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Abstract

In this article, we establish a sharp inequality involving J-invariant
introduced by Chen for submanifolds in quaternionic space forms of con-
stant quaternionic sectional curvature with arbitrary codimension.
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1 Introduction

Let M be a 4m-dimensional Riemannian manifold with metric g. M is called
a quaternionic Kaehler manifold if there exists a 3-dimensional vector space V'
of tensors of type (1,1) with local basis of almost Hermitian structure ¢1, ¢
and ¢3 such that for all i € {1,2,3}:

(a) ¢idir1 = piva = —diy1¢i and ¢7 = —1 (i mod 3),

(b) for any local cross-section £ of V', Vx¢ is also a cross-section of V', where
X is an arbitrary vector field on M and V the Riemannian connection on M.
In fact, condition (b) is equivalent to the following condition:

(b’) there exist local 1-forms ¢1, g2, g3 such that

Vxéi = qir2(X)¢it1 — qiy1(X)dira (i mod 3).

Now, let X be a unit vector on M, then X, ¢1(X),d2(X) and ¢3(X) form
an orthonormal frame on M. We denote by Q(X) the 4-plane spanned by
them, and denote by 7(X,Y) the plane spanned by X,Y. Any 2-plane in
Q(X) is called a quaternionic plane. The sectional curvature of a quaternionic
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plane 7 is called the quaternionic sectional curvature of w. A quaternionic
Kaehler manifold is a quaternionic space form if its quaternionic sectional
curvatures are equal to a constant, say 4c. A quaternionic space form will be
denoted by M (4c). It is well-known that a quaternionic Kaehler manifold M
is a quaternionic space form if and only if its curvature tensor R is of the
following ([4]):

R(X,Y)Z =c{g(Y,2)X — g(X,Z2)Y
3
+Y (9. Z)pi X — g(6: X, Z)$iY — 2g(¢: X, V)i Z)}
=1

for vectors X,Y, Z tangent to M.

An n-dimensional Riemannian manifold M isometrically immersed in M (4c)
is called invariant if ¢; (¢ = 1,2, 3) maps the tangent space T, M into T,,M for
each point p € M. Also, M is called totally real or anti-invariant if ¢; maps the
tangent space T, M into TpLM for each point p € M, that is, ¢;(T,M) C TPLM,
where Tle is the normal space of M in M (4c). A submanifold M is said to
admit a quasi anti-invariant structure of rank k in M (4¢) if the tangent bundle
TM of M is decomposed as TM = D @ D+ satisfying ([6]):

(i) D and D+ are mutually orthogonal.
(ii) D+ is anti-invariant under the action of ¢; for every point p of M.
(iii) dimD+ = k.

Let V be the induced Levi-Civita connection on M. Then the Gauss and

Weingarten formulas are given respectively by

VxY = VxY 4+ h(X,Y),

VxV = -AyX + DxV
for vector fields X, Y tangent to M and a vector field V normal to M, where
h denotes the second fundamental form, D the normal connection and Ay the

shape operator in the direction of V. The second fundamental form and the
shape operator are related by

g(h(X, Y),V) = g(AvX, Y)

We also use g for the induced Riemannian metric on M as well as the quater-
nionic space form M (4c). The mean curvature vector H on M in M (4c) plays
an important role in determining our basic inequality later that is defined by

1 n
H = - z;h(ei,ei) = trh
1=
where {e1,e2,+- ,e,} is a local orthonormal frame of tangent bundle T'M of
M. A submanifold M in M (4c) is called minimal if the mean curvature vector
H vanishes identically over M.
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2 Riemannian invariants

Riemannian invariants of a Riemannian manifold are the intrinsic character-
istic of the Riemannian manifold. In this section, we recall a string of Rie-
mannian invariants on a Riemannian manifold ([3]).

For an n-dimensional Riemannian manifold M, we denote by K(m) the
sectional curvature of M associated with a plane section 7 C T,M,p € M.
For any orthornormal basis e1,--- , e, of the tangent space T),M, the scalar
curvature 7 at p is defined by to be

(2.1) T(p) =Y Kl(es Nej).

1<J
Chen introduced an invariant dp; on M by using
(inf K)(p) = inf{ K (7)| 7 is a plane section C T,M }
in the following manner:
(2.2) Sy = 7 — inf K.

Let L be a subspace of T, M of dimension r > 2 and {ey,- - ,e,} an orthonor-
mal basis of L. We define the scalar curvature 7(L) of the r-plane section L
by

(2.3) 7(L) = Z K(eaNeg), 1<a,B<r.
a<f

Given an orthonormal basis {ej,--- ,e,} of the tangent space T,M, we sim-
ply denote by ... the scalar curvature of the r-plane section spanned by
e1,- -+ ,er. The scalar curvature 7(p) of M at p is nothing but the scalar cur-
vature of the tangent space of M at p, and if L is a 2-plane section, 7(L) is
nothing but the sectional curvature K (L) of L. Geometrically, 7(L) is nothing
but the scalar curvature of the image exp,(L) of L at p under the exponen-
tial map at p. For an integer k£ > 0 denote by S(n, k) the finite set consist-

ing of unordered k-tuples (ny,---,nx) of integers > 2 satisfying n; < n and
ny+---+ng < n. Denote by S(n) the set of unordered k-tuples with k£ > 0 for
a fixed n. For each k-tuple (ny,---,ni) € S(n) the sequence of Riemannian

invariant S(nq,--- ,ng)(p) is defined by
S(na, .o yng)(p) = mf{7(L1) + -+ 7(Ly)},

where Lq,---, L run over all £ mutually orthogonal subspaces of T),M such
that dimL; = n;,j = 1,--- , k. The string of Riemannian curvature invariant
d(ni, -+ ,ng) is given by
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(2.4) o(ny,...,nk)(p) =7(p) — S(ni,...,nK)(p).

For each (ni,---,ng) € S(n), let ¢(n1,--- ,ng) and b(ni,--- ,ni) denote the
positive constants given by

0Pt k—1-Yn))
c(ny, - ,ng) = 2(n+k_2nj) ’

1 k
b(nl,-u,nk)zi n(n—l)—an(nj—l) .
j=1

3 An inequality for submanifolds in quaternionic
space form
Let M be an n-dimensional Riemannian manifold isometrically immersed in
a 4m-dimensional quaternionic space form M (4c) of constant quaternionic
sectional curvature 4c. Then, the Gauss equation on M is given by
(3.1)
+2i19(0iY, 2)g(6i X, W) — g(9i X, Z)g(iY, W) — 29(: X, Y )g(6: Z, W)}

for vectors X,Y, Z tangent to M. For any p € M and for any X € T,M, we
have ;X = PX + F;X, P, € T,M, F; € T, M, i = 1,2,3. Let {e1, -+ ,en}
be an orthonormal basis of T),M. We put

n
1Pl = Y *(Preivej), k=1,2,3.
ij=1
On the other hand, the scalar curvature 7 satisfies
3
(3.2) 2r =n(n—1)c+3cY_||B|[*+n?|[H|]” - [|h] .
i=1

Let L C T,M be a subspace of T,M, dimL = r. We put

(D)= > P(Peeirey), k=123,

1<i<j<r
where {e,---,e,} is an orthonormal basis of L.

We now recall Chen’s lemma:
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Lemma 3.1.([2]) Let aj, -+ ,an,c be n+ 1 (n > 2) real numbers such that

(Zai> =(n-1) (Za?+c>.

Then, 2a1a9 > ¢, with the equality holding if and only if a1 + a2 = a3 =--- =
Q-

Theorem 3.2. Let M be an n-dimensional submanifold of a 4m-dimensional
quaternionic space form M (4c) of constant quaternionic sectional curvature
4c. Then, for any point p € M and any plane section w in T,M, we have

n — n nQn—
s ]

3 3
3c
— 3¢ ay(m) + 5 > IR
=1 =1

The equality holds at p € M if and only if there exists an orthonormal ba-
sis {ent+1,- " ,eam} for T,pLM such that (a) m = span{ei,ea} (b) the shape
operator Ap = Ae,,r =n+1,--- ,4m, take the following forms:

T—K(m) < (
(3.3)

a 00 ... 0
0b 0 ... 0

(3.4) App1 =10 0 ¢ ... O]
0 00 c
¢ dp 0 0
d- —c¢ 0 ... 0

(3.5) 4,=10 0 0 ... 0],
0 0 O 0

where a + b= c and ¢,,d, € R.

Proof. Let p be a point of M and 7 be a plane section contained in the tangent
space T,M of M at p. We choose an orthonormal basis {e;, e, -, ey} for
TpM and {ept1,--- ,eam} for the normal space TPLM at p such that e; and
eo generator the plane section 7 and the normal vector e,41 is in the driction
of the mean curvature vector H. Then the Gauss equation (3.1) gives
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3
K(m)=K(e1 Neg) =c+3c>_ ai(m) + hiy  his

i=1
+ Z hiihhy — (hi51)? — Z (h12)*.
r>n+2 r>n+2
We put
n’(n - 2) 2 ° 2
36 p=2r = "2 EE 3 S IRIP — nln - 1)
i=1
Substituting (3.2) into (3.6), we have
n?||H|? = (n = 1)(p + [I]]?),
in other words,
n 2
(Z h) — - [ g g X S
i=1 i=1 i#£j r>n+2 1,j
Applying Lemma 3.1, we get
1
> (S0 35 S
i#£] r=n+2 i,j

Thus, we have

>c—|—3cZozl + p+ Z > {(h; 5%}

r=n+1j5>2
(37> 1 4m 1 4m
DN EED Sl S I S RRIR
z¢j>2 r=n-+21,j>2 r=n+2

Making use of (3.6), we get (3.3).
Suppose the equality of (3.3) holds. Then, the terms involving hi;’s in (3.7)
vanish at the same time and thus

) h?j—H:(L i F£J>2,
1j=hy=hiz =0, r=n+2--,4m; i,j=3,
11”1+h52:(), r:n—|—2,---,4m.

prtl — prtl —

Moreover, we may choose e; and ez such that h?;l = 0. Also, Lemma 3.1
implies that
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hnikl + hn+1 — hn+l L hn+1.

Therefore, the shape operator A,(r =n+1,---,4m) take the form (3.4) and
(3.5). The converse is obvious. [J

Theorem 3.3. Let M be an n-dimensional submanifold of a 4m-dimensional
quaternionic projective space M(4c) (¢ > 0) of constant quaternionic sectional
curvature 4c. Then, for any point p € M and any plane section m in T, M, we
have

n*(n —2) 2

e L]

with equality holding if and only if M is invariant.

(3.8) Sar < %(n2 +8n —2)c +

Proof. We suppose that ¢ > 0, we must maximize the term $°_ || P;]|* —
2 Z?Zl a;() in (3.3). The maximum value is reached for ||P;||> = n, a;(m) =0
(1 =1,2,3), that is, M is invariant and we can also obtain (3.8). OJ

Theorem 3.4. Let M be an n-dimensional submanifold of a 4m-dimensional
quaternionic hyperbolic space M (4c) (c < 0) of constant quaternionic sectional
curvature 4c. Then, for any point p € M and any plane section m in T, M, we
have

(n—2)(n+1) n n?(n — 2) |
c
2 2(n—1)
with equality holding if and only if M admits a quasi anti- invariant structure
of rank n — 2.

(3.9) a1 <

Proof Assume that ¢ < 0. We must minimize the last term ZZ B2 =

2573 L ai(r) in (3.3) in order to estimate §j;. For an orthonormal basis
{e1, -+ ,en} of T,M with m = span{ey, ez}, we can write
3 n
X:HPH2 QZ% => | Y F(dreirey +QZ (¢rer, e5) + g° (drea, €5))
i=1 k=1 \4,j=3

Thus, the minimum vale is zero. This occurs only when 7 =span{e;, e} is or-
thogonal to span{¢re;|i = 3,--- ,n, k =1,2,3}. Furthermore, span{¢ye;|i =
3,---,n, k=1,2,3}is orthogonal to the tangent space T, M. Thus, we have
(3.9) with equality holding if and only if M admits a quasi anti-invariant
structure of rank (n —2). O

Theorem 3.5. Let M be an n-dimensional submanifold of a 4m-dimensional
quaternionic projective space M(4c) (c > 0) of constant quaternionic sectional
curvature 4c. Then, we have
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In
(3.10) S(ny, - nk) <c(ng, - ,np)|[H|[? +b(n, - ,ng)e+ 5 ¢
for any k-tuple (n1,--- ,n;) € S(n).
The equality case of inequality (3.10) holds at a point p € M if and only if
there exists an orthonormal basis e1, - - - €am at p such that the shape operators
of M in M(4c) (c > 0) at p take the following forms:

AT 0

(3.11) A=l o 0 ot am,
0 ... AT

0 ol

where I is an identity matriz and each A; are symmetric nj X n; submatrices
such that
trace(A}) = - -+ = trace(A},) = .

Proof. Let M be a submanifold of a quaternionic projective space M (4c) (¢ >
0) of constant quaternionic sectional curvature 4c.

If £ =1, this was done in Theorem 3.3. Hence, we assume k > 1.

Let (n1,---,n) € S(n). Put

n2(n+k—-1->ny) 5
(312) np=2r—n(n—1)c— I H|)? =3¢ ) ||1P
(n+k—22ny) —

Substituting (3.2) into (3.12), we have

(3.13) n?|[H|? =y +|Ih[[*), y=n+k=>) n;

Let Lq,---,L; be mutually orthogonal subspaces of T, M with dim L; =

nj,j = 1,---, k. By choosing an orthonormal basis e1, - , €4, at p such that
LJ = Span{en1+...+nj71+1, s 7en1+---+nj}> Jg=1---, k

and ep4+1 is in the direction of the mean curvature vector, we obtain from
(3.13) that

n 2 n 4m n
(3.14) <Z ai> =y |n+ Z(ai)Q + Z(h%+1)2 + Z Z (h;‘nj)2 s
=1 1=1

1#£j r=n+21,j=1

where a; :hZH,i: Lo ,n,and y=n+k—> nj.

We set
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(3.15) Ay ={1,....n},- -, Ap={n1+--+ngp_1+1,-- ,;n1+- - +ngh

In other words, the equation (3.14) can be rewritten in the form

y+1 2 7+1 4m n
(a) =+ Tt o+ 3 Y
i=1

1#£] r=n+21i,7=1
(3.16)
- Z Goy OB — Z Qon@py =+ — Z (o Ay);
2<an#P1<m a2#B2 ap#Pk

o, By € Ag,...,ak,ﬂk ISAV)
where we put
ar = a1,a2 = a2 + -+ apyq,
a3 = Gpy41 1+ Onydngs -5 Akl = Ongfoegny_ 1 T 0 Ang gy
k12 = Gnqtotngtls -« -5 Gyt = Q.

Applying Lemma 3.1 to (3.15), we can obtain the following inequality

Z Qo 08, + Z Qo QBy + -+ + Z Aoy Ay,

a1<p1 a2<f2 k<P
(3 17) n 1 am n
' >+ (S Y Y ()
i<j r=n+21i,j=1

Oéj,ﬁjGA]’, j=1,... k.
Furthermore, from (2.3) and Gauss’ equation we see that

(3.18)
3
T(Lj) — nj(n;_l)c + 302051(1/])
=1

2 .
+ Z Z Oéjajhﬂgﬂ] (hgjb’]) )7 aj,,Bj € AJ, ] = 1’ ... ’k.
r=n+1a;<B;

Thus, combining (3.16) and (3.17) we get

3
T(L1) + - T(Lk) = 5 + Z (nj C+3czal(Lj)>
1=1
1 4m - 1 4m k .
(3.19) +3 o> (ki) T3 22| 2 P

r=n+1 (a,3)¢A2 r=n+2 j=1 \«a;€A;

>3 —g et 3e ) a(ly) )

=1
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where A = Aj U -+ UA, AQZ(Alel)U"'U(AkXAk).
Substituting (3.2) into (3.18), it follows that

k

=3 7(Ly) < eln, - || HIP 4 blna, -+ e
=1
(3.20) ’

+

DO o
o

Z |P||2+222az

=1 j=1

Since ¢ > 0, inequality (3.10) thus follows.

If the equality in (3.10) holds at a point p, then the inequalities in (3.16)
and (3.18) are actually equalities at p. In this case, by applying Lemma 3.1
and (3.15)-(3.18), we also obtain (3.11). The converse can be verified by a
straight-forward computation. [

Corollary 3.6. Let M be an n-dimensional Riemannian manifold andp € M.
If there exists a k-tuple (ny,--- ,ng) € S(n) and a point p € M such that

(3.21) o(ny,...,ng) >

N | —

k
n(n —1) Z j—1)+9n|c,

then M admits no minimal submanifold into any 4m-dimensional quaternionic
projective space M(4c) (¢ >0).

Theorem 3.7. Let M be an n-dimensional submanifold of a 4m-dimensional
quaternionic hyperbolic space M (4c) (c < 0) of constant quaternionic sectional
curvature 4c. Then, we have

(3.22) S(ny, - ,np) <clng, - )| H||* +b(ng, -+ ,ng)e

for any k-tuple (n1,--- ,n;) € S(n).

The equality case of inequality (3.20) holds at a point p € M if and only if
there exists an orthonormal basis ey, - - , e4m at p such that the shape operators
of M in M(4c) (¢ <0) at p take the forms (3.11).

Proof. By using (3.19) and ¢ < 0, one gets (3.20). O

Corollary 3.8. Let M be an n-dimensional Riemannian manifold andp € M.
If there exists a k-tuple (ny,--- ,ng) € S(n) and a point p € M such that

k
n(n —1) Z c,

(323) (5(711, R ,Nk) >

DO
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then M admits no minimal submanifold into any m-dimensional quaternionic
hyperbolic space M(4c) (¢ <0).

Corollary 3.9. Let M be an n-dimensional totally real submanifold of a 4m-
dimensional quaternionic space form M (4c¢) of constant quaternionic sectional
curvature 4c. Then, we have

(3.24) S(ny, - ,np) <c(ng, -, np)|[H||? +b(ng, - ,ng)e

for any k-tuple (ny,--- ,ng) € S(n).

The equality case of inequality (3.21) holds at a point p € M if and only if
there exists an orthonormal basis e1, - - , eam at p such that the shape operators
of M in M(4c) at p take the forms (3.11).

Proof. Let M be an n-dimensional totally real submanifold of a 4m-dimensional

quaternionic space form M (4c). Then we have ||Pj|[> = 0, ai(L) = 0,i =
1,2, 3. Thus, from (3.19) we obtain (3.21). O
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