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Abstract. The article describe some recent results about concept of bihar-
monicity of hypersurfaces in the Sasakian space form, which is equipped
with the Tanaka-Webster connection. There is a rich theory whose main
message is the necessary and sufficient existence condition of the Tanaka-
Webster biharmonic hypersurfaces. Also, it is included a brief nonexis-
tence result of the Tanaka-Webster biharmonic Hopf hypersurfaces, where
the gradient of the mean curvature is a principal direction.
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1 Introduction

A harmonic map ψ : M −→ N between two Riemannian manifolds, where M is
compact, is known as the critical point of the energy functional

E : C∞(M,N) −→ R, E(ψ) =
1

2

∫
M

‖dψ‖2dϑ,

where C∞(M,N) denotes space of the smooth maps. With respect to the similar
idea authors [8, 9], introduced k−harmonic maps and proposed they are the critical
points of Ek. Therefore, when k = 2 the biharmonic maps represent as critical point
of the bienergy

E2 : C∞(M,N) −→ R, E2(ψ) =
1

2

∫
M

|τ(ψ)|2dϑ,

where the tension field associated to map ψ is given by τ(ψ) = trace∇dψ. It is known,
vanishing the tension field is a characterization of the harmonic maps. Later on, the
first variation formula of E2 was derived by Jiang [15] and given a new definition of
2-harmonic maps in the variational point of view, written as

τ2(ψ) = −J(τ(ψ)) = −∆τ(ψ)− traceRN (dψ(.), τ(ψ))dψ(.) = 0,(1.1)
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that is, τ(ψ) ∈ kerJ , where J is an elliptic differential operator, called the Jacobi
operator. Here ∆ = −trace∇2 stands for the Laplace-Beltrami operator, where ∇
is induced connection in the pull back bundle ψ−1(TN). Also, RN is the curvature
operator on N which is defined by RN (X,Y ) = [∇X ,∇Y ] −∇[X,Y ] for all X and Y
tangent to N . Since, each harmonic map is biharmonic because J is a linear operator,
interesting is in non harmonic biharmonic maps which are named proper biharmonic.

Independently, by taking into account the harmonic mean curvature vector field,
biharmonic notion of submanifold in the Euclidean space was defined by B. Y. Chen.
Indeed, with respect to the characterization formula of the biharmonic Riemannian
immersions into the Euclidean space, the biharmonic concept in the sense of Chen
will be obtained, e.g, ∆H = 0 where H denotes the mean curvature vector field (see
[6]).

Into non-positive and positive curved spaces, nonexistence results for the proper
biharmonic Riemannian immersions were obtained (see [2, 3, 7, 11, 12, 13]). Specialy,
it was shown that does not exist a proper biharmonic hypersurfaces neither in the
Euclidean space nor in the hyperbolic spaces Hn+1 base on the number of distinct
principal curvatures of the Weingarten operator.

Additionally, in spaces of the nonconstant sectional curvature there exist several
classification results concerning the proper biharmonic hypersurfaces which has been
investigated in [10, 14]. For example, all the proper biharmonic Hopf cylinders in 3-
dimensional Sasakian space forms were classified. Morevere, all the proper-biharmonic
Hopf cylinders over a homogeneous real hypersurfaces in the complex projective spaces
were determined. In particular, authors in [16, 17] got some results about the bihar-
monic immersed hypersurfaces in the warped product space as well.

The idea is that in order to study the biharmonic notion of an immersed hyper-
surface inside of a Sasakian space form, it is equipped with the generalized Tanaka-
Webster connection. This allows us, to obtain the necessary and sufficient condition of
a generalized Tanaka-Webster biharmonic hypersurface in the Sasakian space forms.
In this case, we examine the generalized Tanaka-Webster biharmonic pseudo Hopf
hypersurfaces and determine the existance and nonexistence results of them, where
the gradient of the mean curvature, grad|H|, plays a significent role. Furthermore, the
generalized Tanaka-Webster biharmonic pseudo Hopf hypersurfaces which are mini-
mal are determine.

2 Preliminaries

In this section we introduce the notions and gather some known results that will be
used throughout the paper. Indeed, an odd dimensional manifold M2m+1 equipped
with tensor fields ϕ, ξ and η of type (1, 1), (0, 1) and (1, 0), respectively, is called an
almost contact manifold where the following condition satisfies

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, η(ϕX) = 0,

for X ∈ T (M), also the triple (ϕ, ξ, η) is named an almost contact structure. Now,
M2m+1 is endowed a Riemannian metric g, in such a way that

η(X) = g(ξ,X), g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),
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where X and Y are vector fields on M2m+1. If g(X,ϕY ) = dη(X,Y ), then (ϕ, ξ, η, g)

is called a contact metric structure. Now, (M̃2m+1, ϕ, ξ, η, g) is called a contact metric

manifold. Also, a contact metric manifold M̃2m+1 is named a K−contact manifold,
if ξ be a Killing vector field. Then we have

∇Xξ = −ϕX,(2.1)

where ∇ is the Levi-Civita connection on M̃2m+1. A contact metric manifold M̃2m+1,
is known as a Sasakian manifold, if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X.(2.2)

A Sasakian manifold is a k−contact manifold as well [20].

Let (M̃2m+1, ϕ, ξ, η, g) be a Sasakian manifold. The sectional curvature of 2-plane
spanned by {X,ϕX} is called ϕ-sectional curvature, where X is orthogonal to ξ. Also,
a Sasakian manifold which has constant ϕ-sectional curvature c is called a Sasakian

space form and determined by M
2m+1

(c). The curvature tensor field of a Sasakian
space form is given by

R(X,Y )Z = −c− 1

4
{η(Z)[η(Y )X − η(X)Y ]

+[g(Y, Z)η(X)− g(X,Z)η(Y )]ξ

+g(ϕX,Z)ϕY + 2g(ϕX, Y )ϕZ − g(ϕY,Z)ϕX}(2.3)

+
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }.

A canonical affine connection defined on a non-degenerate pseudo-Hermitian CR-
manifold at the end of 70′s by [18] and [21] independently, which is well known the
Tanaka-Webster connection. A generalization of this connection has been introduced
by [4, 19] for the contact metric manifolds, written as

∇̂XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ + η(X)ϕY,(2.4)

for all X,Y ∈ Γ(T (M̃2m+1)), where ∇ denotes the Levi-Civita connection on M̃2m+1.
Then ∇̂ is known the generalized Tanaka-Webster connection on a contact metric
manifold (M̃2m+1, ϕ, ξ, η, g). Furthermore, it was shown that the generalized Tanaka-
Webster connection ∇̂ is an unique linear connection, where the tensors ξ, η and g
are all ∇̂-parallel, that is,

∇̂ξ∗ = 0, ∇̂η = 0, ∇̂g = 0,(2.5)

and whose torsion tensors satisfies

T̂ (X,Y ) = 2dη(X,Y )ξ, T̂ (ξ, ϕX) = −ϕT̂ (ξ,X),

for all X ∈ Γ(T (M̃2m+1)).
At the end of this section, in order to illustrate the existence of the biharmonic

hypersurfaces in the Sasakian space form, where ξ is tangent to them, we construct
an example.
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Example 2.1. Let R3 be a hypersurface in the Euclidean space R4. Let J be a
standard almost complex structure in R4 considered as C2 and set ξ = −JN , where
N is an unit normal vector field of R3. Define ϕ by πoJ , where π is the natural
projection of the tangent space of R4 in to the tangent space of R3. Let (x, y, z) be
the Euclidean coordinate in R3, we consider

η =
1

2
(dz − ydx), g = η ⊗ η +

1

4
(dx2 + dy2),

ϕ(X
∂

∂x
+ Y

∂

∂y
+ Z

∂

∂z
) = Y

∂

∂x
−X ∂

∂y
+ Y y

∂

∂z

where ξ = 2 ∂
∂z . Then (R3, ϕ, η, ξ, g) is called a Sasakian space form where its ϕ-

sectional curvature is c = −3. Let f ∈ C∞(R3(−3)) defines f(x, y, z) = x + z, then
we consider the level set of f like M2 = f−1(0) = {(x, y, z) ∈ R3;x + z = 0} which
is claimed as a minimal surface (as well as biharmonic) of R3(−3). In order to show
this property, we choose an appropriate orthonormal frame field on R3(−3) such as

e1 = 2(
∂

∂x
+ y

∂

∂z
), e2 = −2

∂

∂y
, e3 = 2

∂

∂z

then we calculate gradf =
∑3
i=1 ei(f)ei = 2((1 + y)e1 + e3). So, N = gradf

|grad f | =
1√

(1+y)2+1
((1 + y)e1 + e3) is an unit normal vector on M2. Also, −ϕN = V =

− 1+y

2
√

(1+y)2+1
e2 is in Γ(TM2). Now, we take an orthonormal frame field {E1 = V

|V | =

−e2, E2 =
√

(1+y)2

1+(1+y)2 (− 1
(1+y)e1 + e3)} on M2. Some easy computations show the

following bracket relations, which we need to calculate the Weingarten operator A of
M2 in the Sasakian space R3(−3), as following

[e1, e2] = 2e3, [e1, e3] = 0, [e2, e3] = 0

∇e1e2 = −∇e2e1 = e3, ∇e1e3 = ∇e3e1 = −e2, ∇e2e3 = ∇e3e2 = e1

after all, we can calculate

−AE1 = ∇E1
N =

1− (y + 1)2

(1 + y)2 + 1
E2,

−AE2 = ∇E2
N =

1− (y + 1)2

(1 + y)2 + 1
E1,

then we have

A =

(
0 1−(y+1)2

(1+y)2+1
1−(y+1)2

(1+y)2+1 0

)
.

So, the shape operator presents that the mean curvature |H| = 0. In other words,
the planes which are parallel to the xz-plane are biharmonic (harmonic) surfaces
in the Sasakian space form R3(−3). Furthermore, the other non trivial example of
the biharmonic surface in the Sasakian space form R3(−3) can be considered where
f ∈ C∞(R3(−3)) and f(x, y, z) = x2 + z2, then we take the level set of f like
M2 = f−1(1) = {(x, y, z) ∈ R3;x2 + z2 = 1} ≈ S1 × R, similarly with respect to
the above coordinate and orthonormal frame field, the cylinder S1 × R is a minimal
surface (as well as biharmonic) in R3(−3) as well.
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3 Generalized Tanaka-Webster biharmonic hyper-
surfaces

Let (M
2m+1

(c), ϕ, ξ, η, g) be a Sasakian space form with respect to constant ϕ−sectional
curvature c, which is equipped with the generalized Tanaka-Webster connection and
M2m is an isometrically immersed hypersurface there. We suppose that ξ and V =
−ϕN are tangent vector fields on M2m, where N is a local unit normal vector on
M2m.

Now, in order to have the generalized Tanaka-Webster biharmonic notion of hy-
persurfaces in the Sasakian space form, we consider the following required lemma.

Lemma 3.1. Let M
2m+1

(c) be a Sasakian space form. Then, the generalized Tanaka-
Webster connection holds in the following formula

∇?XY = ∇XY + g(X,ϕY )ξ + η(Y )ϕX + η(X)ϕY,(3.1)

where X,Y and ∇ denote tangent vector fields and the Levi-Civita connection on

M
2m+1

(c), respectively.

Proof. By taking into the account the equations (2.4) and (2.1) we have

∇?XY = ∇XY + [∇Xη(Y )− η(∇XY )]ξ + η(Y )ϕX + η(X)ϕY

= ∇XY + g(Y,∇Xξ)ξ + η(Y )ϕX + η(X)ϕ(Y )

= ∇XY + g(X,ϕY )ξ + η(Y )ϕX + η(X)ϕ(Y ).

�

Now, under an isometric immersion we can express

τ?2 (ψ) = −∆?H − traceR?(dψ(.), H)dψ(.),(3.2)

here ∆? stands for the Laplace-Beltrami operator on sections of the pull back bundle

ψ−1(T (M
2m+1

)) and R? denotes the curvature tensor corresponding to ∇? on the

Sasakian space form M
2m+1

(c) and we utilize the following sign conventions

∆?X = −trace∇?
2

X, ∀X ∈ ψ−1(T (M
2m+1

)),(3.3)

R?(X,Y ) = [∇?X ,∇?Y ]−∇?[X,Y ] X,Y ∈ T (M
2m+1

).(3.4)

After all, we can define the generalized Tanaka-Webster biharmonic hypersurfaces
over a Sasakian space form as following

Definition 3.1. Let ψ : M2m −→ M
2m+1

(c) be an isometric immersion of a hy-

persurface M2m in the Sasakian space form M
2m+1

(c) associated to the generalized
Tanaka-Webster connection ∇?. Then, M2m is called generalized Tanaka-webster
biharmonic hypersurface if τ?2 (ψ) = 0.

Now, we have all the necessary ingredients to prove the following results.
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Lemma 3.2. Let ψ : M2m −→M
2m+1

(c) be an isometric immersion of a hypersur-

face M2m in a Sasakian space form M
2m+1

(c) associated to the generalized Tanaka-
Webster connection ∇?. Then

∆∗H = ∆H + 2g(grad|H|, V )ξ − 2η(grad|H|)V − 2H,(3.5)

where ξ and V are tangent to M2m.

Proof. Let ∇? and ∇ denote the generalized Tanaka-Webster and the Levi-Civita

connections on M
2m+1

(c), respectively. Also, let us denote by ∇ the Levi-Civita
connection on M2m. We consider a parallel local orthonormal frame {eα}2mα=1 at p ∈
M2m. Then, from the equations (3.1), (3.3) and with respect to this fact the tensors
ϕ, η and g are all ∇?-parallel also by applying the Weingarten equation ∇eαN =
−Aeα +∇⊥eαN we have

∆?H = −
2m∑
α=1

∇?eα∇
?
eαH

= −
2m∑
α=1

∇?eα
(
∇eαH + g(eα, ϕH)ξ + η(H)ϕeα + η(eα)ϕH

)
= −

2m∑
α=1

{
∇eα∇eαH + g(eα, ϕ(∇eαH))ξ + η(∇eαH)ϕeα

+η(eα)ϕ(∇eαH) + g(eα, ϕ(∇?eαH)ξ) + η(eα)ϕ(∇?eαH)
}

= ∆H − 2
( 2m∑
α=1

g(eα, eα|H|ϕN
)
−

2m∑
α=1

g(eα, ϕAHeα))ξ

−2
( 2m∑
α=1

η(eα)eα|H|ϕN −
2m∑
α=1

η(eα)ϕAHeα
)

+

2m∑
α=1

g(AHeα, ξ)ϕeα +H.(3.6)

The next step is to compute all terms of the equation (3.6) as following

2m∑
α=1

g(eα, eα|H|ϕN)ξ = −g(grad|H|, V )ξ,(3.7)

and because the tensors ϕ is skew symmetric then

2m∑
α=1

g(eα, ϕAHeα)ξ = trace(ϕAH)ξ = 0.(3.8)

Also, for the other terms we have

2m∑
α=1

η(eα)eα|H|ϕN =

2m∑
α=1

η(eα)g(grad|H|, eα)ϕN

= η(grad|H|)ϕN
= −η(grad|H|)V.(3.9)
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Now, in order to calculate what is remainder we need to consider

2m∑
α=1

η(∇eαH)ϕeα =

2m∑
α=1

g(∇eαH, ξ)ϕeα =

2m∑
α=1

g(H,ϕeα)ϕeα,

also

2m∑
α=1

η(∇eαH)ϕeα =

2m∑
α=1

g(∇eαH, ξ)ϕeα = −
2m∑
α=1

g(AHeα, ξ)ϕeα,

so

AHξ = −|H|V.(3.10)

Then the last two terms of (3.6) follow

2m∑
α=1

η(eα)ϕAHeα = ϕAHξ = −ϕ|H|V = −H,(3.11)

and

2m∑
α=1

g(AHeα, ξ)ϕeα =

2m∑
α,β=1

g(AHeα, ξ)(g(ϕeα, eβ)eβ + g(ϕeα, N)N)

= −|H|
2m∑

α,β=1

g(eα, V )(−g(eα, ϕeβ)eβ − g(eα, ϕN)N)

= −|H|
2m∑
β=1

(g(V, ϕeβ)eβ + g(V, V )N)

= −H.(3.12)

After all, from the equations (3.7), (3.8), (3.9), (3.11) and (3.12) we have the result as
it was claimed. �

Lemma 3.3. Let ψ : M2m −→M
2m+1

(c) be an isometric immersion of 2m-dimensional

hypersurface M2m in a Sasakian space form M
2m+1

(c). Let the ambient manifold
equipped with the ∇∗ associated to the generalized Tanaka-Webster connection, then

traceR∗(dψ(.), H)dψ(.) = kH,(3.13)

where k = 1
4 (15− 6m− c(3 + 2m)) and H denotes the mean curvature vector field

of M2m.

Proof. Let R and R∗ be the curvature tensor of M
2m+1

(c) associated to the Levi-
Civita connection ∇ and ∇∗, respectively. Then, by applying the equation (3.4) we
have

R?(X,H)X = R(X,H)X − 3g(X,ϕH)ϕX − η2(X)ϕ2H,(3.14)
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wherer in an appropriate local orthonormal frame field {eα}2m−1α=1 ∪{ξ, V } onM
2m+1

(c),
that follows

traceR?(dψ(.), H)dψ(.) = traceR(dψ(.), H)dψ(.)

−3g(V, ϕH)ϕV − η2(ξ)ϕ2H

=

2m−1∑
α=1

R(eα, H)eα

+R(ξ,H)ξ +R(V,H)V + 4H,

then the equation (2.3) with the straightforward computation shows that

R(eα, H)eα = −c+ 3

4
g(eα, eα)H,

and

R(ξ,H)ξ = −H, R(V,H)V = −cH.

Hence

traceR?(dψ(.), H)dψ(.) = −(2m− 1)
c+ 3

4
H + (1− c)H.

�

After all we obtain the main result of this section

Theorem 3.4. Let ψ : M2m −→ M
2m+1

(c) be an isometric immersion of 2m−
dimensional hypersurface M2m in the Sasakian space form M

2m+1
(c) equipped with

the ∇∗ associated to the generalized Tanaka-Webster connection. Then M2m is a
generalized Tanaka-Webster biharmonic hypersurface if and only if

∆⊥H = traceB((.), AH(.)) + lH;

traceA∇⊥
(.)
H(.) +m|H|grad|H|+ g(grad|H|, V )ξ − η(grad|H|)V = 0,

(3.15)

where l = −(2m+3)c−6m+7
4 is constant, B,A and H denote the second fundamental

form, shape operator and mean curvature vector field of M2m in M
2m+1

(c), respec-
tively.

Proof. By applying, the Definition 3.1, Lemmas 3.2 and 3.3 directly, we have

τ∗2 (ψ) = −(∆H + 2g(grad|H|, V )ξ − 2η(grad|H|)V − 2H)− kH = 0,(3.16)

where

∆H = −
2m∑
α=1

∇eα∇eαH(3.17)

= −∆⊥H + traceB(., AH .) + traceA∇⊥
(.)
H(.) + trace∇AH(., .),
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in more details

∇eα∇eαH = ∇⊥eα∇
⊥
eαH

−A∇⊥
eα
Heα −∇eαAH(eα)−B(eα, AH(eα)),

and

trace∇AH(., .) = mgrad|H|2

+(traceR(dψ(.), H)dψ(.))> + traceA∇⊥
(.)
H(.),

where, as respect to the Lemma 3.3 the tangent part of traceR(dψ(.), H)dψ(.) van-
ishes. Now, putting the above equations together and replacing them in the equation
(3.16) at follow splitting the normal and tangent parts of it, the result obtains. �

Regarding the mean curvature, from Theorem 3.4. we can have the following result.

Corollary 3.5. Let M2m be a generalized Tanaka-Webster biharmonic hypersurface
with the constant mean curvature. Tthen the ϕ-sectional curvature holds

c >
−6m+ 7

2m+ 3
.

Proof. According to the assumptionM2m has constant mean curvature |H| = constant 6=
0. In this case, the Theorem 3.4 yields

|B|2 = −l = −7− c(2m+ 3)− 6m

4
,

which implies the result. �

4 Generalized Tanaka-Webster biharmonic pseudo
Hopf hypersurfaces

Let x : (M2m, g)→ (M
2m+1

(c), g) be an isometric immersion from a real hypersurface

M2m in the Sasakian space form M
2m+1

(c). We underline the ambient manifold is
equipped with the generalized Tanaka-Webster connection ∇? as well. Let ∇ and ∇
denote the Levi-Civita connections on M

2m+1
(c) and M2m, respectively. We recall

that ξ and V are tangent on M2m. Also, we suppose that T (M2m) = D ⊕ D⊥,
where D is a maximal ϕ−invariant distribution and D⊥ = Span{ξ, V } in such away
that the Weingarten operator A satisfies AD⊥ ⊆ D⊥ and AD ⊆ D. A hypersurface
M2m is called a pseudo-Hopf hypersurface, provided that the Weingarten operator
A be invariant on Span{V, ξ} (see [1]). Supposed that W1,W2 ∈ Span{ξ, V } are
eigenvectors of the Weingarten operator A in which AW1 = γ1W1 and AW2 = γ2W2

where

W1 = ξ cos θ + V sin θ, W2 = −ξ sin θ + V cos θ,(4.1)

for some 0 < θ < π
2 , where γ1 = − tan θ and γ2 = cot θ. Let AV = αξ + βV , then we

have α = −1 and β = cos 2θ
cos θ sin θ .
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Lemma 4.1. Let x : (M2m, g) −→ (M
2m+1

(c), g) be an isometric immersion of

a hypersurface M2m in the Sasakian space form M
2m+1

(c). Then for X,Y and Z
tangent on T (M2m) the Coddazi equation holds

g((∇XA)Y − (∇YA)X,Z) =

−c− 1

4
g
(
g(ϕX,Z)Y + 2g(ϕX, Y )Z − g(ϕY,Z)X,V

)
,(4.2)

where ∇ and A are the Levi-Civita connection and shape operator of M2m.

Lemma 4.2. Let x : M2m −→ M
2m+1

(c) be an isometric immersion of a pseudo

Hopf hypersurface M2m in the Sasakian space form M
2m+1

(c). If the Weingarten
operator A for some X ∈ D satisfies AX = λX, then

AϕX =
2βλ+ c+ 3

4λ− 2β
ϕX.(4.3)

Proof. Let X,Y ∈ D be the eigenvectors of the Weingarten operator A. We consider
AV = −ξ + βV and take the covariant derivative of both sides, then

(∇XA)V +A∇XV = X(β)V + β∇XV + ϕX,

where ∇ denotes the Levi-Civita connection on M2m and ∇XV = ϕAX [1]. Hence,
we get

g((∇XA)V, Y ) + g(AϕAX, Y ) = βg(ϕAX, Y ) + g(ϕX, Y ),

similarly

g((∇YA)V,X) + g(AϕAY,X) = βg(ϕAY,X) + g(ϕY,X),

so

g((∇XA)Y − (∇YA)X,V ) + 2g(AϕAX,Y ) =

βg(ϕAX, Y ) + βg(AϕX, Y ) + 2g(ϕX, Y ),

then, by applying the Lemma 4.1, we obtain

−c− 1

2
g(ϕX, Y ) + 2g(AϕAX, Y ) =

βg(ϕAX, Y ) + βg(AϕX, Y ) + 2g(ϕX, Y ),

consequently

(2λ− β)g(AϕX, Y ) = (βλ+ 2 +
c− 1

2
)g(ϕX, Y ),

which shows ϕX is an eigenvector corresponding to the eigenvalue 2βλ+c+3
4λ−2β . �

Now we discuss about the generalized Tanaka-Webster biharmonic pseudo Hopf
hypersurfaces in more details.
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Theorem 4.3. There exists no generalized Tanaka-Webster biharmonic pseudo Hopf
hypersurface in such away that grad|H| is in the direction of the vector field in D.

Proof. We denote by ψ : M2m → M
2m+1

(c) an isometric immersion where M2m is
a generalized Tanaka-Webster biharmonic pseudo Hopf hypersurface in a Sasakian

space form M
2m+1

(c). According to the assumption grad|H| is in the direction of
vectors in D, that is, AD ⊂ D. Then, by applying Theorem 3.4 directly, we get{

∆⊥H = traceB((.), AH(.)) + lH;
traceA∇⊥

(.)
H(.) +m|H|grad|H| = 0,(4.4)

where Agrad|H| = −m|H|grad|H| is deduced by the second term. Also, the Lemma
4.2 allows the Weingarten operator A of M2m takes the following form in a suitable or-
thogonal frame field {e1, ..., em−1, em = ϕe1, ..., e2m−2 = ϕem−1, e2m−1 = W1, e2m =
W2} in which

Aei = λiei, i = 1, ...,m− 1

Aϕei = λiϕei, i = 1, ...,m− 1(4.5)

AW1 = −γ1W1, AW2 = γ2W2

where, λi and λi = 2βλi+c+3
4λi−2β are the eigenvalues corresponding to the eigenvectors

ei and ϕei, respectively. We recall that γ1 = − tan θ and γ2 = cot θ, consequently

we get γ1γ2 = −1. Let e1 = grad|H|
|grad|H|| . Assume that grad|H| is given by grad|H| =∑2m

i=1 ei(|H|)ei. Then

e1(|H|) 6= 0, ei(|H|) = 0, i = 2, ..., 2m.(4.6)

Also, it is written

∇eiej =
∑2m
k=1 ω

k
ijek,(4.7)

where 1-forms ωkij are called the connection forms. From ∇ek〈ei, ej〉 = 0 it follows

ωiki = 0, i = j(4.8)

ωjki + ωikj = 0 , i 6= j, i, j, k = 1, ..., 2m.(4.9)

Morevere, from the Codazzi equation, and taking (4.5) and (4.7) we get

ek(λi)ei + (λi − λj)ωjkiej = ei(λk)ek + (λk − λj)ωjikej ,

where, multiply both sides of it to ej , we arrive at

ei(λj) = (λi − λj)ωjji(4.10)

(λi − λj)ωjki = (λk − λj)ωjik,(4.11)

for distinct i, j, k = 1, ..., 2m. From λ1 = −m|H| and (4.6) we obtain

e1(λ1) 6= 0, ei(λ1) = 0, i = 2, ..., 2m(4.12)
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and

0 = [ei, ej ]λ1 = (∇eiej −∇ejei)λ1, 2 ≤ i, j ≤ 2m, i 6= j(4.13)

which implies

ω1
ij = ω1

ji,(4.14)

for distinct i, j = 2, ..., 2m. It is claimed that, λj 6= λ1 for j = 2, ..., 2m. Since, if
λj = λ1 for j 6= 1, utilize (4.10) and put i = 1

0 = (λ1 − λj)ωjj1 = e1(λj) = e1(λ1),

which contradicts to (4.12). For j = 1 and k, i 6= 1 the equation (4.11) yields

(λi − λ1)ω1
ki = (λk − λ1)ω1

ik(4.15)

which together with (4.14) follow

ω1
ij = 0, i 6= j, i, j = 2, ..., 2m(4.16)

that combining with the equation (4.9), implies ωji1 = 0, i 6= j , i, j = 2, ..., 2m.

After all, by summarizing and considering the above equations and applying ap-
propriate connections we will reach to a contradiction. Indeed, by using the equation
(4.7) we have

∇emW2 = ∇em(−ξ sin θ + V cos θ)

= −em(sin θ)ξ − sin(θ)∇emξ + em(cos θ)V + cos(θ)∇emV
= −em(sin θ)(W1 sin θ +W2 cos θ)− sin θ(−ϕem)

+ em(cos θ)(W1 cos θ −W2 sin θ) + cos θ(ϕAem)

= (−em(sin θ) sin θ + em(cos θ) cos θ)W1 − (sin θ + λ1 cos θ)e1

− (em(sin θ) cos θ + em(cos θ) sin θ)W2.(4.17)

On the one hand, from (4.16) the connection form ω1
m2m = 0, which is associated to

the vector field e1. Then, (4.17) follows

0 = ω1
m2m = sin θ + λ1 cos θ,

which implies

λ1 = − tan θ,(4.18)

where λ1 is an eigenvalue of the Weingarten operator corresponding to the eigenvector
em = ϕe1.

Similarly, by computing the ∇emW1 and applying the equation (4.16) we have

0 = ω1
m2m−1 = cos θ − λ1 sin θ,
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in which

λ1 = cot θ.(4.19)

Finally, a contradiction is made by (4.18) and (4.19). Hence, the generalized Tanaka-
Webster biharmonic pseudo Hopf hypersurfaces do not exist in a Sasakian space form
whenever grad|H| be an eigenvector of the Weingarten operator in the distribution
D. �

Also, we have the following

Proposition 4.4. Let M2m be a generalized Tanaka-Webster biharmonic pseudo
Hopf hypersurface, where grad|H| ∈ D⊥. Then M2m is either a minimal hypersurface
(|H| = 0) or |H| = −γ1+γ2m .

Proof. According to the assumption grad|H| ∈ D⊥, so we can suppose that grad|H| =
αξ + βV . By using the Theorem 3.4 we have{

∆⊥H = traceB((.), AH(.)) + lH;
Agrad|H|+m|H|grad|H|+ βξ − αV = 0,

(4.20)

where the second term yields

0 = A(αξ + βV ) +m|H|(αξ + βV ) + βξ − αV.(4.21)

Now, by taking into account the equation (4.1) we have

AW1 = γ1W1

= cos θAξ + sin θAV,

so with respect to the γ1 = −tanθ we have

AV = −ξ + (γ1 + γ2)V,(4.22)

then from the equations (4.22) and (4.21) we get

0 = (m|H|α)ξ + (−2α+m|H|β + β(γ1 + γ2))V,

consequently it is obtained that

0 = m|H|α
0 = −2α+m|H|β + β(γ1 + γ2),

those show, either |H| = 0 or α = 0. When |H| = 0 the generalized Tanaka-Webster

pseudo Hopf hypersurface M2m is minimal, clearly. Also, we get |H| = − (γ1+γ2)
m ,

provided that α = 0. More precisely, where α = 0 then the Theorem 3.4 follows

∆⊥H = traceB((.), AH(.)) + kH

Agrad|H|+m|H|grad|H|+ βξ = 0,

in which the second term, where grad|H| = βV , implies

0 = βAV +m|H|βV + βξ,
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and now, by applying (4.22), we have

|H| = −γ1 + γ2
m

.

�

Proposition 4.5. The generalized Tanaka-Webster biharmonic pseudo Hopf hyper-
surfaces have the constant mean curvature provided that grad|H| is in the direction
ξ.

Proof. LetM2m be a generalized Tanaka-Webster biharmonic hypersurface inM
2m+1

(c).
According to the assumption grad|H| = αξ, where H is the mean curvature vector
field of M2m. Then in this case the Theorem 3.4 implies{

∆⊥H = traceB((.), AH(.)) + lH;

Agrad|H|+m|H|grad|H| − αV = 0,
(4.23)

where the second term yields

αAξ +m|H|αξ − αV = 0,

by taking into account the equation (3.10) then α = 0 and grad|H| = 0, that states
|H| = constant. �

Immediately, it follows

Corollary 4.6. There exists not a generalized Tanaka-Webster biharmonic pseudo
Hopf hypersurface with the constant mean curvature where the ϕ-sectional curvature
holds c < −3.

Proof. Obviously, it is followed by the Corollary 3.5 and Proposition 4.5. �
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