal is that, trace AWl

|S(TK) = 0, for Wl ∈ Γ(S(TK⊥)), where
l ∈ {1, 2, ..., t}.
Proof. According to Definition (3.1), K is minimal iff

hs(ξi, ξj) = 0 and

q∑
j=1

h(ej , ej) = 0,

where {ξi}ri=1 and {ej}qj=1 are bases of Rad(TK) and S(TK), respectively. From
Eq. (5.2), we note that h(ξi, ξj) = 0. Therefore, we get hs = 0 on Rad(TK).
Further, employing Eq. (5.13), we conclude hl = 0. As a result, K is minimal
iff

∑q
j=1 h

s(ej , ej) = 0, where

q∑
j=1

hs(ej , ej) =

q∑
j=1

{
1

t

t∑
l=1

g(hs(ej , ej),Wl)Wl

}
.

Then using Eq. (2.6), the above equation reduces to

q∑
j=1

hs(ej , ej) =

q∑
j=1

{
1

t

t∑
l=1

g(AWl
ej , ej),Wl

}
.

Hence, the result follows. �

Theorem 6.2. Consider an irrotational s.st.l.s. K of K̄. Then K is minimal iff

trace AWl
|S(TK) = 0 and trace A∗ξj |S(TK) = 0,

where Wl ∈ Γ(S(TK)⊥), ξj ∈ Γ(Rad(TK)), l ∈ {1, 2, ..., t} and j ∈ {1, 2, ..., r}.
Proof. Since K is irrotational, therefore hs = 0 on Rad(TK). Moreover, we have

trace h|S(TK) =

q∑
p=1

h(ep, ep).

Then, using Eqs. (2.6) and (2.8), we acquire

(6.1)

q∑
p=1

h(ep, ep) =

q∑
p=1

1

r

r∑
j=1

g(A∗ξjep, ep)Nj +
1

t

t∑
k=1

g(AWl
ep, ep)Wl

 .

Thus, we conclude trace h|S(TK) = 0 iff trace AWl
= 0 and trace A∗ξj = 0. Hence,

the result follows. �
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