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Abstract

Here we generalize the one-dimensional notion of derivative fields in order
to get a suitable notion of gradient fields for smooth functionals of the form∫

V
J(x, u,∇u)dV , defined on a -compact- Riemannian 2-manifold V . By the

way, we establish a close relationship between such gradient fields and the cor-
responding Hamilton-Jacobi equation. By relaxing some hypotheses, we have
been able to define a proper notion of Hilbert’s invariant integral on Riemannian
surfaces. The main consequence of this theoretical setting is the generalization
of Weierstrass’ Theorem stating a sufficient and necessary condition for the
existence of extrema in the class of functionals under consideration. Also, we
illustrate a way to apply the principal result here to the functional ruling the
conformal deformation of the underlying surface.
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1 Introduction

1.1

In what follows, V is a simple compact subset of an oriented Riemannian 2-manifold
whose boundary ∂V is smooth enough, simple and oriented. We consider functionals
F : A −→ R, where A is an admissible space, say A = {u ∈ C1(V̊) ∩ C(∂V ) | u ≡
f en ∂V }, for certain differentiable function f along ∂V . Furthermore, we assume F
has the form

(1.1) F (u) =
∫

V

J(x, u,∇u) dV,

where J : V × A × TV −→ R denotes a smooth enough function of its arguments.
It is not hard to see this implies F itself is differentiable. Additionally, we must deal
with a Banach space B to which the variations h of F belong, say C1

0 (V ).
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1.2

Let u∗ ∈ A be a singular point of F , that is to say,the Euler-Lagrange equation

∂uJ(x, u∗,∇u∗))− div(∂∇uJ(x, u∗,∇u∗))) = 0

holds in V̊. Within the framework of Hamilton-Jacobi theory, we will suppose the
subset

M =
{

u ∈ A | F (u) = F (u∗), u singular
}

is a topological space connected by arcs and possesses a structure of differentiable
manifold. For obvious reasons, B will be often identified to Tu(M).

1.3

In the first place, we will motivate and define the notion of gradient field for the
functional F . Then, we shall characterize such a gradient field by means of a set of
sufficient and necessary conditions which guarantee its existence. This will lead us to
Hamilton-Jacobi equation. Afterwards, we are going to relax the definition of gradient
field and show that this delicate procedure can be accomplished with not too much
harm to the previous theory. Actually, we obtain a pair of exact differential forms
which constitute the ground for the notion of Hilbert’s invariant integral. With it, we
will be ready to prove our version of Weierstrass’ Theorem.

2 Gradient fields

By the methods used in [1] and [2], it is possible to find the Euler-Lagrange equation
of F .

Theorem 2.1. The derivative of F at u ∈ A with variations h ∈ B is given by

dF (u)h =
∫

V

[∂uJ − div(∂∇uJ)]hdV +
∫

∂V

h < ∂∇uJ, dl > .

Proof. In

F (u + h)− F (u) =
∫

V

[∂uJh+ < ∂∇uJ,∇h >]dV + o(‖h‖)

we integrate by parts the second term to get
∫

V

< ∂∇uJ,∇h > dV =
∫

∂V

h < ∂∇uJ, dl > −
∫

V

h div(∂∇uJ)dV.

The first part of the derivative carries the Euler-Lagrange term

(2.1) ∂uJ − div(∂∇uJ) = 0.

In this way, the notion of gradient field is stated as follows.



98 L. Solanilla, L.F. López and Jorge L. Bustos

Definition 2.2. A smooth map Ψ : V ×A −→ TV is a gradient field of (1.1) if it is
a gradient field of the differential equation (2.1), i. e., if Ψ(x, u) = ∇u and

∂uJ(x, u, Ψ(x, u))− div(∂∇uJ(x, u, Ψ(x, u))) = 0.

The idea behind the discovery of the conditions yielding the existence of Ψ is the
boundary value problem

∂uJ(x, u,∇u)− div(∂∇uJ(x, u,∇u)) = 0 in
o

V ;
∇u = ψ(x, u) on ∂V.

In this way,Ψ can be regarded as a extension of ψ on ∂V to the whole surfaces V . We
also introduce a “potential” map g of such a field.

Theorem 2.3. Let g : ∂V ×A −→ TV be differentiable enough and G : A −→ R the
functional defined by

G(u) = F (u)−
∫

∂V

< g, dl > .

Then, the derivative of G with variations h ∈ B is

dG(u)h =
∫

V

h[∂uJ − div(∂∇uJ)]dV +
∫

∂V

h < ∂∇uJ − ∂ug, dl > .

Proof. It suffices to compute the derivative of the second term.
∫

∂V

< g(x, u + h), dl > −
∫

∂V

< g(x, u), dl > =
∫

∂V

< ∂ugh, dl > +o(‖h‖).

To attain a vanishing first derivative, we ought to have at once the following two
conditions.

∂uJ − div(∂∇uJ) = 0 in
o

V

∂∇uJ − ∂ug = 0 on ∂V.

The first equation is just but Euler-Lagrange equation and it is sometimes called
consistency condition. The second equation suggests to understand g as defined in all
V and demand that

∂∇uJ = ∂ug in V.

By analogy with the one-dimensional case, this last equation will be called self-
adjointness condition.

Theorem 2.4. Let V, F, J be as above. Let also J be such that the tensor field ∂2
∇u∇uJ

is nonsingular. Assume that ∂uJ − div(∂∇uJ) = 0 in V̊ and that there is a smooth
map g : V × A −→ TV with ∂∇uJ = ∂ug in V . Then, there exists a gradient field Ψ
for the functional 1.1.
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Proof. It follows immediately from The Implicit Function Theorem.

Conversely, the existence of a gradient field implies the self-adjoint and consistency
conditions. However, we have to add an extra hypothesis, cf. [3].

Corolary 2.5. Suppose ∂2
∇u∇uJ is non singular and that every h ∈ B = Tu(M) has

no points conjugate to ∂V . Ψ is a gradient field of 1.1 if and only if the consistency
and self-adjointness conditions are satisfied.

Proof. The construction of g runs exactly as in the first theorem of section 4.

3 Hamilton-Jacobi equation

Once one assumes the selfadjointness condition, the consistency is logically equivalent
to the validity of the Hamilton-Jacobi PDE.

Theorem 3.1. We suppose ∂2
∇u∇uJ is nonsingular and let the selfadjointness condi-

tion hold for certain potential map g. Then, the implicitly defined map Ψ(x, u) = ∇u
is consistent if and only if g is a solution of the Hamilton-Jacobi equation

∂ivg − J+ < Ψ, ∂ug >= 0,

where the symbol ∂ivg stands for the partial divergence of g.

Proof. By hypothesis,

∂ivg = J(x, u, Ψ(x, u))− < Ψ(x, u), ∂ug(x, u) > .

The right-hand side of this equation is usually called Hamiltonian of 1.1. After differ-
entiation with respect to u, we obtain

∂u(∂ivg) = ∂uJ+ < ∂∇uJ, ∂uΨ > − < ∂uΨ, ∂ug > − < Ψ, ∂2
uug >

= ∂uJ− < Ψ, ∂2
uug > .

Also,

∂iv(∂∇uJ) = div(∂∇uJ)− < ∂u(∂∇uJ), Ψ >= div(∂∇uJ)− < ∂2
uug, Ψ > .

Hence,
∂uJ − div(∂∇uJ) = 0.

The process can be reversed to get Hamilton-Jacobi equation from Euler-Lagrange
equation as explain in next section.

4 Approaching fields by pseudofields

One of the central contributions of Weierstrass and Hilbert has been to drop (mo-
mentarily) the condition on the nonsigularity of ∂2

∇u∇uJ . So, it is no longer true that
Ψ(x, u) = ∇u (Implicit Function Theorem, cf. [4]). The idea of this relaxation is then
to approach the gradient field by means of “pseudofields”.
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Definition 4.1. A smooth map Ψ : V ×M −→ TV is a pseudofield of 1.1 if it satisfy
(only) the (pseudo-)consistency condition

∂uJ(x, u, Ψ(x, u))− div(∂∇uJ(x, u, Ψ(x, u))) = 0.

In this way, every field is a pseudofield. The converse is not always valid.

Pseudofields preserve nice properties of fields. This is achieved with the help of
Hamilton-Jacobi Theory, cf. [3].

Theorem 4.2. Let u∗,M be as above and Ψ be a pseudofield. If for all u ∈ M the
tangent vectors h ∈ TuM (no identically zero) do not have conjugate points to ∂V ,
then the map g : V ×M −→ TV defined by the line integral

g(x, u) =
∫ u

u∗
∂∇uJ(x, υ, Ψ(x, υ))dυ

satisfies the (pseudo-)selfadjointness condition

∂ug(x, u) = ∂∇uJ(x, u, Ψ(x, u)).

Proof. In order to compute ∂ug, we set

g(x, u + h)− g(x, u =
∫ u+h

u

∂∇uJ(x, υ, Ψ(x, υ))dυ,

along a curve in M joining u with u + h, properly h = exp(h). By virtue of the Mean
Value Theorem, there is a û such that, for small h,

g(x, u + h)− g(x, u) = ∂∇uJ(x, û,Ψ(x, û))h.

By the hypothesis on the conjugate points of h it is now possiblel to pass to the limit
and get

∂ug(x, u) = ∂∇uJ(x, u, Ψ(x, u)).

This very last equation guarantees g is independent of the selected curve and so, it is
well-defined.

There is also a surface integral involving an exact differential of a function de-
pending on a pseudofield.

Theorem 4.3. Additionally to the assumptions and notations in the previous theo-
rem, we suppose now that Ψ satisfies the (pseudo-)Hamilton - Jacobi equation

∂ivg(x, u) + H(x, u, Ψ(x, u)) = 0.

Then, ∫

∂V

< g(x, u), n̂dl >= −
∫

V

H(x, u, Ψ(x, u))dV,

in which H(x, u, Ψ(x, u)) = −J(x, u, Ψ(x, u))+ < Ψ(x, u), ∂ug(x, u) > denotes the
Hamiltoniann of 1.1. n̂ is the normal unit field along ∂V in the chosen orientation.
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Proof. By the Divergence Theorem, cf. [1],
∫

V

∂ivxg(x, u)dV = −
∫

V

H(x, u, Ψ(x, u))dV =
∫

∂V

< g(x, u), n̂dl > .

It is important for what follows that the pseudofields actually approach certain
field. To do so, we will call K the solution set of the Ψ accomplishing

∂uJ(x, u, Ψ(u, x))− div(∂∇uJ(x, u, Ψ(u, x)))) = 0,

that is, a set of pseudofields. Formally, we need

Definition 4.4. Let u∗, M y K be a before, u ∈ M is embedded in K if
1. ∂2

∇u∇uJ is nonsingular at u. Being so, there exists Ψ(x, u) = ∇u.
2. Each h 6≡ 0 ∈ TvM does not have conjugate points to ∂V for all v in a neighborhood
of u in M .

From now on, we will suppose that if u is embedded in K, we will be able to
approach it as close as we wish by a proper choice of a pseudo field Ψ ∈ K.

5 Hilbert’s invariant integral

Now, returning to our functional, we know that for a fixed u∗ and given u, for all
pseudogradient field Ψ(x, u) the integrals g(x, u) and

∫
∂V

< g(x, u), n̂dl > are inde-
pendent of the path joining u∗ to u. This motivates the following definition.

Definition 5.1. Assume u∗, u, M and Ψ as in Theorems 4.2, 4.3 and Definition 4.4.
The Hilbert’s invariant integral of Ψ associated to 1.1 is

γ(u, Ψ) = g(x, u)−
∫

∂V

< g(x, u), n̂dl >

=
∫

V

< ∂∇uJ(x, u, Ψ(x, u)),∇u > dV

+
∫

V

[J(x, u, Ψ(x, u))− < ∂∇uJ(x, u, Ψ(x, u)), Ψ(x, u) >]dV

=
∫

V

[J(x, u, Ψ(x, u))− < ∂∇uJ(x, u, Ψ(x, u)),∇u−Ψ(x, u) >]dV

Clearly, if Ψ is a gradient field, γ(u, Ψ) = F (u). For this reason, we should under-
stand Hilbert’s invariant integral like the perturbation of functional F resulting from
computing its value in a close enough pseudofield instead of in the actual gradient
field. This claim is clarified in the following section.
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6 Weierstrass’ condition

We keep the previous notations and definitions.

Definition 6.1. Let F : M ⊂ A −→ R, be a functional of the form

F (u) =
∫

V

J(x, u,∇u) dV,

with J differentiable enough. The Weierstrass’ E map of F is the map E : V ×M ×
TV × TV −→ R defined by the expression

E(x, u, z, w) = J(x, u, w)− J(x, u, z)− < w − z, ∂∇uJ(x, u, z) > .

This means E is just but Taylor’s residue of J , understood as a function of ∇u. An
alternative definition would have been

E(x, u, z, w) =
1
2
(w − z)t[∂2

∇u∇uJ(x, u, z + τ(w − z))](w − z),

for some τ ∈ (0, 1).

The underlying importance of this definition lies in the following result, which
states a sufficient condition for the existence of a minimum (maximum).

Theorem 6.2. Let u∗,M and K be as before and suppose u is embedded in K. If
E(x, u, z, w) ≥ 0 (≤ 0) for all w ∈ Tu(M) ∼= R2, then F attains a local minimum
(maximum) at u.

Proof. For Ψ ∈ K, we compute the increment

F (u)− γ(u, Ψ) =
∫

V

[J(x, u,∇u)− J(x, u, Ψ)− < Ψ−∇u, ∂∇uJ(x, u, Ψ) >] dV

=
∫

V

E(x, u, Ψ(x, u),∇u) dV ≥ 0 (≤ 0).

Conversely, it can be proved that Weirstrass’ condition is also necessary for the
existence of the extrema. The idea of the proof is a generalization of the method
described in [2].

Theorem 6.3 (Weierstrass). If 1.1 possesses a minimum (maximum) at u ∈ M ,
then E(x, u,∇u,w) ≥ 0, for all w ∈ Tu(V ) ∼= R2.

Example 6.4. The conformal Gauss curvature functional, cf. [5],

F (u) =
∫

V

(
1
2
〈∇u,∇u

〉− K

2
e2u + ku

)
dV,

whose Euler-Lagrange equation is
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−div(∇u)−Ke2u + k = 0,

has Weierstrass’ E map

E(x, u, z, w) =
1
2
〈z, z〉 − K

2
e2u + ku− 1

2
〈w, w〉+

K

2
e2u − ku− 〈w − z, z〉

=
1
2
(3〈z, z〉 − 〈w, w〉)− 〈w, z〉.

We notice it is independent from the curvatures K, k.

7 Concluding remark

The focal point for determining the extrema is shifted here from the space of admis-
sible functions A to the space K of pseudofields at the critical point u, that is why
these type of extremum is known under the name of “strong” in classical literature,
cf. [2].
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