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CERTAIN CLASSES OF k-UNIFORMLY CLOSE-TO-CONVEX

FUNCTIONS AND OTHER RELATED FUNCTIONS DEFINED

BY USING THE DZIOK-SRIVASTAVA OPERATOR

(DEDICATED IN OCCASION OF THE 65-YEARS OF

PROFESSOR R.K. RAINA)

H. M. SRIVASTAVA, SHU-HAI LI, HUO TANG

Abstract. Several interesting classes of k-uniformly close-to-convex functions
and k-uniformly quasi-convex functions are defined here by using the Dziok-

Srivastava operator. We provide necessary and sufficient coefficient conditions,

extreme points, integral representations, and distortion bounds for functions
belonging to each of these classes of k-uniformly close-to-convex functions and

k-uniformly quasi-convex functions.

1. Introduction, Definitions and Preliminaries

Let A denote the class of functions of the form:

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk

U = {z : z ∈ ℂ and ∣z∣ < 1}.
Also let A− denote a subclass of A consisting of functions of the form:

f(z) = z −
∞∑
n=2

anz
n (an ≧ 0) , (1.2)

which are analytic in U.
A function f(z) ∈ A is said to be in the class of k-uniformly convex functions of

order � (0 ≦ � < 1), denoted by UK(k, �) (cf. [10]; see also [6] and [8]) if

ℜ
(

1 +
zf ′′(z)

f ′(z)

)
> k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ � (k ≧ 0; 0 ≦ � < 1; z ∈ U). (1.3)
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A corresponding class of k-uniformly starlike functions, denoted by US(k, �)
consists of functions f(z) ∈ A such that

ℜ
(
zf ′(z)

f(z)

)
> k

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣+ � (k ≧ 0; 0 ≦ � < 1; z ∈ U). (1.4)

It is obvious from the inequalities in (1.3) and (1.4) that (see [10])

f(z) ∈ UK(k, �) ⇐⇒ zf ′(z) ∈ US(k, �). (1.5)

Each of the function classes UK(k, �) and US(k, �) provides unifications and
generalizations various other (known or new) subclasses of A. Several properties of
some of the subclasses of the function classes UK(k, �) and US(k, �) were studied
recently in [9] (see also [6] and [8]).

Definition 1 (see [1]). Define UC(k, 
, �) to be the family of functions f(z) ∈ A
such that

ℜ
(
zf ′(z)

g(z)

)
> k

∣∣∣∣zf ′(z)g(z)
− 1

∣∣∣∣+ 

(
k ≧ 0; 
 ∈ [0, 1); z ∈ U

)
(1.6)

for some function g(z) ∈ US(k, �).

Definition 2 (see [1]). Define UQ(k, 
, �) to be the family of functions f(z) ∈ A
such that

ℜ
(

(zf ′(z))′

g′(z)

)
> k

∣∣∣∣ (zf ′(z))′g′(z)
− 1

∣∣∣∣+ 

(
k ≧ 0; 
 ∈ [0, 1); z ∈ U

)
(1.7)

for some function g(z) ∈ UK(k, �).

It readily follows from Definitions 1 and 2 that

f(z) ∈ UQ(k, 
, �) ⇐⇒ zf ′(z) ∈ UC(k, 
, �). (1.8)

We say that UC(0, 
, �) is the class of close-to-convex functions of order 
 and type
� in U and that UQ(0, 
, �) is the class of quasi-convex functions of order 
 and
type � in U.

Definition 3. For functions f(z) ∈ A given by (1.1), and g(z) ∈ A given by

g(z) = z +

∞∑
n=2

bnz
n, (1.9)

we define the Hadamard product (or convolution) of f(z) and g(z) by

(f ∗ g)(z) := z +

∞∑
n=2

an bnz
n =: (g ∗ f)(z) (z ∈ U). (1.10)

For complex parameters

�j ∈ ℂ (j = 1, ⋅ ⋅ ⋅ , l) and �j ∈ ℂ ∖ ℤ−0 (j = 1, ⋅ ⋅ ⋅ ,m; ℤ−0 := {0,−1,−2, ⋅ ⋅ ⋅ }),
the generalized hypergeometric function lFm (with l numerator and m denominator
parameters) is defined by

lFm(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m) =

∞∑
n=0

(�1)n ⋅ ⋅ ⋅ (�l)n
(�1)n ⋅ ⋅ ⋅ (�m)n

⋅ z
n

n!
(1.11)
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(l ≦ m+ l; l,m ∈ ℕ0 := {0, 1, 2, ⋅ ⋅ ⋅ } = ℕ ∪ {0}),
where (�)� denotes the Pochhammer symbol (or the shifted factorial, since (1)n = n!
for n ∈ ℕ) defined, in terms of the familiar Gamma functions, by

(�)� :=
Γ(�+ �)

Γ(�)
=

⎧⎨⎩ 1 (� = 0; � ∈ ℂ ∖ {0})

�(�+ 1) ⋅ ⋅ ⋅ (�+ n− 1) (� = n ∈ ℕ; � ∈ ℂ).

Now, corresponding to the function

ℎ(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m; z) = z lFm(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m),

the Dziok-Srivastava linear operator (see [3], [4], [5] and [11]; see also [7], [14] and
[15])

H l
m(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m)

is defined as follows by using the Hadamard product (or convolution):

H l
m(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m)f(z)

= ℎ(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m; z) ∗ f(z)

= z +

∞∑
n=2

'n(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m)anz
n, (1.12)

where, for convenience,
'n(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m)

is given by

'n(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m) :=
(�1)n−1 ⋅ ⋅ ⋅ (�l)n−1
(�1)n−1 ⋅ ⋅ ⋅ (�m)n−1

⋅ 1

(n− 1)!
. (1.13)

It is well known (see, for example, [5]) that

�1H
l
m(�1 + 1, �2, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m)f(z)

= z
(
H l
m(�1 + 1, �2, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m)f(z)

)′
+ (�1 − 1)H l

m(�1, �2, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m)f(z). (1.14)

For notational simplification in our investigation, we write

H l
m[�1]f(z) = H l

m(�1, ⋅ ⋅ ⋅ , �l;�1, ⋅ ⋅ ⋅ , �m)f(z). (1.15)

We now define the linear operator L�,�1

�,j,m as follows:

L0
�,�1

f(z) = f(z), (1.16)

L1,�1

�,j,mf(z) = (1− �)H l
m[�1]f(z) + �z

(
H l
m[�1]f(z)

)′
= L�1

�,j,mf(z) (� ≧ 0), (1.17)

L2,�1

�,j,mf(z) = L�1

�,j,m

(
L1,�1

�,j,mf(z)
)

(1.18)

and, in general,

L�,�1

�,j,mf(z) = L�1

�,j,m

(
L�−1,�1

�,j,m f(z)
)

(l ≦ m+ 1; l,m ∈ ℕ0; � ∈ ℕ). (1.19)

If the function f(z) is given by (1.1), then we see from (1.12), (1.13), (1.17) and
(1.19) that

L�,�1

�,j,mf(z) = z +

∞∑
n=2

��n(�1, �, l,m)anz
n (� ∈ ℕ0), (1.20)
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where

��n(�1, �, l,m) =

(
(�1)n−1 ⋅ ⋅ ⋅ (�l)n−1
(�1)n−1 ⋅ ⋅ ⋅ (�m)n−1

⋅ [1 + �(n− 1)]

(n− 1)!

)�
(1.21)

(n ∈ ℕ ∖ {1}; � ∈ ℕ0).

When

� = 1 and � = 0,

the linear operator L�,�1

�,j,m would reduce to the familiar Dziok-Srivastava linear

operator given by (1.12) above (see, for example, [3]). For a linear operator which
is essentially analogous to the Dziok-Srivastava operator in (1.12), but uses instead
the Fox-Wright generalization of the hypergeometric function lFm defined here by
(1.11), the interested reader may be referred to the recent works [2] and [12] as well
as to the closely-related works cited in each of these recent works.

By applying the general operator L�,�1

�,j,m, we define the following subclasses of
the function class A.

I. Let USlm(�, �, k, �) be the class of functions f(z) ∈ A satisfying the following
inequality:

ℜ

(
z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mf(z)

)
> k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mf(z)
− 1

∣∣∣∣∣+ �
(
k ≧ 0; � ∈ [0, 1)

)
. (1.22)

Observe that

L�,�1

�,j,mf(z) ∈ US(k, �).

II. Let UKlm(�, �, k, �) be the class of functions f(z) ∈ A satisfying the following
inequality:

ℜ

(
1 +

z
(
L�,�1

�,j,mf(z)
)′′(

L�,�1

�,j,mf(z)
)′
)
> k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′′(

L�,�1

�,j,mf(z)
)′
∣∣∣∣∣+�

(
k ≧ 0; � ∈ [0, 1)

)
. (1.23)

Observe that

L�,�1

�,j,mf(z) ∈ UK(k, �).

III. Let UClm(�, �, k, 
, �) be the class of functions f ∈ A such that

ℜ

(
z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)

)
> k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
− 1

∣∣∣∣∣+ 

(
k ≧ 0; 
 ∈ [0, 1)

)
(1.24)

for some function g(z) ∈ USlm(�, k, �). Observe that

L�,�1

�,j,mf(z) ∈ UC(k, 
, �).

IV. Let UQlm(�, �, k, 
, �) be the class of functions f ∈ A such that

ℜ

(
1 +

z
(
L�,�1

�,j,mf(z)
)′′(

L�,�1

�,j,mg(z)
)′
)
> k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′′(

L�,�1

�,j,mg(z)
)′
∣∣∣∣∣+ 


(
k ≧ 0; 
 ∈ [0, 1)

)
(1.25)

for some function g(z) ∈ UKlm(�, �, k, �). Observe that

L�,�1

�,j,mf(z) ∈ UK(k, 
, �).
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It is clear from two of the above definitions that

f(z) ∈ UKlm(�, �, k, �)⇐⇒ zf ′(z) ∈ UClm(�, �, k, �). (1.26)

Finally, in terms of the above-defined function classes, we write

US−l,m(�, �, k, �) = A− ∩ USlm(�, �, k, �),

UK−l,m(�, �, k, �) = A− ∩ UKlm(�, �, k, �),

UC−l,m(�, �, k, 
, �) = A− ∩ UClm(�, �, k, 
, �)

and
UQ−l,m(�, �, k, 
, �) = A− ∩ UQlm(�, �, k, 
, �).

The various properties and characteristics of functions in the class USlm(1, 0, k, �)
were investigated by Dziok and Srivastava [3]. In this paper, we obtain several
relationships and properties of the convolution operators considered here. Our
paper mainly studies the functions in the class UClm(�, �, k, �). We first prove

a sufficient condition for a function f ∈ A to be in the class UClm(�, �, k, �). We
then provide necessary and sufficient coefficient conditions, extreme points, integral
representations, distortion bounds, radii of starlikeness and convexity for functions
in the class UClm(�, �, k, �).

2. First Set of Main Results

First of all, we obtain a sufficient condition for a function f ∈ A to be in the
class UClm(�, �, k, 
, �).
Theorem 1. Let f(z) ∈ A be given by (1.1). Suppose also that ��n(�1, �, l,m) is
given by (1.21). If

k ≧ 0, � ∈ [0, 1), 
 ∈ [0, 1), � ≧ 0, � ∈ ℕ0

and
∞∑
n=2

[
2k∣nan − bn∣+ (1− 
)∣bn∣

]
��n(�1, �, l,m) < 1− 
,

then f(z) ∈ UClm(�, �, k, 
, �).

Proof. By the definition of the function class UClm(�, �, k, 
, �), it suffices to show
for a function f(z) ∈ A given by (1.1) that

k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
− 1

∣∣∣∣∣−ℜ
(
z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
− 


)

≦ 2k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
− 1

∣∣∣∣∣
≦ 2k

∞∑
n=2

��n(�1, �, l,m)∣nan − bn∣ ⋅ ∣z∣n−1

1−
∞∑
n=2

��n(�1, �, l,m) ∣bn∣ ⋅ ∣z∣n−1
. (2.1)

Now the last expression in (2.1) is bounded above by 1− 
 if and only if
∞∑
n=2

[
2k∣nan − bn∣+ (1− 
)∣bn∣

]
��n(�1, �, l,m) < 1− 
,
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which evidently completes the proof of Theorem 1. □

We next provide a necessary and sufficient coefficient bound for a given function
f(z) ∈ A− to belong to the class UC−l,m(�, �, k, 
, �).

Theorem 2. Let f(z) ∈ A− be given by (1.2). Also let ��n(�1, �, l,m) be given by
(1.21). Then f ∈ UC−l,m(�, �, k, 
, �) if and only if

∞∑
n=2

[
n(1 + k)an − (k + 
)bn

]
��n(�1, �, l,m) < 1− 
. (2.2)

Proof. Suppose that f(z) ∈ UC−l,m(�, �, k, 
, �). Then, making use of the fact that

ℜ(!) > k∣! − 1∣+ 
 ⇐⇒ ℜ
(
!(1 + kei�)− kei�

)
> 
 (
 ∈ ℝ)

and letting

! =
z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)

in (1.3), we obtain

ℜ

(
z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
(1 + kei�)− kei�

)
> 


or, equivalently,

ℜ

⎛⎜⎜⎜⎝
(1 + kei�)z

(
z −

∞∑
n=2

��n(�1, �, l,m)anz
n

)′
− (kei� + 
)

(
z −

∞∑
n=2

��n(�1, �, l,m)bnz
n

)
z −

∞∑
n=2

��n(�1, �, l,m)bnzn

⎞⎟⎟⎟⎠ > 0,

which holds true for all z ∈ U. By letting z → 1− through real values, we thus find
that

ℜ

⎛⎜⎜⎝ (1− 
)− (1 + kei�)
∞∑
n=2

n��n(�1, �, l,m)an + (
 + kei�)
∞∑
n=2

��n(�1, �, l,m)bn

1−
∞∑
n=2

��n(�1, �, l,m)bn

⎞⎟⎟⎠ > 0,

and so (by the mean value theorem) we have

ℜ

(
(1− �)− (1 + kei
)

∞∑
n=2

n��n(�1, �, l,m)an + (� + kei�)

∞∑
n=2

��n(�1, �, l,m)bn

)
> 0.

Therefore, we get

∞∑
n=2

[
n(1 + k)an − (k + 
)bn

]
��n(�1, �, l,m) < 1− 
,

which proves the first part of Theorem 2.
Conversely, we let the inequality (2.2) hold true.

Then, in light of the fact that

ℜ(!) > 
 ⇐⇒ ∣! − (1 + 
)∣ < ∣! + (1− 
)∣ (
 ∈ ℝ),
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we need only to show that∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
−

(
1 + k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
− 1

∣∣∣∣∣
)

+ 


∣∣∣∣∣
<

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
+

(
1− k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
− 1

∣∣∣∣∣
)
− 


∣∣∣∣∣
By setting

L�,�1

�,j,mg(z)∣∣∣L�,�1

�,j,mg(z)
∣∣∣ = ei#,

we may write

E =

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
+

(
1− k

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
− 1

∣∣∣∣∣− 

)∣∣∣∣∣

=
∣z∣∣∣∣L�,�1

�,j,mg(z)
∣∣∣
∣∣∣∣∣(L�,�1

�,j,mf(z)
)′

+ (1− 
)
L�,�1

�,j,mg(z)

z
− k
∣∣∣∣(L�,�1

�,j,mf(z)
)′ − L�,�1

�,j,mg(z)

z

∣∣∣∣
∣∣∣∣∣

=
∣z∣∣∣∣L�,�1

�,j,mg(z)
∣∣∣
∣∣∣∣∣(2− 
)−

∞∑
n=2

[nan + (1− 
)bn]��n(�1, �, l,m)zn−1

− ei#
∣∣∣∣− ∞∑

n=2

(knan − kbn)��n(�1, �, l,m)zn−1
∣∣∣∣
∣∣∣∣∣

>
∣z∣∣∣∣L�,�1

�,j,mg(z)
∣∣∣
(

(2− 
)−
∞∑
n=2

(n(1 + k)an + (1− k − 
)bn)��n(�1, �, l,m)

)

and

F =

∣∣∣∣∣z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
−

(
1 + k

∣∣∣∣∣z(L
�,�1

�,j,mf(z))′

L�,�1

�,j,mg(z)
− 1

∣∣∣∣∣+ 


)∣∣∣∣∣
=

∣z∣∣∣∣L�,�1

�,j,mg(z)
∣∣∣
∣∣∣∣∣(L�,�1

�,j,mf(z)
)′ − (1 + 
)

L�,�1

�,l,mg(z)

z
− k
∣∣∣∣(H l

m[�1]f(z)
)′ − L�,�1

�,j,mg(z)

z

∣∣∣∣
∣∣∣∣∣

=
∣z∣∣∣∣L�,�1

�,j,mg(z)
∣∣∣
∣∣∣∣∣− 
 −

∞∑
n=2

[nan − (1 + 
)bn]��n(�1, �, l,m)zn−1

− ei#
∣∣∣∣− ∞∑

n=2

(knan − kbn)��n(�1, �, l,m)zn−1
∣∣∣∣
∣∣∣∣∣

<
∣z∣∣∣∣L�,�1

�,j,mg(z)
∣∣∣
(

 +

∞∑
n=2

[n(1 + k)an − (1 + k + 
)bn]��n(�1, �, l,m)

)
.

It is easy to verify that

E− F > 0

in case the inequality (2.2) holds true. The proof of Theorem 2 is thus completed.
□
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When
f(z) = g(z) (z ∈ U),

Theorem 2 would yield the following corollary.

Corollary 1. Let g(z) ∈ A− be given by

g(z) = z −
∞∑
n=2

bnz
n (bn ≧ 0) , (2.3)

Then g(z) ∈ US−l,m(�, �, k, �) if and only if

∞∑
n=2

[(n− 1)k + n− �]bn�
�
n(�1, �, l,m)

1− �
< 1.

Corollary 2. If g(z) ∈ US−l,m(�, �, k, �) is given by (2.3), then

∞∑
n=2

bn <
1− �

(2 + k − �)��2(�1, �, l,m)
.

Proof. Since g(z) ∈ US−l,m(�, �, k, �) is given by (2.3), we can apply Corollary 1 to
obtain

(k + 2− �)��2(�1, �, l,m)

∞∑
n=2

bn

≦
∞∑
n=2

bn[(n− 1)k + n− �]��n(�1, �, l,m)

< 1− �.
We thus find that

∞∑
n=2

bn <
1− �

(2 + k − �)��2(�1, �, l,m)
,

which proves Corollary 2. □

Corollary 3. If g(z) ∈ US−l,m(�, �, k, �) is given by (2.3), then

bn <
1− �

(2 + k − �)an��2(�1, �, l,m)
.

3. Further Results and Consequences

In this section, several further results involving the various function classes which
were introduced in Section 1.

Theorem 3. If g(z) ∈ US−l,m(�, �, k, �), then

L�,�1

�,j,mg(z) = exp

(∫ z

0

k − �Q(t)

t[k −Q(t)]
dt

) (
∣Q(z)∣ < 1; z ∈ U

)
(3.1)

and

L�,�1

�,j,mg(z) = exp

(∫
∣x∣=1

log
[
(k − xz)−1−�

]
d�(x)

)
, (3.2)
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where �(x) is a probability measure on the set:

X = {x : ∣x∣ = 1}.

Proof. The case k = 0 of the assertion (3.1) if Theorem 3 is obvious. Let k ∕= 0.
Then, for

g(z) ∈ US−l,m(k, �) and ! =
z
(
L�,�1

�,j,mg(z)
)′

L�,�1

�,j,mg(z)
,

we have

ℜ(!) > k∣! − 1∣+ �.

We thus find that∣∣∣∣! − 1

! − �

∣∣∣∣ < 1

k
and

! − 1

! − �
=
Q(z)

k

(
∣Q(z)∣ < 1; z ∈ U

)
,

which readily yields

z
(
L�,�1

�,j,mg(z)
)′

L�,�1

�,j,mg(z)
=

k − �Q(z)

z[k −Q(z)]

and, therefore,

L�,�1

�,j,mg(z) = exp

(∫ z

0

k − �Q(t)

t[k −Q(t)]
dt

)
.

In order to derive the second representation (3.2), corresponding to the set:

X = {x : ∣x∣ = 1},

we observe that
! − 1

! − �
<

1

k
xz

or, equivalently, that

z
(
L�,�1

�,j,mg(z)
)′

L�,�1

�,j,mg(z)
=

k − �Q(z)

z[k −Q(z)]

=⇒ log

(
H l
m[�1]g(z)

z

)
= −(1 + �) log(k − xz).

Thus, if �(x) is the probability measure on X, then

L�,�1

�,j,mg(z) = exp

(∫
∣x∣=1

log
[
(k − xz)−1−�

]
d�(x)

)
.

□

Theorem 4. If f(z) ∈ UC−l,m(�, �, k, 
, �), then

L�,�1

�,j,mf(z) =

∫ z

0

[
k − 
Q(t)

k −Q(t)
exp

(∫
∣x∣=1

log
[
(k − xt)−1−�

]
d�(x)

)]
dt, (3.3)

where �(x) is a probability measure on the following set:

X = {x : ∣x∣ = 1}.
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Proof. The case k = 0 of the assertion (3.3) of Theorem 4 is obvious. Let k ∕= 0.
Then, for

f ∈ UC−l,m(�, �, k, �) and ! =
z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
,

we have
ℜ(!) > k∣! − 1∣+ 
.

We thus find that∣∣∣∣! − 1

! − 


∣∣∣∣ < 1

k
and

! − 1

! − 

=
Q(z)

k

(
∣Q(z)∣ < 1; z ∈ U

)
,

which easily yields

z
(
L�,�1

�,j,mf(z)
)′

L�,�1

�,j,mg(z)
=

k − 
Q(z)

z[k −Q(z)]
. (3.4)

Moreover, from Theorem 3, we have

L�,�1

�,j,mg(z) = exp

(∫
∣x∣=1

log
[
(k − xz)−1−�

]
d�(x)

)
, (3.5)

where �(x) is a probability measure on the set:

X = {x : ∣x∣ = 1}.
The assertion (3.3) of Theorem 4 would now follow from (3.4) and (3.5). □

Next we obtain a distortion bounds for the functions f(z) and g(z).

Theorem 5. If g(z) ∈ US−l,m(�, �, k, �), then

∣z∣ − 1− �
(2 + k − �)��2(�1, �, l,m)

∣z∣2

< ∣g(z)∣ < ∣z∣+ 1− �
(2 + k − �)��2(�1, �, l,m)

∣z∣2 (z ∈ U) (3.6)

and

1− 2(1− �)

(2 + k − �)��2(�1, �, l,m)
∣z∣

< ∣g′(z)∣ < 1 +
2(1− �)

(2 + k − �)��2(�1, �, l,m)
∣z∣ (z ∈ U). (3.7)

Proof. For g(z) ∈ US−l,m(�, �, k, �) given by (2.3), we find from Corollary 2 that

∞∑
n=2

bn <
1− �

(2 + k − �)��2(�1, �, l,m)
, (3.8)

which implies that

∣g(z)∣ ≦ ∣z∣+ ∣z∣2
∞∑
n=2

bn < ∣z∣+
1− �

(2 + k − �)��2(�1, �, l,m)
∣z∣2 (z ∈ U)

and

∣g(z)∣ ≧ ∣z∣ − ∣z∣2
∞∑
n=2

bn > ∣z∣ −
1− �

(2 + k − �)��2(�1, �, l,m)
∣z∣2 (z ∈ U).
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Thus the assertion (3.6) of Theorem 5 follows at once.
In a similar manner, for the derivative g′(z), the following inequalities:

∣g′(z)∣ ≦ 1 +

∞∑
n=2

nbn∣z∣n−1 < 1 + ∣z∣
∞∑
n=2

nbn (z ∈ U)

and
∞∑
n=2

nbn <
2(1− �)

(2 + k − �)��2(�1, �, l,m)

lead us immediately to the assertion (3.7) of Theorem 5. This completes the proof
of Theorem 5. □

Theorem 6. If f ∈ UC−l,m(�, �, k, 
, �), then

∣z∣ − 1− 

2(1 + k)��2(�1, �, l,m)

(
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

)
∣z∣2 < ∣f(z)∣

< ∣z∣+ 1− 

2(1 + k)��2(�1, �, l,m)

(
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

)
∣z∣2 (z ∈ U) (3.9)

and

1− 1− 

(1 + k)��2(�1, �, l,m)

(
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

)
∣z∣ < ∣f ′(z)∣

< 1 +
1− 


(1 + k)��2(�1, �, l,m)

[
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

]
∣z∣ (z ∈ U). (3.10)

Proof. For f ∈ UC−l,m(�, �, k, 
, �) given by (1.2), by using Theorem 1, we obtain

2(1 + k)��2(�1, �, l,m)

∞∑
n=2

an <

∞∑
n=2

n(1 + k)an�
�
n(�1, �, l,m)

< 1− 
 +

∞∑
n=2

(k + 
)bn�
�
n(�1, �, l,m), (3.11)

which immediately yields
∞∑
n=2

an <
1− 


2(1 + k)��2(�1, �, l,m)

+
k + 


2(1 + k)��2(�1, �, l,m)

∞∑
n=2

bn�
�
n(�1, �, l,m). (3.12)

Also, by applying Corollary 1, we have
∞∑
n=2

bn�
�
n(�1, �, l,m) <

1− �
2 + k − �

,

so that

∣f(z)∣ ≦ ∣z∣+ ∣z∣2
∞∑
n=2

an

< ∣z∣+ 1− 

2(1 + k)��2(�1, �, l,m)

(
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

)
∣z∣2 (z ∈ U).
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Similarly, we can show that

∣f(z)∣ ≧ ∣z∣ − ∣z∣2
∞∑
n=2

an

> ∣z∣ − 1− 

2(1 + k)��2(�1, �, l,m)

(
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

)
∣z∣2 (z ∈ U).

We thus have proved the assertion (3.9) of Theorem 6.
In a similar manner, for the derivative f ′(z), the following inequalities:

∣f ′(z)∣ ≦ 1 +

∞∑
n=2

nan∣z∣n−1 < 1 + ∣z∣
∞∑
n=2

nan (z ∈ U)

and
∞∑
n=2

nan <
1− 


(1 + k)��2(�1, �, l,m)

[
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

]
lead us to the assertion (3.12) of Theorem 6. This evidently completes the proof of
Theorem 6. □

It is not difficult to deduce Corollary 4 below.

Corollary 4. Let f ∈ UC−l,m(�, �, k, 
, �). Then{
! : ∣!∣ < 1− 1− 


(1 + k)��2(�1, �, l,m)

(
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

)}
⊂ f(U)

⊂
{
! : ∣!∣ < 1 +

1− 

(1 + k)��2(�1, �, l,m)

(
1 +

(k + 
)(1− �)

(1− 
)(2 + k − �)

)}
. (3.13)

Theorem 7 below follows easily from Corollary 1. In fact, the proof of Theorem
7 is essentially analogous to that of Theorem 8, which we have chosen to present
here in detail.

Theorem 7. Let

gm(z) = z −
∞∑
n=2

bj,mz
j ∈ US−l,m(�, �, k, 
, �) (m = 1, 2).

Then

g(z) = (1− �)g1(z) + �g2(z) = z −
∞∑
j=2

bjz
j

∈ US−l,m(�, �, k, 
, �) (0 ≦ � ≦ 1). (3.14)

Theorem 8. Let

fm(z) = z −
∞∑
n=2

aj,mz
j ∈ UC−l,m(�, �, k, 
, �) (m = 1, 2).
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Then

f(z) = (1− �)f1(z) + �f2(z) = z −
∞∑
j=2

ajz
j

∈ UC−l,m(�, �, k, 
, �) (0 ≦ � ≦ 1). (3.15)

Proof. Since

fm(z) ∈ UC−l,m(�, �, k, 
, �) (m = 1, 2),

by using Theorem 2, we get the following coefficient inequalities:

∞∑
j=2

[(1 + k)jaj,1�
�
j (�1, �, l,m)− (k + 
)bj,1�

�
j (�1, �, l,m)] < 1− 


and
∞∑
j=2

[(1 + k)jaj,2�
�
j (�1, �, l,m)− (k + 
)bj,2�

�
j (�1, �, l,m)] < 1− 
.

Furthermore, in view of the following obvious relationships:

aj = (1− �)aj,1 + �aj,2 and bj = (1− �)bj,1 + �bj,2

(j ∈ ℕ ∖ {1}; 0 ≦ xi ≦ 1),

we thus find that
∞∑
j=2

[
(1 + k)jaj�

�
j (�1, �, l,m)− (k + 
)bj�

�
j (�1, �, l,m)

]
=

∞∑
j=2

(1 + k)j��j (�1, �, l,m) [(1− �)aj,1(z) + �aj,2(z)]

−
∞∑
j=2

(k + 
)bj�
�
j (�1, �, l,m) [(1− �)bj,1(z) + �bj,2(z)]

=

∞∑
j=2

(1− �)
[
(1 + k)jaj,1�

�
j (�1, �, l,m)− (k + �)bj,1�

�
j (�1, �, l,m)

]
+

∞∑
j=2

�[(1 + k)jaj,2�
�
j (�1, �, l,m)− (k + 
)bj,2�

�
j (�1, �, l,m)]

≦ (1− �)(1− 
) + �(1− 
) = 1− 
.

Thus, by using Theorem 2 again, we finally obtain

f(z) ∈ UC−l,m(�, �, k, 
, �),

which completes the proof of Theorem 8. □

We remark in conclusion that, by suitably specializing the parameters involved
in the results presented in this paper, we can deduce numerous further corollaries
and consequences of each of these results.
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