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Abstract. We classify two main singularities, as type I and type II, asso-
ciated to null mean curvature flow of screen conformal null hypersurfaces
in Lorentzian manifolds. We prove that the flow at a type I singularity
is asymptotically self-similar, whereas at a type II singularity there is a
blow-up solution which is an eternal solution. For further analysis of the
above two singularities, we define null translating solitons and use them to
prove some Harnack estimates for null mean curvature flow under certain
geometric conditions.
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1 Introduction

The theory of submanifolds of a Riemannian (or semi-Riemannian) manifold is one
of the most important topics of differential geometry (see for example, O’Neill [20]).
While the geometry of semi-Riemannian submanifolds is fully developed, its counter
part of null (lightlike, degenerate) submanifolds (for which the local geometry is com-
pletely different than the non-degenerate case) is relatively new and in a developing
stage (see [4, 5, 7, 8, 11, 17, 19] and others referred therein). The theory has nu-
merous applications in mathematical physics, particularly in general relativity and
electromagnetism (see [7]). In general relativity, null hypersurfaces can be viewed as
models of different black hole horizons (see [3, 2, 7, 8]).

In [19], the authors introduced the concept of evolving null hypersurfaces by their
null mean curvature, in which several aspects of such hypersurfaces were investigated.
It was shown, under certain geometric conditions such as screen conformality [7], that
null mean curvature flow (MCF) also develops singularities. Here we want to study the
singularities associated to null mean curvature flow which can occur for non convex
initial data. Our aim is to characterize the asymptotic behavior of such surfaces
near a singularity using rescaling techniques. These methods have been used in the
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study of singularities arising from the classical mean curvature flow of hypersurfaces
in Riemannian geometry [13, 14]. For more details on the classical mean curvature
flow we refer to [1, 6, 10, 9, 12, 13, 14, 15, 16, 18, 21, 22] and many more references
therein.

The paper is arranged as follows. In Section 2, we review the basic concepts on
null hypersurfaces. We also recall some known results on null mean curvature flow
required in the rest of the paper. In Section 3, we derive a null monotonicity formula
which we then use to investigate singularities in null mean curvature flow. Finally, in
Section 4, we prove a set of Harnack estimates for null mean curvature flow.

2 Preliminaries

Let (M, g) be a (n + 2)-dimensional Lorentzian manifold and let (M, g = g|M ) be a

hypersurface of M . Now, consider the vector bundle TM⊥ whose fibers are defined
as

TxM
⊥ = {Yx ∈ TxM : gx(Xx, Yx) = 0, ∀Xx ∈ TxM},

for any x ∈ M . Therefore, a hypersurface M of M is null if and only if TM⊥ is a
distribution of rank 1 on M .

Let M be a null hypersurface of (M, g). We consider a complementary distribution
S(TM) to TM⊥ in TM , which is called a screen distribution. It is well-known that
S(TM) is non-degenerate (see [7]). Thus, we have

TM = S(TM) ⊥ TM⊥.(2.1)

As S(TM) is non-degenerate with respect to g, we have TM = S(TM) ⊥ S(TM)⊥,
where S(TM)⊥ is the complementary vector bundle to S(TM) in TM |M .

From [7, p. 79, Theorem 1.1], we know that for a screen distribution S(TM) on
M , there exists a unique vector bundle tr(TM), called the null transversal bundle [7]
of M with respect to S(TM), of rank 1 over M such that for any non-zero section
E of TM⊥ on a coordinate neighborhood U ⊂M , there exists a unique section N of
tr(TM) on U satisfying g(E,N) = 1, g(N,N) = g(N,Z) = 0, for any section Z of
S(TM). Consequently, we have the following decomposition of TM .

TM |M = S(TM) ⊥ {TM⊥ ⊕ tr(TM)} = TM ⊕ tr(TM).(2.2)

Throughout this paper, Γ(Ξ) will denote the F(M)-module of differentiable sections
of a vector bundle Ξ.

Let ∇ and ∇∗ denote the induced connections on M and S(TM), respectively, and
P be the projection of TM onto S(TM), then the local Gauss-Weingarten equations
of M and S(TM) are the following ([7])

∇XY = ∇XY + h(X,Y ) = ∇XY +B(X,Y )N,(2.3)

∇XN = −ANX +∇tXN = −ANX + τ(X)N,(2.4)

∇XPY = ∇∗XPY + h∗(X,PY ) = ∇∗XPY + C(X,PY )E,(2.5)

∇XE = −A∗EX +∇∗tXE = −A∗EX − τ(X)E, A∗EE = 0,(2.6)
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for all X,Y ∈ Γ(TM), E ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)), where ∇ is the Levi-Civita
connection on M . In the above setting, B is the local second fundamental form of M
and C is the local second fundamental form on S(TM). AN and A∗E are the shape
operators on TM and S(TM), respectively, while τ is a 1-form on TM . The above
shape operators are related to their local fundamental forms by

g(A∗EX,Y ) = B(X,Y ), g(ANX,PY ) = C(X,PY ),(2.7)

g(A∗EX,N) = 0, g(ANX,N) = 0, ∀X,Y ∈ Γ(TM).(2.8)

From (2.8) we notice that A∗E and AN are both screen-valued operators. Let ϑ =
g(N, ·) be a 1-form metrically equivalent to N defined on M . Take λ = i∗ϑ to be its
restriction on M , where i : M → M is the inclusion map. Then it is easy to show
that

(∇Xg)(Y, Z) = B(X,Y )λ(Z) +B(X,Z)λ(Y ),

for all X,Y, Z ∈ Γ(TM), which indicates that ∇ is generally not a metric connection
with respect to g. However, the induced connection ∇∗ on S(TM) is a metric con-
nection. For more details about null hypersurfaces see the books [7] and [8]. Through
the 1-form λ, the authors in [5] considered a non-degenerate metric ĝ on M , given by

ĝ(X,Y ) = g(X,Y ) + λ(X)λ(Y ), ∀X,Y ∈ Γ(TM).(2.9)

The metric ĝ is invertible and its inverse, g[·,·], was called the pseudo-inverse of g (see
details in [5]). Also, observe that ĝ coincides with g if the latter is non-degenerate.
The metric ĝ has been used to define (on M) the usual operators such as gradient,
divergence, D’Alambertian (see [5]), which one can not afford with the degenerate
metric g. In case M is endowed with the metric ĝ, we define the gradient ∇s%,
Hessian, Hesss(%), and D’Alambertian ∆s% of a smooth function % on U ⊂ M with
respect to the screen distribution S(TM) as

∇s% = gαβXα(%)Xβ ,(2.10)

Hesss(%) = Xα(Xβ(%))− (∇∗XαXβ)(%),(2.11)

and ∆s% = trs(Hesss(%)) = gαβ(Xα(Xβ(%))− (∇∗XαXβ)(%)),(2.12)

where {X1, . . . , Xn} is a basis of S(TM) and trs(·) denotes the trace with respect to
S(TM). Note that if the screen distribution S(TM) is integrable, then (2.10), (2.11)
and (2.12) are just, respectively, the gradient, Hessian and Laplacian on a leaf of the
screen distribution.

Throughout this paper, we assume that M carries the associated metric ĝ and tr(·)
will denote the trace over M with respect to ĝ.

In the sequel, we shall make use of the following convention on the range of indices:
1 ≤ α, β, γ, µ, σ ≤ n, 0 ≤ a, b, c ≤ n and 0 ≤ i, j, k ≤ n+ 1.

Let (M, g, S(TM)) be a 1-null simply connected (n + 1)-dimensional manifold of
index (q − 1) and with the geometric objects g, ∇′, ∇tr, h∗

′
and A∗

′
. Then, there

exists a null isometric immersion F : Mn+1 −→ M
n+2

(see [7, Theorem 4.1] for
details) satisfying

g(X,Y ) = g(F∗X,F∗Y ), ∀X,Y ∈ Γ(TM),(2.13)



70 F. Massamba and S. Ssekajja

and a vector bundle isomorphism F : tr(TM) −→ tr(TF (M)) such that we have
F∗(∇′XY ) = ∇F∗XF∗Y , F∗(A

∗′
UX) = A∗F∗UF∗X, F∗(h

∗′(X,PY )) = h∗(F∗X,F∗PY )

and F (∇tr
XV ) = ∇tXFV , ∀ X,Y ∈ Γ(TM), U ∈ Γ(RadTM) and V ∈ Γ(tr(TM)),

where tr(TF (M)) is the null transversal vector bundle of F (M) with respect to
F∗S(TM), and ∇, ∇t, h∗, A∗ are the geometric objects induced on F (M) with
respect to the immersion F . Certainly, F (M) is nothing but a 1-null submanifold of

M
n+2

. Moreover, the immersion F preserves both the radical and screen distribution
(see [7] for details).

Next, suppose that F (M) is a null hypersurface as described above. By the method
of [7], the null mean curvature vector H of F (M) at p ∈ M is a smooth vector field
transversal to F (M) and given by

H = trs(h) = trs(B)N = SN,(2.14)

where N ∈ Γ(tr(FTM)) and S := trs(B) = trs(A∗E). The function S is called the
null mean curvature of F (M).

It is easy to see, from [8, Eq. (2.3.9), p. 59], that S is independent of a chosen
screen distribution S(TM). However, the mean curvature vector H = SN is clearly
dependent on a choice of S(TM), due to its direct dependance on N . In fact, let
S(TM)′ be another screen distribution on M and tr(TM)′ be its corresponding null
transversal bundle. As S is unique, it follows that

H−H′ = S(N −N ′),

from which the mean curvature vector is unique if and only tr(TM) is unique. Equiv-
alently, when S(TM) is unique. Thus, fixing S(TM) fixes the null transversal vector
field N , and so is H. A null hypersurface M with a fixed screen distribution is
sometimes denoted by (M, g, S(TM)).

Throughout this paper, we consider a null hypersurface M with a fixed screen
distribution, and we may write (M, g) for convenience.

Definition 2.1. [19] Let (Mn+1, g, S(TM)) be a compact null hypersurface of a

semi-Riemannian manifold (M
n+2

, g). Assume that F0 : Mn+1 × [0, T ) −→ M
n+2

smoothly immerses M as a null hypersurface in M . We say that M0 := F0(M)
evolves by its null mean curvature vector if there is a whole family F (·, t) of smooth
immersions with corresponding hypersurfaces Mt := F (·, t)(M) such that

∂F

∂t
(p, t) = H(p, t), F (·, 0) = F0, p ∈Mn+1,(2.15)

where H(p, t) := S(p, t)N is the mean curvature vector of Mt at F (p, t).

3 Singularity formation

In this section, we discuss the singularities which arises during null mean curvature
flow. Let us consider an orthonormal basis {X1, . . . , Xn}, where Xα = ∂

∂xα
, of S(TM)

around a point p ∈ M such that the induced Levi-Civita connection ∇∗ of S(TM)
satisfies

(3.1) (∇∗XαXβ)(p) = 0 and C(X0, Xα) = 0 with X0 = E.
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Lemma 3.1. Under the hypotheses given in (3.1), the screen distribution S(TM) is
integrable and its leaves are flat.

Furthermore, we will assume that the 1-form τ vanishes on S(TM). As an example
we have the following.

Example 3.1 (Null cone of Rn+2
1 ). Let Rn+2

1 be the space Rn+2 endowed with a

semi-Euclidean metric g(x, y) = −x0y0 +
∑n+1
a=1 xaya, (x =

∑n+1
A=0 x

A∂xA) where

∂xA := ∂
∂xA

. Then, the null cone Λn+1
0 is given by the equation x2

0 =
∑n+1
a=1 x

2
a,

x0 6= 0. It is well-known (for example see the books [7, 8]) that Λn+1
0 is a null

hypersurface of Rn+2
1 , in which the radical distribution is spanned by a global vector

field E =
∑n+1
A=0 xA∂xA on Λn+1

0 . The transversal bundle is spanned by a global

section N given by N = 1
2x2

0
{−x0∂x0 +

∑n+1
a=1 xa∂xa}. Moreover, E being the position

vector field, one gets ∇XE = ∇XE = X, for any X ∈ Γ(TM). Consequently,
A∗EX + τ(X)E + X = 0. Noticing that the operator A∗E is screen-valued, we infer
from the last relation that A∗EX = −PX, τ(X) = −g(X,N) = −λ(X), for any

X ∈ Γ(TM). Next, any X ∈ Γ(S(TΛn+1
0 )) is expressed as X =

∑n+1
a=1 X̃a∂xa, where

{X̃1, . . . , X̃n+1} satisfy
∑n+1
a=1 xaX̃a = 0. From the above calculations, we can clearly

see that τ(X) = 0, for any X ∈ Γ(S(TM)).

The following result is important to this paper.

Theorem 3.2. [19] Let (M, g) be a screen integrable null hypersurface of a Lorentzian
manifold (M, g). Under null MCF, the squared norm |A∗E |2s of the screen shape oper-
ator A∗E evolves according to the following

∂|A∗E |2s
∂t

= ∆s|A∗E |2s + 2trs(A∗E ◦AN )|A∗E |2s − 2|∇sB|2s,(3.2)

where |A∗E |2s = gαµgγβBαµBγβ = trs
(
A∗E

2
)
.

Example 3.2. Under null mean curvature flow, the induced metric g evolves (see
[19]) according to

∂gαβ
∂t

= −2SCαβ ,(3.3)

where S = trs(A∗E). From [7], the curvature tensors R and R∗ of M and S(TM),
respectively, are related by

g(R(X,Y )PZ, PW ) = g(R∗(X,Y )PZ, PW ) + C(X,PZ)B(Y, PW )

− C(Y, PZ)B(X,PW ).(3.4)

As M is a space of constant curvature c, we have (see [7, p. 41])

R(X,Y )PZ = c{g(Y, PZ)X − g(X,PZ)Y }, ∀X,Y, Z ∈ Γ(TM).(3.5)

Considering (3.4) and (3.5), we derive

−SCαβ = Ric∗αβ(g) + c(n− 1)gαβ − g(A∗EXα, ANXβ),(3.6)
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where Ric∗ denotes the Ricci tensor of the leaf M ′ of S(TM). Let k∗α and kα be the
eigenvalues of A∗E and AN , respectively, with respect to {X1, . . . , n}. Placing (3.6) in
(3.3) we get

∂gαβ
∂t

= 2Ric∗αβ(g) + 2σgαβ ,(3.7)

where σ := c(n − 1) − k∗αkβ . As M ′ is Einstein, we have Ric∗αβ(g(0)) = $gαβ(0),
where $ is a constant. Set gαβ = kgαβ(0), where k is a positive constant. Then
Ric∗αβ(g) = Ric∗αβ(g(0)) = $gαβ(0) = $

k gαβ . Let gαβ(t) = f(t)gαβ(0) be a solution
to (3.7), then

∂gαβ
∂t

= f ′(t)gαβ(0) = 2Ric∗αβ(f(t)g(0)) + 2σf(t)gαβ(0)

= 2Ric∗αβ(g(0)) + 2σf(t)gαβ(0)

= 2$gαβ(0) + 2σf(t)gαβ(0),(3.8)

in which we have used the fact that M ′ is an Einstein manifold. From (3.8) we have
f ′(t) = 2σf(t)+2$. Solving this ODE leads to f(t) = −$σ +

(
1 + $

σ

)
e2σt, and hence

gαβ(t) = (−$
σ

+
(

1 +
$

σ

)
e2σt)gαβ(0), α, β ∈ {1, . . . , n}.

Observe that the flow will become singular at t = 1
2σ ln( $

$+σ ).

Now, we discuss some singularities associated to (3.2) in the case M is a screen
conformal null hypersurface. A null hypersurface (M, g) of a semi-Riemannian mani-
fold (M, g) is called screen conformal [7, p. 51] if there exist a non-vanishing smooth
function ψ on a neighborhood U in M such that AN = ψA∗E , or equivalently,

C(X,PY ) = ψB(X,Y ), ∀X,Y ∈ Γ(TM).(3.9)

We say that M is screen homothetic if ψ is a constant function on M .

Example 3.3. Consider the null cone in Example 3.1. By straightforward cal-
culation, one gets g(∇EX,E) = −

∑n+1
a=1 xaXa = 0, which implies that ∇EX ∈

Γ(S(TΛn+1
0 )). Hence, ANE = 0. Using Gauss-Codazzi equations, we calculate

C(X,Y ) = g(∇XY,N) = g(∇XY,N) = − 1
2x2

0
g(X,Y ), for any X,Y ∈ Γ(S(TΛn+1

0 )).

Consequently, ANX = − 1
2x2

0
PX, for any X,Y ∈ Γ(S(TΛn+1

0 )). Thus, deduce that

ANX = 1
2x2

0
A∗EX, for any X ∈ Γ(S(TΛn+1

0 )). Hence, Λn+1
0 is screen globally con-

formal null hypersurface of Rn+2
1 , with a positive conformal factor ψ = 1

2x2
0

globally

define on Λn+1
0 .

From the result of Theorem 3.2, we notice that one gets a quadratic term in |A∗E |2s
when M is screen conformal. More precisely, when M is screen conformal, we have
trs(A∗E ◦AN ) = ψtrs

(
A∗E

2
)

= ψ|A∗E |2s. Thus from (3.2), we have

∂|A∗E |2s
∂t

= ∆s|A∗E |2s + 2ψ|A∗E |4s − 2|∇sB|2s.(3.10)
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Relation (3.10) indicates that there will also be singularities in null MCF if the initial
null hypersurfaceM0 is screen conformal, as the quantity |A∗E |2s blows-up in finite time.
In fact, the above equation resembles the PDE; ut = ∆u + u2, which has solutions
which blows up at infinity. When this happens we say that t := T is singular time for
the null MCF. Moreover, we have the following.

Theorem 3.3. [19] Let M0 be a mean convex, screen conformal null hypersurface.
If |A∗E |2s is not bounded as t −→ T < +∞ during the null MCF of a compact null
hypersurface, then it must satisfy the following lower bound for its blow-up rate:

max
p∈M
|A∗E |2s(p, t) ≥

1

2ψ(T − t)
,

for every t ∈ [0, T ). Hence,

lim
t−→T

max
p∈M
|A∗E |2s(p, t) = +∞,

By mean convex null hypersurface, we mean null hypersurface with nonnegative
mean curvature everywhere.

In accordance to Theorem 3.3, let T be the maximal time of existence of null mean
curvature flow, such that ψ > 0. If there exists a constant ℘ > 1 such that we have
the upper bound

max
p∈M
|A∗E |s(p, t) ≤

℘√
2ψ(T − t)

,(3.11)

we say that the flow is developing a type I singularity at T . In the event that such a
constant does not exist, that is

lim sup
t−→T

max
p∈M
|A∗E |s(p, t)

√
T − t = +∞,

we say that we have a type II singularity.
One of the major tools in studying the singularities associated to mean curva-

ture flow of Riemannan surfaces is Huisken’s monotonicity formula [13]. It is based
on a Gaussian backward heat kernel and the first variation formula for Riemannian
surfaces. Due to the inter-relationships between some geometric quantities on null
hypersurfaces (and submanifolds in general) and the fact that the normal bundle,
TM⊥, is a subbundle of the tangent bundle, TM , of the null hypersurface M , such
monotonicity formula cannot be used to investigate singularities in our case. Thus,
we need a null version of it. To state and prove a monotonicity formula for null hy-
persurfaces moving by their mean curvature, we need a null variation formula. To
do this, let U be a vector field on M , whose screen component PU has a compact
support in the interior of Mt. Then, according to (2.1), U has a unique decomposition
U = PU + g(U,N)E. Using this decomposition of U , we have the following.

Proposition 3.4. Let (M, g) be a compact screen conformal null hypersurface of
(M, g). Let U be a neighborhood of M and let U be a compactly supported vector field
on the screen distribution of M . If Ut is a 1-parameter family of null hypersurfaces
tangent at t = 0 to the variation U , then∫

U
divS(TM)(U)dµ = −

∫
U
g(H,U)dµ,
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where dµ denotes the volume form with respect to g restricted to S(TM) and divS(TM)(·)
is the divergence operator with respect to S(TM).

Proof. Let (M, g) be a null hypersurface, and let U be a neighborhood of M . Let
f : U × (−ε, ε) → M be a one-parameter variation supported in the interior of
U . Let t denote the coordinate on (−ε, ε), and let U := f∗(∂t). In this regard,
U := f(U) evolves to Ut := f(U , t). Flow U determines an endomorphism field AU
along f . This endomorphism decomposes into a skew-symmetric part, which rotates
S(TU) but preserves volume (here volume is taken with respect to degenerate metric
g restricted to S(TM)), and a symmetric part. The derivative at t = 0 of the area
of an infinitesimal plane tangent to S(TUt) is then the negative of the trace of AU
restricted to S(TU). In fact, let dµ denote the induced volume form on Ut, then

vol(Ut) =

∫
U
f∗t dµ,(3.12)

where f∗t dµ denotes the pullback of the volume form dµ on Ut under ft. But
f∗t dµ(X1, . . . , Xn) = dµ|Ut(dftX1, . . . , dftXn) = det(dft)dµ(X1, . . . , Xn)|Ut = det(dft),
where {X1, . . . , Xn} is an orthonormal frame field along U . Let gtαβ = g(dftXα, dftXβ)

and g(t) = det(gtαβ), then det(dft) =
√
g(t). Thus, from (3.12), we have

d

dt

∣∣∣∣
t=0

vol(Ut) =

∫
U

d

dt

∣∣∣∣
t=0

det(dft)dµ0 =

∫
U

1

2

dg

dt

∣∣∣∣
t=0

dµ.(3.13)

By simple calculations, we have

1

2

∂

∂t
gtαα|t=0 = g(∇UXt

α, X
t
α)|t=0 = g(∇XtαU,X

t
α)|t=0,(3.14)

where Xt
α = df ·Xα. Hence, considering (3.13) and (3.14), we get

d

dt

∣∣∣∣
t=0

vol(Ut) =

∫
U

divS(TM)(U)dµ.(3.15)

From (3.15) and the decomposition of U , we have

d

dt

∣∣∣∣
t=0

vol(Ut) =

∫
U

divS(TM)(PU)dµ+

∫
U

divS(TM)(g(U,N)E)dµ.(3.16)

As PU is compactly supported on S(TU), Stoke’s theorem reduces (3.16) to

d

dt

∣∣∣∣
t=0

vol(Ut) =

∫
U

divS(TM)(g(U,N)E)dµ.(3.17)

By simple calculations, while considering (2.6), we have

g(∇Xαg(U,N)E,Xα) = g(Xα, E)Xα · g(U,N) + g(U,N)g(∇XαE,Xα)

= −B(Xα, Xα)g(U,N), ∀α ∈ {1, . . . , n}.(3.18)
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Plugging (3.18) in (3.17), we get

d

dt

∣∣∣∣
t=0

vol(Ut) = −
∫
U

n∑
α=1

B(Xα, Xα)g(U,N)dµ,(3.19)

which concludes the proof. �

Proposition 3.4 gives the null first variational formula. Now, we are in position to
state and prove a general monotonicity formula for null hypersurfaces evolving by
their mean curvature. To this end, let us first define a backwards heat kernel (see
details in [13]) for such evolution. Let us define a backward heat kernel ρ at (0, t0) by

ρ(X, t) :=
1

(4π(t0 − t))
n
2

exp

(
− |X|2

4π(t0 − t)

)
, t < t0,(3.20)

where | · |2 := ĝ(·, ·). Notice that (3.20) is a Gaussian function. This function is
frequently used as a backward heat kernel due to its nice properties (see for instance
[13]). With such a heat kernel, we have the following null monotocity formula.

Theorem 3.5. Let Mt be a screen conformal null hypersurface evolving by mean
curvature and satisfying Definition 2.1. Then

d

dt

∫
Ut
ρ(X, t)dµ = −

∫
Ut
ρ(X, t)

{
ψS2 + S λ(X)

(t0 − t)
+

λ(X)2

4(t0 − t)2

}
dµ,

where λ(X) = g(X,N).

Proof. By a straightforward calculation while considering the evolution equation d
dtµ =

−g(H, Ĥ)dµ, where Ĥ =
∑n
a=0 C(Xa, PXa)E and the fact M is screen conformal we

derive

d

dt

∫
Ut
ρ(X, t)dµ

=

∫
Ut

{
∂ρ(X, t)

∂t
+ g(∇ρ(X, t), H)

}
dµ+

∫
Ut
ρ(X, t)

∂dµ

∂t

=

∫
Ut

{
∂ρ(X, t)

∂t
+ g(∇ρ(X, t), H)

}
dµ−

∫
Ut
ρ(X, t)g(Ĥ,H)dµ

=

∫
Ut

{
∂ρ(X, t)

∂t
+ g(∇ρ(X, t), H)

}
dµ−

∫
Ut
ψρ(X, t)S2dµ,(3.21)

where ∇f denotes the gradient of a smooth function f with respect to ĝ. From (3.20),
we have

∂ρ(X, t)

∂t
=

n

2(t0 − t)
ρ(X, t)− |X|2

4(t0 − t)2
ρ(X, t),(3.22)

and ∇ρ(X, t) = − 1

2(t0 − t)
ρ(X, t)X.(3.23)
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Putting (3.22) and (3.23) in (3.21), we have

d

dt

∫
Ut
ρ(X, t)dµ =

∫
Ut

{
n

2(t0 − t)
ρ(X, t)− |X|2

4(t0 − t)2
ρ(X, t)

− ρ(X, t)

2(t0 − t)
g(X,H)

}
dµ−

∫
Ut
ψρ(X, t)S2dµ

= −
∫
Ut
ρ(X, t)

{
ψS2 +

1

(t0 − t)
g(X,H) +

|X|2

4(t0 − t)2

}
dµ

+

∫
Ut

ρ(X, t)

2(t0 − t)
g(X,H)dµ+

∫
Ut

n

2(t0 − t)
ρ(X, t)dµ.(3.24)

Now, using the first variation formula in Proposition 3.4 with U = Φ
2(t0−t)X, we derive∫

Ut

ρ(X, t)

2(t0 − t)
g(X,H)dµ = −

∫
Ut
ρ(X, t)

{
n

2(t0 − t)
− |PX|2

4(t0 − t)2

}
dµ.(3.25)

Finally, plugging (3.25) in (3.24) and using X = PX + g(X,N)E, we get

d

dt

∫
Ut
ρ(X, t)dµ = −

∫
Ut
ρ(X, t)

{
ψS2 +

1

(t0 − t)
g(X,H) +

|X|2

4(t0 − t)2

}
dµ

+

∫
Ut

|PX|2

4(t0 − t)2
ρ(X, t)dµ

= −
∫
Ut
ρ(X, t)

{
ψS2 +

g(X,H)

(t0 − t)
+
g(X,N)2

4(t0 − t)2

}
dµ,

which proves our result and the proof is complete. �

Theorem 3.5 gives the null monotonicity formula for a screen conformal lightlike
hypersurface evolving by it mean curvature.

Let (0, T ) be a Type I singularity and consider the rescaled mean curvature flow

F̃ (x, s̃) =
F (x, t)√
2ψ(T − t)

, s̃(t) = − 1

2ψ
log (T − t) .(3.26)

Then

dF̃ (x, s̃)

ds̃
= H̃(x, s̃) + F̃ (x, s̃),(3.27)

on M × [0,+∞). Using the above rescaling and Theorem 3.5, we have the following
important result.

Corollary 3.6. If the surface M̃s̃ satisfies the rescaled equation (3.26), then

d

ds̃

∫
F̃s̃

ρ(F̃ , s̃)dµ = −
∫
F̃s̃

ρ(F̃ , s̃){ψS2 + 2Sλ(F̃ ) + λ(F̃ )2}dµ̃s̃,

where F̃s̃ = F̃s̃(M), ρ(F̃ ) = exp(− 1
2 |F̃ |

2) and λ(F̃ ) = g(F̃ , N).
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Next, we use Corollary 3.6 to study the behavior of M̃s̃ as s̃ −→∞.

Proposition 3.7. Let [0, T ) be a type I singularity such that (3.11) holds. Then there

is x ∈M such that F̃ (x, s̃) as defined in (3.26) remains bounded for s̃ −→∞.

Proof. In view of the null mean curvature flow relation of Definition 2.1, it is easy to
show that |F (x, t)| ≤ C0(M), where C0(M) is a non-zero constant on M independent
of time, which ends the proof. �

Notice that Ft∩BC(M)(0) can not be empty for C(M) large enough, otherwise the time

T can not be the first time singularity. Therefore, F̃ (·, s̃) is indeed locally uniformly
bounded.

Theorem 3.8. Let [0, T ) be a type I singularity such that (3.11) holds. Then for

each sequence s̃j −→∞ there is a subsequence s̃jk such that M̃s̃jk converges smoothly

to an immersed nonempty limiting surface M̃∞.

Proof. A proof uses similar arguments as that in [13]. �

Now, using the rescaled null monotonicity formula in Corollary 3.6 we have the
following result about the limiting surface M̃∞.

Theorem 3.9. For ψ ≤ 1, each limiting surface M̃∞ as per Theorem 3.8 satisfies

S = g(X, N), X := −
(

ψ

1 +
√

1− ψ

)−1

X,(3.28)

where X is the position vector and S is the null mean curvature and N is the lightlike
transversal vector, such that H = SN is the mean curvature vector.

Proof. From the lightlike monotonicity formula of Corollary 3.6 and the fact that the
integral of ρ is positve, we have∫ ∞

s̃0

∫
F̃s̃

ρ(F̃ , s̃){ψS2 + 2Sλ(F̃ ) + λ(F̃ )2}dµ̃s̃ds̃ <∞,(3.29)

and the result follows immediately in view of the uniform estimates in Proposition
2.3 as in [13]. �

Observe that the relation (3.28) in Theorem 3.9 is a second order elliptic equation.
For any solution F0 to (3.28), there is an associated self-similar solution of the null
mean curvature flow, given by F (, t) = (2(T − t))1/2F0. Thus, from the above we
have the following.

Theorem 3.10. The null mean curvature flow F = {Ft} at a type I singularity (x0, T )
is asymptotically self-similar, in the sense that [2(T−t)]−1/2(Ft−x0) converges locally
uniformly to a solution F of (3.28).

In Theorem 3.10, we obtained a self-similar blow-up solution at type I singularity,
which is an ancient solution, namely it exists from time t = −∞. At type II singu-
larity, there is a blow-up solution which is an eternal solution. To see this, we choose
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the blow-up points (xk, tk) as follows. For each integer k ≥ 1, let tk ∈
[
0, T − 1

k

]
and

xk ∈ Ftk , such that

|A∗E |2s(xk, tk)

(
T − 1

k
− tk

)
= max
t≤T− 1

k , x∈Ft
|A∗E |2s(x, t)

(
T − 1

k
− t
)
.(3.30)

Let us make the dilation

F k(y, s̃) = ε−1
k [F (xk + εky, tk + ε2ks̃)− F (xk, tk)],

where εk = (|A∗E |s(xk, tk))−1. Since the singularity is of Type II, the right hand side of
(3.30) tends to +∞ as k −→ +∞. Hence, for any finished s̃ ∈

[
−ε−2

k tk, ε
−2
k

(
T − 1

k − t
)]

,
the mean curvature of the rescaled hypersurface F k satisfies

|A∗E |2s ≤
T − 1

k − tk
T − i

k − t
=

T − 1
k − tk

T − i
k − tk − ε

2
ks̃
−→ 1, as k −→ +∞.

It follows that for any s̃∗ > 1 and any ε > 0 there exists k0 such that

max
Fk
|A∗E |s(·, s̃) ≤ 1 + ε,

for any k ≥ k0 and s̃ ∈ [−s̃∗, s̃∗]. By similar arguments as in [22], the second
fundamental form is uniformly bounded and all derivatives of the second fundamental
forms of F k(·, s̃) are uniformly bounded. Hence, by the Arzela-Ascoli theorem, we can
extract a subsequence of F k(·, s̃) which converges uniformly on any compact subsets
of Rn+2 × R1 to a blow-up solution F∞(·, s̃) (see [6], [16], [21] for more details).

4 Hanarck estimates

In classical Riemannian (or semi-Riemannian) geometry, a submanifold M in a flat
space M is called a translating soliton [10] if there exists a constant vector K in M
such that K = K+H on M , where K is its tangential component and H is the mean

curvature vector of M in M . Equivalently, M is a translating soliton if H = K
⊥

,

where K
⊥

is the projection of K in M on the normal bundle of M . Consequently, the
1-parameter family of submanifolds Mt defined by Mt = M+tK for t ∈ R is a solution
to the classical MCF (see [9], [14], [15] and many more references therein). Soliton
solutions have proved fundamentally important in mean curvature flow studies, for
instance singularities are locally modeled on soliton solutions (see [22] and many more
references therein). In [12], Hamiliton used translating solitons to prove some Harnack
estimates for MCF of Riemannian hypersurfaces.

We have seen, in the previous section, that the evolution equations for null MCF
possesses some analogies with those in classical MCF of Riemannian hypersurfaces
(see some of such evolution equations in [13], [14], [15] and many more references
therein). Thus, singularities are bound to occur as in the usual MCF. Furthermore,
translators or translating solitons can equally be defined in null MCF to facilitate the
study of such singularities as well as in the establishment of null Harnack inequalities
which is the main aim of this section. Note, however, that in null MCF we can not use
the above definition of translating solitons due to the fact that the normal bundle of a
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null hypersurface is a subbundle of its tangent bundle. Furthermore, in null MCF the
null hypersurface under consideration is evolving in the transversal direction. From
the decomposition of TM in (2.2), any vector K of M can be uniquely written as
K = K + Ktr, where K and Ktr are its tangential and transversal components,
respectively. Thus, for null MCF, we have the following definition.

Definition 4.1. A solution Mt of null MCF will be called a null translating soliton
if its null mean curvature vector H satisfy H = Ktr.

As H = SN , we immediately get S = g(Ktr, E), where E spans the radical distri-
bution of Mt. Suppose a solution Mt to the null MCF in Definition 2.1 translates in

the direction of the constant vector K = (K
0
, . . . ,K

n+1
), for i ∈ {0, . . . , n+ 1}, and

let K = (K0, . . . ,Kn+1) be its tangential component. Then the transversal compo-
nent of K must be SN i to solve the null MCF. Locally, the tangential component K

can be written as Ki = Ka ∂y
i

∂xa
:= Ka∇Xayi, where yi = F i(xa, t). Also, with respect

to the non-degenerate metric ĝ its covector is Ka = ĝabK
b, for any a, b ∈ {0, . . . , n}.

Then differentiating K
i

= Ki+SN i and using the facts ∇XaK
i

= 0 (K is a constant
vector), (2.4) and τ = 0 we get

g[bc](∇XaKb − SCab)∇Xcyi + (∇XaS + g[bc]BabKc)N
i = 0.(4.1)

Taking the g-product of (4.1) with N i and observing that g(∇Xcyi, N i) 6= 0, we get
the two relations

∇XaKb = SCab and ∇XaS +BabKb = 0.(4.2)

By simple calculations while considering the first relation of (4.2), we have

(LKg)(Xα, Xβ) = ∇XαKβ +∇XβKα = S(Cαβ + Cβα).(4.3)

Hence, from the evolution equation of g (see [19]), if the local second fundamental form
C is symmetric, the degenerate metric g evolves by the Lie derivative with respect to
K, that is;

∂

∂t
gαβ = −(LKg)αβ , α, β ∈ {1, . . . , n}.(4.4)

The vector field K is said to be conformal [7, p. 259] if

(LKg)(X,Y ) = 2Ψg(X,Y ), ∀X,Y ∈ Γ(TM),

where Ψ is a scalar function on M . In particular, K is homothetic or Killing vector
field according as Ψ is non-zero constant or zero respectively. K is called a proper
conformal vector field if Ψ is a non-constant function. Accordingly, the following
holds.

Proposition 4.1. If Mt is null translating soliton in which K is conformal, then
Ψ = 0, that is; K is a killing vector field.
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Proof. As Mt is a null translating soliton, we have K = K + H, where H is the null
mean curvature and given by H = SN . Then by simple calculations we have

(LKg)(X,Y ) = (LK+Hg)(X,Y )

= (LKg)(X,Y ) + g(∇XH, Y ) + g(X,∇Y H)

= (LKg)(X,Y ) + Sg(∇XN,Y ) + Sg(X,∇YN)

+X(S)λ(Y ) + Y (S)λ(X),(4.5)

for any X,Y ∈ Γ(TM). Setting X = Xα, Y = Xβ and the fact K is conformal, we
get

(LKg)(Xα, Xβ) = 2Ψg(Xα, Xβ)− Sg(∇XαN,Xβ)− Sg(Xα,∇XβN)

= 2Ψg(Xα, Xβ) + Sg(ANXα, Xβ) + Sg(Xα, ANXβ)

= 2Ψg(Xα, Xβ) + 2SC(Xα, Xβ),(4.6)

in which we have used (2.4), (2.7) and symmetry of C. Then, using (4.4) and (4.6)
we get

∂gαβ
∂t

= −2Ψgαβ − 2SCαβ .(4.7)

Comparing (4.7) and the evolution of g in [19], we get −2Ψgαβ = 0, which implies
that Ψ = 0. Hence, K is killing and the proof is complete. �

Observe that on a null translating soliton, (4.2) will imply that∇XαKβ = ∇XβKα.
Consequently, there is a function φ with ∇Xαφ = Kα. Since the vector field is
a gradient, we observe that null translating solitons are also gradient solitons [12],
satisfying ∇Xα∇Xβφ = SCαβ . Next, let us set

Bαβγµ := BαγCβµKµ + Cαγ∇XβS, Rαβγµ := g(R(Xα, Xβ)Xγ , Xµ),

for α, β, γ, µ ∈ {1, . . . , n}. Then, the following follows from the above discusion.

Proposition 4.2. On a null translating soliton, the following holds

∇Xα∇Xβφ = SCαβ and Bαβγµ = Bβαγµ.(4.8)

Moreover, if M is screen conformal and the local second fundamental form B satisfy
Bαβ < Sgαβ, we have

∇XαS +BαβKβ = 0.(4.9)

Proof. Differentiating the first relation of (4.8) we get

∇Xα∇Xβ∇Xγφ = Cβγ∇XαS + S∇XβCαγ .(4.10)

Inter-changing Xα and Xβ and subtracting the two equations, we have

∇Xα∇Xβ∇Xγφ−∇Xβ∇Xα∇Xγφ = Cβγ∇XαS − Cαγ∇XβS.(4.11)
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Then, from Gauss-Codazzi equation (3.7) of [7, p. 94], we have

Rαβγµ = BαγCβµ −BβγCαµ.(4.12)

From (4.11), (4.12) and the fact ∇Xµφ = Kµ, we get

BαγCβµKµ + Cαγ∇XβS = BβγCαµKµ + Cβγ∇XαS,(4.13)

which proves the second relation of (4.8). Then when M is screen conformal [7], we
get

Bαγ(BβµKµ +∇XβS) = Bβγ(BαµKµ +∇XαS).(4.14)

Setting Wα := BαµKµ +∇XαS, such that (4.14) reduces to

BαγWβ = BβγWα.(4.15)

Taking the trace on β and γ in (4.15), we obtain

(Sgαβ −Bαβ)Wβ = 0.(4.16)

Since Bαβ < Sgαβ , then the matrix Sgαβ−Bαβ is strictly positive and hence,Wβ = 0
and the proof is complete. �

By the method of Hamiliton [12], we have the following differential Harnack-type
inequality for null MCF.

Theorem 4.3. Let (M, g) be a null hypersurface of the Lorentzian manifold (M, g).
If M moves by null MCF, then

∂S
∂t

+
S
2t

+ 2∇S(K) +B(K,PK) ≥ 0,(4.17)

for any tangent vector K, where S = trs(A∗E).

Proof. From [19] we have

∂S
∂t

= ∆sS + Strs(A∗E ◦AN ).(4.18)

Now, differentiating the second relation of (4.2) and then applying the first relation
of (4.2) and the fact Xα ·Bβγ = Xβ ·Bαγ around p ∈M , we have

∇Eα∇EβS +Kγ∇EγBαβ + SBβγCγα = 0.(4.19)

Taking trace of (4.19) we get

∆S +Kγ∇EγS + Strs(A∗E ◦AN ) = 0.(4.20)

Then substituting equation (4.20) in (4.18), we deduce that

∂S
∂t

+Kα∇EαS = 0.(4.21)
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But from the second relation of (4.2), we have

Kα∇EαS +BαβKαKβ = 0.(4.22)

Adding (4.21) to (4.22), we deduce

∂S
∂t

+ 2∇S(K) +B(PK,PK) = 0.(4.23)

Equation (4.23) is the basic differential null Harnack equation. As mentioned in [12],
for solutions on t > 0, we should really consider homothetically expanding solitons,
which differ from the translating ones by terms that are basically lower order with a
1
t in them. This accounts for the existence of the term 1

2tS in our inequality, hence
the proof. �

Using Hamiliton’s method [12] and Theorem 4.3, we state the following integrated

version of null Hanarck inequality above, along paths in spacetime M
n+2

.

Theorem 4.4. For any weakly convex solution to the null mean curvature flow for
t > 0 we have

S(y2, t2) ≥
√
t1
t2
e−

1
4 ΩS(y1, t1),

for any two points y1 and y2 on the evolving null hypersurface at times t1 and t2, with
T ≥ t2 > t1 > 0, where

Ω := inf
y

∫ t2

t1

g

(
P
dy

dt
, P

dy

dt

)
dt,

is the infimum over all paths y(t) remaining on the null hypersurface at time t with
dy
dt as the velocity vector of the path.

Proof. Along any path y(t) = F (x(t), t) we have

dS
dt

=
∂S
∂t

+∇S
(
dx

dt

)
.(4.24)

Using (4.24) and Theorem 4.3, with K = 1
2
dx
dt , we get

dS
dt
≥ −1

4
B

(
P
dx

dt
, P

dx

dt

)
− 1

2t
S.(4.25)

But for a convex hypersurface, B
(
P dx
dt , P

dx
dt

)
≤ Sg

(
P dx
dt , P

dx
dt

)
and hence (4.25) gives

d ln(S)

dt
≥ −1

4
g

(
P
dx

dt
, P

dx

dt

)
− 1

2t
,(4.26)

where P dx
dt is the screen component of dy

dt , such that (4.26) leads to

log

(
S(y2, t2)

S(y1, t1)

)
≥ −1

2
log

(
t2
t1

)
− 1

4
Ω,(4.27)

where Ω := infy
∫ t2
t1
g
(
P dy
dt , P

dy
dt

)
dt, and the result follows by exponentiating, which

completes the proof. �
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