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A UNIFIED CLASS OF ANALYTIC FUNCTIONS WITH
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Abstract. Making use of convolution product, we introduce a unified class
of analytic functions with negative coefficients. Also, we obtain the coefficient

bounds, extreme points and radius of starlikeness for functions belonging to

the generalized class TP�� (�, �). Furthermore, partial sums fk(z) of functions

f(z) in the class P�� (�, �) are considered and sharp lower bounds for the ratios

of real part of f(z) to fk(z) and f ′(z) to f ′k(z) are determined. Relevant

connections of the results with various known results are also considered.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic and univalent in the open disc U = {z : z ∈ C, ∣z∣ < 1}. For

functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +
∞∑
n=2

bnz
n, we define

the Hadamard product (or convolution ) of f and g by

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ U. (1.2)

we recall here a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined by (cf.,
e.g., [29,p. 121]).

Φ(z, s, a) :=

∞∑
n=0

zn

(n+ a)s
(1.3)

(a ∈ ℂ ∖ {ℤ−0 }; s ∈ ℂ,ℜ(s) > 1 and ∣z∣ = 1)
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where, as usual, ℤ−0 := ℤ ∖ {ℕ}, (ℤ := {±1,±2,±3, ...});ℕ := {1, 2, 3, ...}.
Several interesting properties and characteristics of the Hurwitz-Lerch Zeta func-

tion Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava [5],
Ferreira and Lopez [6], Garg et al. [8], Lin and Srivastava [11], Lin et al. [12],
and others. Srivastava and Attiya [28] (see also Raducanu and Srivastava [18], and
Prajapat and Goyal [15]) introduced and investigated the linear operator:

J�,b : A → A
defined in terms of the Hadamard product by

J�,bf(z) = Gb,� ∗ f(z) (1.4)

(z ∈ U ; b ∈ ℂ ∖ {ℤ−0 };� ∈ ℂ; f ∈ A), where, for convenience,

G�,b(z) := (1 + b)�[Φ(z, �, b)− b−�] (z ∈ U). (1.5)

We recall here the following relationships (given earlier by [15], [18]) which follow
easily by using (1.1), (1.4) and (1.5)

J �b f(z) = z +

∞∑
n=2

Cn(b, �)anz
n (1.6)

where

Cn(b, �) =

(
1 + b

n+ b

)�
(1.7)

and (throughout this paper unless otherwise mentioned) the parameters �, b are
constrained as b ∈ ℂ ∖ {ℤ−0 };� ∈ ℂ.

(1) For � = 0

J 0
b (f)(z) := f(z). (1.8)

(2) For � = 1

J 1
b (f)(z) :=

∫ z

0

f(t)

t
dt := ℒbf(z). (1.9)

(3) For � = 1 and b = �(� > −1)

J 1
� (f)(z) :=

1 + �

z�

∫ z

0

t1−�f(t)dt := ℱ�(f)(z). (1.10)

(4) For � = �(� > 0) and b = 1

J �1 (f)(z) := z +

∞∑
n=2

(
2

n+ 1

)�
anz

n = ℐ�(f)(z), (1.11)

where ℒb(f) and ℱ� are the integral operators introduced by Alexandor [1] and
Bernardi [3], respectively, and ℐ�(f) is the Jung-Kim-Srivastava integral operator
[13] closely related to some multiplier transformation studied by Fleet [7]. Making
use of the operator J �b , we introduce a new subclass of analytic functions with neg-
ative coefficients and discuss some some usual properties of the geometric function
theory of this generalized function class.
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For � ≥ 0, −1 ≤ � < 1 and � ≥ 0, we let P�� (�, �) be the subclass of A consisting
of functions of the form (1.1) and satisfying the inequality

Re

{
z(J �b f)′(z) + �z2(J �b f)′′(z)

(1− �)(J �b f)(z) + �z(J �b f)′(z)
− �

}
> �

∣∣∣∣ z(J �b f)′(z) + �z2(J �b f)′′(z)

(1− �)(J �b f)(z) + �z(J �b f)′(z)
− 1

∣∣∣∣
(1.12)

where z ∈ U, J �b f(z) is given by (1.6) . We further let TP�� (�, �) = P�� (�, �) ∩ T,
where

T :=

{
f ∈ A : f(z) = z −

∞∑
n=2

∣an∣zn, z ∈ U

}
(1.13)

is a subclass of A introduced and studied by Silverman [21].
In particular, for 0 ≤ � ≤ 1, the class TP�� (�, �) provides a transition from

k−uniformly starlike functions to k−uniformly convex functions.By suitably spe-
cializing the values of �, �, � and � the class TP�� (�, �) reduces to the various
subclasses introduced and studied in [2, 4, 21, 26, 27]. As illustrations, we present
few following examples:
Example 1: If � = 0 and � = 1, then

TP 1
0 (�, �) ≡ UCT (�, �) :=

{
f ∈ T : Re

{
1 +

zf ′′(z)

f ′(z)
− �

}
> �

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ , z ∈ U} .
(1.14)

A function in UCT (�, �) is called �−uniformly convex of order �, 0 ≤ � < 1.
This class was introduced in [4]. We also observe that

UST (�, 0) ≡ T ∗(�), UCT (�, 0) ≡ C(�)

are, respectively, well-known subclasses of starlike functions of order � and convex
functions of order �. Indeed it follows from (1.16) and (1.14) that

f ∈ UCT (�, �)⇔ zf ′ ∈ TSp(�, �). (1.15)

For � = 0 and different choices of � we can state various subclasses of S.
Example 2: If � = 0, then

TP 0
0 (�, �) ≡ TSp(�, �) :=

{
f ∈ T : Re

{
zf ′(z)

f(z)
− �

}
> �

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ , z ∈ U}
(1.16)

A function in TSp(�, �) is called �−uniformly starlike of order �, 0 ≤ � < 1. This
class was introduced in [4]. We also note that the classes TSp(�, 0) and TSp(0, 0)
were first introduced in [21].
Example 3: If � = 1 and f(z) is as defined in (1.9), then

TP 0
1 (�, �) ≡ Tℒb(�, �) :=

{
f ∈ T : Re

(
z(ℒbf(z))′

ℒbf(z)
− �

)
> �

∣∣∣∣z(ℒbf(z))′

ℒbf(z)
− 1

∣∣∣∣ , z ∈ U} ,
where ℒbf(z) is defined by ℒbf(z) := z −

∞∑
n=2

(
1+b
n+b

)
anz

n.

Example 4: If � = 1, b = �(� > −1) and f(z)is as defined in (1.10), then

TP 0
1 (�, �) ≡ Tℱ�(�, �) :=

{
f ∈ T : Re

(
ℱ�f(z)

ℱ�f(z)
− �

)
> �

∣∣∣∣ℱ�f(z)

ℱ�f(z)
− 1

∣∣∣∣ , z ∈ U} ,



74 GANGADHARAN. MURUGUSUNDARAMOORTHY

where ℱ�f(z) is given by ℱ�f(z) := z −
∞∑
n=2

(
1+�
n+�

)
anz

n.

Example 5: If � = �(� > 0), b = 1 and f(z) is defined in (1.11), then

TP 1
� (�, �) ≡ ℐ�(�, �) :=

{
f ∈ T : Re

(
z(ℐ�f(z))′

ℐ�f(z)
− �

)
> �

∣∣∣∣z(ℐ�f(z))′

ℐ�f(z)
− 1

∣∣∣∣ , z ∈ U} ,
where ℐ�f(z) is defined by ℐ�f(z) := z −

∞∑
n=2

(
2

n+1

)�
anz

n.

We remark that the classes of uniformly convex and uniformly starlike functions
were introduced by Goodman [9, 10], and later generalized by and others [4, 16, 17,
19, 20, 26, 27].

The main object of this paper is to study the coefficient bounds, extreme points
and radius of starlikeness for functions belong to the generalized class TP�� (�, �).

Furthermore, partial sums fk(z) of functions f(z) in the class P�� (�, �) are consid-
ered and sharp lower bounds for the ratios of real part of f(z) to fk(z) and f ′(z)
to f ′k(z) are determined.

2. Coefficient Bounds

In this section we obtain a necessary and sufficient condition for functions f(z)
in the classes P�� (�, �) and TP�� (�, �).

Theorem 2.1. A function f(z) of the form (1.1) is in P�� (�, �) if

∞∑
n=2

(1 + �(n− 1))[n(1 + �)− (�+ �)]∣an∣∣Cn(b, �)∣ ≤ 1− �, (2.1)

0 ≤ � ≤ 1, −1 ≤ � < 1, � ≥ 0.

Proof. It sufficies to show that

�

∣∣∣∣ z(J �b f)′(z) + �z2(J �b f)′′(z)

(1− �)(J �b f)(z) + �z(J �b f)′(z)
− 1

∣∣∣∣− Re

{
z(J �b f)′(z) + �z2(J �b f)′′(z)

(1− �)(J �b f)(z) + �z(J �b f)′(z)
− 1

}
≤ 1− �

We have

�

∣∣∣∣ z(J �b f)′(z) + �z2(J �b f)′′(z)

(1− �)(J �b f)(z) + �z(J �b f)′(z)
− 1

∣∣∣∣− Re

{
z(J �b f)′(z) + �z2(J �b f)′′(z)

(1− �)(J �b f)(z) + �z(J �b f)′(z)
− 1

}
≤ (1 + �)

∣∣∣∣ z(J �b f)′(z) + �z2(J �b f)′′(z)

(1− �)(J �b f)(z) + �z(J �b f)′(z)
− 1

∣∣∣∣
≤

(1 + �)
∞∑
n=2

(n− 1)[1 + �(n− 1)]∣an∣∣Cn(b, �)∣

1−
∞∑
n=2

[1 + �(n− 1)]∣an∣∣Cn(b, �)∣
.

This last expression is bounded above by (1− �) if

∞∑
n=2

(1 + �(n− 1))[n(1 + �)− (�+ �)]∣an∣∣Cn(b, �)∣ ≤ 1− �,

and hence the proof is complete. □
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Theorem 2.2. A necessary and sufficient condition for f(z) of the form (1.13) to
be in the class TP�� (�, �), −1 ≤ � < 1, 0 ≤ � ≤ 1, � ≥ 0 is that

∞∑
n=2

(1 + �(n− 1))[n(1 + �)− (�+ �)] anCn(b, �) ≤ 1− �, (2.2)

Proof. In view of Theorem 2.1, we need only to prove the necessity. If f ∈ P�� (�, �)
and z is real then

1−
∞∑
n=2

n[1 + �(n− 1)]anCn(b, �)zn−1

1−
∞∑
n=2

[1 + �(n− 1)]anCn(b, �)zn−1
−� ≥ �

∣∣∣∣∣∣∣∣
∞∑
n=2

(n− 1)[1 + �(n− 1)]∣an∣∣Cn(b, �)∣

1−
∞∑
n=2

[1 + �(n− 1)]∣an∣∣Cn(b, �)∣

∣∣∣∣∣∣∣∣
Letting z → 1 along the real axis, we obtain the desired inequality

∞∑
n=2

(1 + �(n− 1))[n(1 + �)− (�+ �)] anCn(b, �) ≤ 1− �.

□

In view of the Examples 1 to 5 in Section 1 and Theorem 2.2, we have following
corollaries for the classes defined in these examples.

Corollary 2.3. [4] A necessary and sufficient condition for f(z) of the form (1.13)
to be in the class UST (�, �), −1 ≤ � < 1, � ≥ 0 is that

∞∑
n=2

[n(1 + �)− (�+ �)] an ≤ 1− �,

Corollary 2.4. [4] A necessary and sufficient condition for f(z) of the form (1.13)
to be in the class UCT (�, �), −1 ≤ � < 1, � ≥ 0 is that

∞∑
n=2

n[n(1 + �)− (�+ �)] an ≤ 1− �,

Corollary 2.5. A necessary and sufficient condition for f(z) of the form (1.13)
to be in the class Tℒb(�, �), −1 ≤ � < 1, � ≥ 0 is that

∞∑
n=2

[n(1 + �)− (�+ �)]

(
1 + b

n+ b

)
an ≤ 1− �.

Corollary 2.6. A necessary and sufficient condition for f(z) of the form (1.13)
to be in the class Tℱ�(�, �), −1 ≤ � ≤ 1 and � ≥ 0 is that

∞∑
n=2

[n(� + 1)− (�+ �)]

(
1 + �

n+ �

)
an ≤ 1− �.

Corollary 2.7. A necessary and sufficient condition for f(z) of the form (1.13)
to be in the class ℐ�(�, �), −1 ≤ � < 1, � ≥ 0 is that

∞∑
n=2

[n(1 + �)− (�+ �)]

(
2

n+ 1

)�
an ≤ 1− �.

When � = 0 and � = 1 with � = 0, Theorem 2.2 gives the following interesting
result.
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Corollary 2.8. [21] If f ∈ T , then f ∈ C(�) if and only if
∞∑
n=2

n(n− �)an ≤ 1− �.

Corollary 2.9. If f ∈ TP�� (�, �), then

an ≤
1− �

[n(� + 1)− (�+ �)](1 + �(n− 1))Cn(b, �)
, n ≥ 2, (2.3)

where 0 ≤ � ≤ 1, −1 ≤ � < 1 and � ≥ 0. Equality in (2.3) holds for the function

f(z) = z − 1− �
[n(� + 1)− (�+ �)](1 + �(n− 1))Cn(b, �)

zn. (2.4)

Similarly many known results can be obtained as particular cases of the following
theorems, so we omit stating the particular cases for the following theorems.

3. Closure Properties

Theorem 3.1. Let

f1(z) = z and

fn(z) = z − 1− �
[n(� + 1)− (�+ �)](1 + �(n− 1))Cn(b, �)

zn, n ≥ 2.(3.1)

Then f ∈ TP�� (�, �), if and only if it can be expressed in the form

f(z) =

∞∑
n=1

!nfn(z), !n ≥ 0,

∞∑
n=1

!n = 1. (3.2)

Proof. Suppose f(z) can be written as in (3.2). Then

f(z) = z −
∞∑
n=2

!n
1− �

[n(� + 1)− (�+ �)](1 + �(n− 1))Cn(b, �)
zn.

Now,
∞∑
n=2

!n
[n(� + 1)− (�+ �)](1 + �(n− 1))Cn(b, �)(1− �)

(1− �)[n(� + 1)− (�+ �)](1 + �(n− 1))Cn(b, �)
=

∞∑
n=2

!n = 1− !1 ≤ 1.

Thus f ∈ TP�� (�, �). Conversely, let us have f ∈ TP�� (�, �). Then by using (2.3),
we set

!n =
[n(� + 1)− (�+ �)](1 + �(n− 1))Cn(b, �)

1− �
an, n ≥ 2

and !1 = 1 −
∑∞
n=2 !n. Then we have f(z) =

∑∞
n=1 !nfn(z) and hence this

completes the proof of Theorem 3.1. □

Theorem 3.2. The class TP�� (�, �) is a convex set.

Proof. Let the function

fj(z) = z −
∞∑
n=2

an, jz
n, an, j ≥ 0, j = 1, 2 (3.3)

be in the class TP�� (�, �). It sufficient to show that the function ℎ(z) defined by

ℎ(z) = �f1(z) + (1− �)f2(z), 0 ≤ � ≤ 1,
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is in the class TP�� (�, �). Since

ℎ(z) = z −
∞∑
n=2

[�an,1 + (1− �)an,2]zn,

an easy computation with the aid of Theorem 2.2 gives,
∞∑
n=2

(1 + �(n− 1))[n(� + 1)− (�+ �)]�Cn(b, �)an,1

+

∞∑
n=2

(1 + �(n− 1))[n(� + 1)− (�+ �)](1− �)Cn(b, �)an,2

≤ �(1− �) + (1− �)(1− �)

≤ 1− �,
which implies that ℎ ∈ TP�� (�, �). Hence TP�� (�, �) is convex. □

Next we obtain the radii of close-to-convexity, starlikeness and convexity for the
class TP�� (�, �).

Theorem 3.3. Let the function f(z) defined by (1.13)belong to the class TP�� (�, �).
Then f(z) is close-to-convex of order � (0 ≤ � < 1) in the disc ∣z∣ < r1, where

r1 :=

[
(1− �)[n(� + 1)− (�+ �)](1 + �(n− 1))Cn(b, �)

n(1− �)

] 1
n−1

(n ≥ 2). (3.4)

The result is sharp, with extremal function f(z) given by (3.1).

Proof. Given f ∈ T, and f is close-to-convex of order �, we have

∣f ′(z)− 1∣ < 1− �. (3.5)

For the left hand side of (3.5) we have

∣f ′(z)− 1∣ ≤
∞∑
n=2

nan∣z∣n−1.

The last expression is less than 1− � if
∞∑
n=2

n

1− �
an∣z∣n−1 < 1.

Using the fact, that f ∈ TP�� (�, �) if and only if

∞∑
n=2

(1 + �(n− 1))[n(� + 1)− (�+ �)]Cn(b, �)

(1− �)
an ≤ 1,

We can say (3.5) is true if

n

1− �
∣z∣n−1 ≤ (1 + �(n− 1))[n(� + 1)− (�+ �)]Cn(b, �)

(1− �)
an

Or, equivalently,

∣z∣n−1 =

[
(1− �)(1 + �(n− 1))[n(� + 1)− (�+ �)]Cn(b, �)

n(1− �)

]
which completes the proof. □
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Theorem 3.4. If f ∈ TP�� (�, �), then

(i) f is starlike of order �(0 ≤ � < 1) in the disc ∣z∣ < r2; that is,

Re
{
zf ′(z)
f(z)

}
> �, (∣z∣ < r2 ; 0 ≤ � < 1), where

r2 = inf
n≥2

[(
1− �
n− �

)
(1 + �(n− 1))[n(� + 1)− (�+ �)]Cn(b, �)

(1− �)

] 1
n−1

. (3.6)

(ii) f is convex of order � (0 ≤ � < 1) in the unit disc ∣z∣ < r3, that is

Re
{

1 + zf ′′(z)
f ′(z)

}
> �, (∣z∣ < r3; 0 ≤ � < 1), where

r3 = inf
n≥2

[(
1− �

n(n− �)

)
(1 + �(n− 1))[n(� + 1)− (�+ �)]Cn(b, �)

(1− �)

] 1
n−1

. (3.7)

Each of these results are sharp for the extremal function f(z) given by (3.1).

Proof. (i) Given f ∈ T, and f is starlike of order �, we have∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− �. (3.8)

For the left hand side of (3.8) we have

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤
∞∑
n=2

(n− 1)an ∣z∣n−1

1−
∞∑
n=2

an ∣z∣n−1
.

The last expression is less than 1− � if

∞∑
n=2

n− �
1− �

an ∣z∣n−1 < 1.

Using the fact, that f ∈ TP�� (�, �) if and only if

∞∑
n=2

(1 + �(n− 1))[n(� + 1)− (�+ �)]

(1− �)
anCn(b, �) ≤ 1.

We can say (3.8) is true if

n− �
1− �

∣z∣n−1 < (1 + �(n− 1))[n(� + 1)− (�+ �)]Cn(b, �)

(1− �)

Or, equivalently,

∣z∣n−1 =

[(
1− �
n− �

)
(1 + �(n− 1))[n(� + 1)− (�+ �)]Cn(b, �)

(1− �)

]
which yields the starlikeness of the family.

(ii) Using the fact that f is convex if and only if zf ′ is starlike, we can
prove (ii), on lines similar to the proof of (i). □
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4. Partial Sums

Following the earlier works by Silverman [22] and Silvia [23] on partial sums of
analytic functions. We consider in this section partial sums of functions in the class
P�� (�, �) and obtain sharp lower bounds for the ratios of real part of f(z) to fk(z)
and f ′(z) to f ′k(z).

Theorem 4.1. Let f(z) ∈ P�� (�, �). Define the partial sums f1(z) and fk(z), by

f1(z) = z; and fk(z) = z +

k∑
n=2

anz
n, (k ∈ N/1) (4.1)

Suppose also that
∞∑
n=2

dn∣an∣ ≤ 1,

where

dn :=
(1 + �(n− 1))[n(�+ �)− (�+ �)]Cn(b, �)

(1− �)
. (4.2)

Then f ∈ P�� (�, �). Furthermore,

Re

{
f(z)

fk(z)

}
> 1− 1

dk+1
z ∈ U, k ∈ N (4.3)

and

Re

{
fk(z)

f(z)

}
>

dk+1

1 + dk+1
. (4.4)

Proof. For the coefficients dn given by (4.2) it is not difficult to verify that

dn+1 > dn > 1. (4.5)

Therefore we have

k∑
n=2

∣an∣+ dk+1

∞∑
n=k+1

∣an∣ ≤
∞∑
n=2

dn∣an∣ ≤ 1 (4.6)

by using the hypothesis (4.2). By setting

g1(z) = dk+1

{
f(z)

fk(z)
−
(

1− 1

dk+1

)}

= 1 +

dk+1

∞∑
n=k+1

anz
n−1

1 +
k∑

n=2
anzn−1

(4.7)

and applying (4.6), we find that

∣∣∣∣g1(z)− 1

g1(z) + 1

∣∣∣∣ ≤ dk+1

∞∑
n=k+1

∣an∣

2− 2
n∑
n=2
∣an∣ − dk+1

∞∑
n=k+1

∣an∣

≤ 1, z ∈ U, (4.8)
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which readily yields the assertion (4.3) of Theorem 4.1. In order to see that

f(z) = z +
zk+1

dk+1
(4.9)

gives sharp result, we observe that for z = rei�/k that f(z)
fk(z)

= 1 + zk

dk+1
→ 1− 1

dk+1

as z → 1−. Similarly, if we take

g2(z) = (1 + dk+1)

{
fk(z)

f(z)
− dk+1

1 + dk+1

}

= 1−
(1 + dn+1)

∞∑
n=k+1

anz
n−1

1 +
∞∑
n=2

anzn−1
(4.10)

and making use of (4.6), we can deduce that

∣∣∣∣g2(z)− 1

g2(z) + 1

∣∣∣∣ ≤ (1 + dk+1)
∞∑

n=k+1

∣an∣

2− 2
k∑

n=2
∣an∣ − (1− dk+1)

∞∑
n=k+1

∣an∣
(4.11)

which leads us immediately to the assertion (4.4) of Theorem 4.1.
The bound in (4.4) is sharp for each k ∈ N with the extremal function f(z)

given by (4.9). The proof of the Theorem 4.1, is thus complete. □

Theorem 4.2. If f(z) of the form (1.1) satisfies the condition (2.1). Then

Re

{
f ′(z)

f ′k(z)

}
≥ 1− k + 1

dk+1
. (4.12)

Proof. By setting

g(z) = dk+1

{
f ′(z)

f ′k(z)
−
(

1− k + 1

dk+1

)}

=

1 + dk+1

k+1

∞∑
n=k+1

nanz
n−1 +

∞∑
n=2

nanz
n−1

1 +
k∑

n=2
nanzn−1

= 1 +

dk+1

k+1

∞∑
n=k+1

nanz
n−1

1 +
k∑

n=2
nanzn−1

.

∣∣∣∣g(z)− 1

g(z) + 1

∣∣∣∣ ≤
dk+1

k+1

∞∑
n=k+1

n∣an∣

2− 2
k∑

n=2
n∣an∣ − dk+1

k+1

∞∑
n=k+1

n∣an∣
. (4.13)

Now ∣∣∣∣g(z)− 1

g(z) + 1

∣∣∣∣ ≤ 1
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if
k∑

n=2

n∣an∣+
dk+1

k + 1

∞∑
n=k+1

n∣an∣ ≤ 1 (4.14)

since the left hand side of (4.14) is bounded above by
k∑

n=2
dn∣an∣ if

k∑
n=2

(dn − n)∣an∣+
∞∑

n=k+1

dn −
dk+1

k + 1
n∣an∣ ≥ 0, (4.15)

and the proof is complete. The result is sharp for the extremal function f(z) =

z + zk+1

ck+1
. □

Theorem 4.3. If f(z) of the form (1.1) satisfies the condition (2.1) then

Re

{
f ′k(z)

f ′(z)

}
≥ dk+1

k + 1 + dk+1
. (4.16)

Proof. By setting

g(z) = [(k + 1) + dk+1]

{
f ′k(z)

f ′(z)
− dk+1

k + 1 + dk+1

}

= 1−

(
1 + dk+1

k+1

) ∞∑
n=k+1

nanz
n−1

1 +
k∑

n=2
nanzn−1

and making use of (4.15), we deduce that

∣∣∣∣g(z)− 1

g(z) + 1

∣∣∣∣ ≤
(

1 + dk+1

k+1

) ∞∑
n=k+1

n∣an∣

2− 2
k∑

n=2
n∣an∣ −

(
1 + dk+1

k+1

) ∞∑
n=k+1

n∣an∣
≤ 1,

which leads us immediately to the assertion of the Theorem 4.3. □

5. Integral Means Inequalities

In 1925, Littlewood [14] proved the following subordination theorem.

Lemma 5.1. If the functions f and g are analytic in U with g ≺ f, then for � > 0,
and 0 < r < 1,

2�∫
0

∣∣g(rei�)
∣∣� d� ≤ 2�∫

0

∣∣f(rei�)
∣∣� d�. (5.1)

In [21], Silverman found that the function f2(z) = z − z2

2 is often extremal
over the family T. He applied this function to resolve his integral means inequality,
conjectured in [24] and settled in [25], that

2�∫
0

∣∣f(rei�)
∣∣� d� ≤ 2�∫

0

∣∣f2(rei�)
∣∣� d�,
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for all f ∈ T, � > 0 and 0 < r < 1. In [25], he also proved his conjecture for the
subclasses T ∗(�) and C(�) of T.

In the following theorem we obtain integral means inequalities for the functions
in the family TP�� (�, �). By taking appropriate choices of the parameters we obtain
the integral means inequalities for several known as well as new subclasses.

Applying Lemma 5.1, Theorem 2.1 and Theorem 2.9, we prove the following
result.

Theorem 5.2. Suppose f ∈ TP�� (�, �), � > 0, 0 ≤ � < 1, � ≥ 0 and f2(z) is
defined by

f2(z) = z − 1− �
(2− �)(1 + �)C2(b, �)

z2.

where C2(b, �) is given by (1.7). Then for z = rei�, 0 < r < 1, we have

2�∫
0

∣f(z)∣� d� ≤
2�∫
0

∣f2(z)∣� d�. (5.2)

Proof. For f(z) = z −
∞∑
n=2
∣an∣zn, (5.2) is equivalent to proving that

2�∫
0

∣∣∣∣∣1−
∞∑
n=2

∣an∣zn−1
∣∣∣∣∣
�

d� ≤
2�∫
0

∣∣∣∣1− 1− �
(2− �)(1 + �)C2(b, �)

z

∣∣∣∣� d�.
By Lemma 5.1, it suffices to show that

1−
∞∑
n=2

∣an∣zn−1 ≺ 1− 1− �
(2− �)(1 + �)C2(b, �)

z.

Setting

1−
∞∑
n=2

∣an∣zn−1 = 1− 1− �
(2− �)(1 + �)C2(b, �)

w(z), (5.3)

and using (2.2), we obtain

∣w(z)∣ =

∣∣∣∣∣
∞∑
n=2

(1 + �(n− 1))[n(1 + �)− (�+ �)

1− �
anCn(b, �)zn−1

∣∣∣∣∣
≤ ∣z∣

∞∑
n=2

(1 + �(n− 1))[n(1 + �)− (�+ �)

1− �
∣an∣

≤ ∣z∣,

where Cn(b, �) is given by (1.7). Which completes the proof by Theorem 5.2. □

In view of the Examples 1 to 5 in Section 1 and Theorem 5.2, we can deduce the
integral means inequalities for the classes defined in the above stated examples.

Acknowledgments. The author express his sincerest thanks to the referee for
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