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EXISTENCE RESULTS FOR SEMILINEAR FRACTIONAL
DIFFERENTIAL INCLUSIONS WITH STATE-DEPENDENT
DELAY

HADDA HAMMOUCHE, KADDOUR GUERBATI, ALI BOUTOULOUT.

ABSTRACT. Our goal In this paper is to establish sufficient conditions for the
existence of mild solution of some class of semilinear fractional differential
inclusions of order 0 < a < 1 with state dependent delay in separable Banach
space. The existence result is established when the multivalued function has
convex values. The result is obtained via the nonlinear alternative of Leray-
Schauder type.

1. INTRODUCTION

Our aim in this paper is to study the existence of mild solutions defined on a com-
pact interval for fractional semilinear differential inclusions with state dependent
delay in a separable Banach space E of the form:

D2y(t) € Ay(t) + F(t,ypgryn); t €T = [0,8], t#te, k=1,...,m, (L1
Ay(tk) :Ik(ytk); k= 1?"'ama (12)
y(0) = ¢(t), t € (—o0,0]. (1.3)

where 0 < a <1, F: J x D — P(E) is a given multivalued map with non-empty
convex compact values, D is the phase space defined axiomatically (see Section 2)
which contains the mappings from (—o0,0] into E, I, : D —» E, k=1,2,...,m are
appropriate functions to be specified later, Ay(t;) = y(tf) —y(ty), p: J x D —
(—00,b], 0=ty <t < ... <ty <tmp1 = b, P(E) is the collection of all
subsets of E, ¢ € D, A : D(A) C E — E is the generator of an a—resolvent
operator function («—ROF for short) S,. For any continuous function y defined
on [—r,b] — {t1,t2,....,tm} and any t € J, we denote by y; the element of D defined
by
y:(0) =yt +0), 0 (—o0,0].

Recently, fractional differential equations and inclusions have been extensively

studied and several results concerning existence and uniqueness were established.
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In the last decade, there has been a significant development in fractional differ-
ential equations see [4], [23], the monographs of Kilbas et al, Lakshmikantham et
al[14], Anguraj et al[I], because their applicability in various fields like; engineer-
ing, physics, electrical net work, control theory of dynamical systems.

For further details, we refer the reader to [3], [I3], Miller and Ross [I7], Samko
et al [22], Kilbas and Marzan [12], Momani et al [I8], Podlubny et al[21] and the
references therein, see also [I7, [19] 22]).

The Cauchy problem for abstract differential equations involving Riemann-Liouville
fractional integral have been treated by several searchers like: Cueva and De
Souzalbl [6], Benchohra et al[2] and references therein.

To our knowledge, there are very few results for impulsive fractional differential
equations and inclusions. The results of the present paper extend and complete
those obtained by [§] with finite delay. This paper is organized as follow, in sec-
tion 2 we introduce some preliminaries that will be used in the sequel, in section
3 we give sufficient conditions for the existence of the mild solution of problem

(1.1)-(1.3). Finally we illustrate our result by an example.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminaries facts which
are used throughout this paper.
For 1 € D the norm of 1 is given by

[¢llp = sup{|¢(#)] : ¢ € (—o0, 0]}

B is the Banach space of all bounded linear operators from FE into E with the norm
[Nl = sup{|N(y)| : |y| =1}

L1[J, E] denotes the Banach space of measurable functions u : J — E which are
Bochner integrable normed by

b
lulls = / () dt.

In order to define the solution of the problem (|1.1)-(1.3]), we introduce some addi-
tional concepts and notations. Let (X, |- |) be a normed space. Denote by

B, = {y D (—00,b] = E,yp € C(Jy, B); y(ty ), y(ty)
exist with  y(tx) = y(t, ), y(t) = o(t),t < 0}

where yy, is the restriction of y to Ji = (tx,tk+1], k =0,...,m. Let ||.||» be the
semi-norm in By defined by

[ylls = llyllo +sup{ly(s)| : 0 < s <b},  y€By.

The axiomatic definition for the phase space D is similar to those introduced in
[I1]. Specifically, D will be a linear space of functions mapping (—oo,0] into E
endowed with a semi norm ||.||p, and satisfies the following axioms introduced at
first by Hale and Kato in [9]:
(A1) There exist a positive constant H and functions K(-), M(-) : RT — R*
with K continuous and M locally bounded, such that for any b > 0, if
y: (—o0,b) = E, y € D, and y(-) is continuous on [0,b], then for every
t € [0,b] the following conditions hold:
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(i) y; is in D;
(i) [y(t)] < Hllyllp;
(iil) |lyello < K(#)sup{|y(s)| : 0 <s <t} + M(t)|yollp, and H, K and M
are independent of y(-)
(A) The space D is complete. Denote

Ky =sup{K(t): teJ} and M, =sup{M(t):te J}.
Let (X, d) be a metric space. The following notations will be used:
Py ={Y € P(X):Yclosed},  Ppq={Y € P(X):Ybounded},
P, ={Y € P(X): Ycconvex}, P, ={Y € P(X): Ycompact},
Consider Hg : P(X) x P(X) — Ry U {oo} given by

Hy(A, B) = max{sup d(a, B),supd(b, A)}
acA beB

In the following, we give some basic notions about fractional calculus and a—resolvent
operator.

Definition 2.1. The fractional integral operator % of order a > 0 of a continuous
function f(t) is given by

10 = o [ =9 (s

We can write I f(t) = f(t) * o (t) where 9, (t) = Ty for t >0 and ¢q (t) =0 for

t <0 and ¥ (t) — 6(t) (the delta function) as o — 0.
Definition 2.2. the a—th Riemann-Liouville fractional-order derivative of f, is
defined by:

1 ar

DEF() = Frmay i |, (= 9" ()

Here n = [a] + 1 and [a] denotes the integer part of a

Definition 2.3 ([I2]). For a function f given on the interval [a,b], the Caputo
fractional-order derivative of order « of f, is defined by

(DR = ey [ -9 s)ds,

(n—a)
where n = [a] + 1.

Therfore; for 0 < a < 1, The Caputo’s fractional derivative for ¢ € [0, b] is

1

GDEN0 = Fma [ =T (o)

For more detail see [I3] 17, 20]).

Definition 2.4. [3] Let @ > 0. A function S : Ry — B(X) is called an
a—resolvent operator(a— ROF) if the following conditions are satisfied:

(a) Sa(.) is strongly continuous on Ry and S,(0) = I,
(b) Sa(s)Sa(t) = Sa(t)Sa(s) for all s,t >0,
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(¢c) the functional equation
Sa($)I;"Sa(t) — IgSa(s)Sa(t) = I]*Sa(t) — I3 Sa(s)

holds for all s,t > 0.
The generator A of S, is defined by:

Sa(t)x —

D(A):=qzx e X: lim Salt)z—2 exists
t=0+  Pai1(t)

And

Sa(t)r —x

= m ————,
t—0t  Pay1(t)

Definition 2.5. An a—ROF S, is said to be exponentially bounded if there exist

constants M > 0,w > 0 such that:

[Sa ()| < Me*t, t > 0.

x € D(A).

In this case we write A € Co(M,w)

Proposition 2.1. Let S, be an a—ROF generated by the operator A. The following
assertions hold:

(a) So(t)D(A) C D(A) and AS,(t)x = So(t)Ax  for allz € D(A) and t > 0,
(b) Forallz € X, I?S,(t)x € D(A) and

Sa(t)r =z + AI}S,(t)x, t>0,
(¢) z € D(A) and Az =y if and only if

Sa(t)r =z + AI}S,(t)x, t>0,
(d) A s closed, densely defined.

Proposition 2.2. Let a > 0. A € Co(M,w) if and only if (w*,00) C p(A) and
there exists a strongly continuous function S, : Ry — B(X) such that: ||S.(t)|| <
Me“t and

/Oo e MS(t)adt = N*TTR(AY, Az A>w
forallz e X. Furtoher more, Sy, is the a— ROF generated by the operator A.
For more detail see[16]. The following definitions are used in the sequel.
Definition 2.6. A multivalued operator N : J — P (X) is called
(a) contraction if and only if there exists v > 0 such that
Hy(N(z),N(y)) <~d(z,y), for each z,y€ X,

with v < 1.
(b) N has a fized point if there exists ©x € X such that x € N(x).

Definition 2.7. A multivalued map F : JxD — P(E) is said to be L' — Carathéodory
if

(i) t — F(t,u) is measurable for each u € D,

(ii) u— F(t,u) is u.s.c. for almost allt € J.
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For each y € C(J, E), define the set of selections of F' by
Spy={ve L' (J,E):v(t) € F(t,y(t)) ae. t € J}.

Let us introduce the definition of Caputo’s derivative in each interval (tx, tx41], k=
0,...,m see [24]

DR = ey [ =9 s

123

3. MAIN RESULT
Now, we are able to define the mild solution of the initial problem (1.1)-(1.3).

Definition 3.1. A function y : (—o0,b] — E is said to be mild solution of —
if y(t) = o) for all t € (—0,0], Ay(ty) = Ip(yy,) k = 1,...,m, the
restriction of y(-) to the interval [0,b] is continuous, and there exist v(-) € L*(J, E),
such that v(t) € F(t,Yp,y,)), a-e t € [0,b], and y satisfies the following integral
equation:

Sa(t)o(0) +/0 Sa(t — s)v(s)ds if t€l0,t1],
k

Sa(t —te) [ [ Salti — ti-1)¢(0)

y(t) = +i/z=
1=1

t; k—1
Sa(t —tr) HSa(th —t;). (3.1)
ti—1 =i

t

Sa(ti —s)v(s)ds+ | Sa(t —s)v(s)ds

tr
k k—1
+ Salt —tr) [T Saltisr —t)hilye),  if t € (t,trsal.
i=1 =i

Set
R(p™) ={p(s,¢) : (s,¢) € J x D, p(s,9) < 0}.
Let us assume that p : J x D — (—o00,b] is continuous. Additionally, we introduce

the following hypotheses:

(He) The function ¢ — ¢4 is continuous from R(p~) into D and there exists a
continuous and bounded function L? : R(p~) — (0, 00) such that ||¢s|p <
L(t)||¢||p for every t € R(p™).

(H1) assume that A generates a compact a—ROF S, for ¢t > 0 wich is exponen-
tially bounded i.e: There exist constants M > 1,w > 0 such that:

llsa®)|| < Me*t,  t>0.
(H2) Iy : E — E are continuous and there exist constants M* >0, k=1,...,m
such that
lIx (y) || < M* for each ye€D.

(H3) F : J x C([-7r,0],E) = Pepev(E) is Carathéodory and there exist p €
L'(J,R,) and a continuous non decreasing function ¢ : [0,00) — (0, 00)
such that:
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|E(t,2)||p = sup{|v| : v € F(t,z)} < p(®)Y(||ul|lp for a. et € J. x € D.

with
b
/ e~ p(s)ds < o0,
0
My + L% + MK, + K
lim sup ; [( b o) I¢llp b}u > 1, i=0,1.
u—-+00

Cr +C5 [e=wsp(s)y (Kyu + (My 4+ L® + MKy)||6]|p) ds
0

(3.2)
where
Cy = (My + L? + MKy)||¢||p, (3-3)
Ct = KyCy + (My + L? + MEKy) | 6|, (3.4)
and
Mreb  F _ t;
C1 =Ky 1 M+; M2 ewt /til e™Sp(s) (Kp|z(s)| + (My + L + MKy)||¢||p) ds.
(3.5)
Cy = MKye® (3.6)

The next result is a consequence of the phase space axioms.

Lemma 3.1. [[I0], Lemma 2.1] Ify:(—o00,b] = E is a function such that yo = ¢
and y|y € PC(J : D(A)), then

lysllp < (My + L) ||]lp + Ky sup{[ly(0)[]; 6 € [0, max{0,s}]}, s€R(p™)UJ

where L? = sup L?(t), My = sup M(t) and K, = sup K(t).
teR(p™) teJ tet

The nonlinear alternative of Leray-Schauder type is used to investigate the ex-
istence of solutions of problem (1.1)-(1.3). We need to use the following result due
to Lazota and Opial [15].

Lemma 3.2. Let E be a Banach space, and F be an L'-Carathéodory multival-
ued map with compact conver values, and let T : L*(J,E) — C(J, E) be a linear
continuous mapping. Then the operator

I'oSp:C(J,E) = Pep oo (C(J,E))
is a closed graph operator in C(J,E) x C(J, E).

Theorem 3.3. Assume that (Hyp) and (H1)-(H3) hold. If ¢(0) € D(A) then the
IVP (1.1)-(1.9) has at least one mild solution on (—oo,b].

Proof. Transform the problem (1.1)-(1.3) into a fixed point problem. Set =
PC ((—o0,b], E]) Consider the multivalued operator: N : Q — P(Q) defined by
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N(y) = {h € Q} such that
o(t), if te (—o00,0],

S (1)6(0) + /O Su(t — s)u(s)ds it ¢ €0,
k

Sa(t = tr) [ [ Salti — ti-1)(0)

i=1
oo k-1 (3.7)
+Z/t Sa(t —ty)
i=1Yti-1 j

T Satjcs —t5).
Sa(t; — s)v(s)ds + / Sa(t — s)v(s)ds

J=i
ty

k k=1
+ 3 8a(t =) [] Saltics — t) Ly, it € (tr tasal-
Jj=t

i=1

In the following, we will introduce an auxiliary multivalued operator A such that,
A has a fixed point equivalent that the operator N. has one.
Let ¢(.) : (—o0,b] — E be the function defined by

¢(t)’ te (—OO, 0]7

~ Sa(t)¢(0), t € [0,t],

a(t) = ) 1 (3.8)
Sa(t = ti) [[ Salti = ti-1)d(0), t € (tr,tiyal.

Then %0 = ¢. For each x € By, with z(0) = 0, we denote by T the function defined

by
0, t € (—00,0],
T(t) = {
x(t), teJ,

If y(.) satisfies (3.1, we can decompose it as y(t) = ¢(t) + z(t), 0 <t < b, which
implies y; = x; + ¢4, for every 0 < ¢t < b and the function z(.) satisfies

¢
/ Sa(t — s)v(s)ds
0
if te0,t],
k t; k—1
£(t) = z;/t So(t —t1,) H Soltjsr —t;). (3.9)
i= i—1 J=1
¢
Sa(ti — s)v(s)ds + / St — s)v(s)ds
k et
+3 Salt —te) [] Saltisn = t)Li(ye,,  if t € (tr,ths].
i=1 j=i
where v(s) € SF’xp(s,ms%s*%p(s‘zsws Let

B)={xeBy,: 29=0¢c D}
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For any x € Bj) we have

Thus (BY, || - |[») is a Banach space. define the A : B) — P(B) by:

with

A(z) =:{h € B}

/t Salt — s)u(s)ds if teo,h],
0

kot k—1
Z/ Sa(t —tk) Hsa(thrl — ).
i=1"ti—1 i=i
Sa(ti —s)v(s)ds+ | Sa(t — s)v(s)ds

ti
k k—1

i=1 j=i

0, if e (—00,0]

[zllo = llzollp + sup{|z(s)] : 0 <5 < b} = sup{[a(s)] : 0 < s < b}.

(3.10)

+ Z Sa(t —tr) H Sa(tjrr — ) Li(ys,), if t € (e, thta].

Clearly, the operator N has a fixed point is equivalent to A has one, so it turns
to prove that A has a fixed point. We shall show that the operators A satisfies
all assumptions of the nonlinear alternative of Leray-Schauder type [7]. For better
readability, we break the proof into a sequence of steps.

Step 1: A(x) is convex for each x € BY.

Let hy, hy € A(x), then there exist vi, vy € Sp.

Lo(s,ws+3s) T Po(s,ms+8s)

eacht € J

¢
/ Sa(t — s)vp(s)ds if tel0,¢],
0
k t; k—1
Z/ Sat —te) [ Saltisr —t)).
i=1"ti-1 i=i,
Sa(ti = s)vp(s)ds + [ Sa(t — s)vp(s)ds

ty
k

k—1
+ Salt =) [] Saltinr — t)Llye), it ¢ € (thytrga:
j=t

i=1

Let 0 < o < 1. Then for each t € J we have:

(chy — (1 —0)h9) (t) =

/ So(t —s) [ovi(s) — (1 — o)va] ds
lg t; k—1

Z/ Salt —tr) H Saltjr1 —t;).
i=1"ti—1 j=i

.Sa(ii —8) [ovi(s) = (1 — o)va] ds
—&—/f St —8) [ovi(s) — (1 — o)va]ds

such that for

if t € [0,t1],

if te (tk,tk+1}.
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Since Sg, is convex (because F' has convex values), we have chy — (1 —0)hge € A(x).
Step 2: A maps bounded sets into bounded sets in Bg.

Let By, = {z € B : |||l < ¢,

q € RT} a bounded set in BY.

It is equivalent to show that there exists a positive constant [ such that for each
x € By we have ||A(z)|, <. choose z € By, then from lemma 3.1 it follows that

1% 4 2y 150 + Gpirme i l0 < Koa + (M + L) d]lp + K M|$(0)] = q.

Also, for each h € A(x), and each z € B, there exists v € S,

such that

/ St — s)v(s)ds
0
k

ti k—1
Z/ Sa(t —tx) Hsa(thrl —t5).
i=1ti-1 j=i

= ot

So(t; — s)v(s)ds + t Sa(t — s)v(s)ds
& k

k—1
+ 3 Salt = te) [ Saltirn — ) Liwr,),
j=i

i=1

Then, for t € J

h()] <

wich gives

h()] <

t
Me”tl/ e “*|lv(s)||ds
k t; 0 k—1
Z/ MewE—tk) H MewEit1—t5)
i=17ti-1 =i

t
M o(s) s + [ M (o) s
tk

k—1 k—1
+ZMew(t—tk) H Me“’(tiﬂ_tf)||Ii(y(ti))||7

i=1 Jj=i

t

Me“’tlw(q*)/ e “*p(s)ds
0

:l1

t;

k
ZMk—i+2ew(2tk—tz—1)¢(q*)/ e *)p(s)ds

i=1 ti—1

t
+Me et (gx) / e“ ) p(s)ds

tr
k

+ Z Mk—i+1M*eW(tk+1_ti—1)
i=1

This further, implies that

Hence A(B

[AG@)[|p < 1.

) is bounded.

ot wy+dt) +¢p(t1w1, +d1) ’

it tel0,t1],

if te (tk,tk+1].

if te [O,tl],

if te (tk7tk+1].

if te€0,t1],

if te (tkatk-i-l]-
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step 3: A maps bounded sets into equi-continuous sets of BY.

Let 7, 7 € J with 7 < 7, let B, be a bounded set in Bg as in Step 2, and let
x € By and h € A(z). Then, if e > 0 with e <7y < 79

/0 (s — 5) = Sulry — $)lllu(s)]ds

) — hr < ] [ 15a(m2 = 9) = Saln = 9llo(s)lds

I
n / 1572 — )[[[o(s)|ds

1

if T1,To € [O,tl],

and
k t;
S [ 18alre—t0) = Salm— )]
T
: H [Sa(tj+1 — t)ISalts — s)ll|v(s)|ds
h(r) —h(r)l <4 4 [ Sa(ra — s)v(s)ds — h Sa(r1 — s)v(s)ds
) h

k—1
£38alr2 = t0) = Saln = )l T ISattisr — )1l
NE@E), "~

if T1,T2 € (t]€7 tk+1].
Which gives
(q) / 1Sa(72 = 8) — Sa(rs — )llp(s)ds

0

)~y < | Y10 [ 1520 =9) = Salr = 9ot

—€
1 T

+Me“™24(q) / e~“p(s)ds

T1

if T1,Ty € [O,tl],

Z/l a(72 = 1) = Sa(r — 80|

ti—1

and

HIIS titr =)l Sa(t: = s)l[[v(s)|ds

(g) / S — 5) = Sa(r — 5)|lp(s)ds
|h(12) — h(m)| < +z/)(q)/ ' 190 (72 — 8) — Su (1 — 8)||p(s)ds

—€
1 T

+M)(q)ev™ / e~“p(s)ds

T1
k—1

k
+ Z 1Sa(r2 = ti) = Sa(ry = ti)ll TT 1Sa(tjsr — )1l

i=1 j=i
Ly (DI

if 7,1 € (tk,tk+1].
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As 11 — 7 and € becomes sufficiently small, the right-hand side of the above
inequality tends to zero, since S, is a strongly continuous operator and the com-
pactness of S, for ¢ > 0 implies the continuity in the uniform operator topology.
This proves the equicontinuity for the case where t # ¢;,¢ = 1,...,m + 1. It remains
to examine the equicontinuity at ¢ = ¢;. First we prove the equicontinuity at ¢t = ¢;

, we have for some = € Bgq, there exists v € S, . 43 _ . such that for
’wﬁ(t»Iter)t) p(t,zy+ot)

h(t) = /0 Sa(t — s)v(s)ds
if te (tg,trt]

Z/ Wt —ty) Hs tit1 —t).8a(t; — s)v(s)ds

each t € J we have:
if te[0,t],

t k—1
+ Sa(t = s)v( d8+ZS (t=t) [T Saltisr —t) Ly (t)),
tr i=1 j=i

Fix §; > 0 such that {tg,k #1} N[t; — d1,t;, + 61] = 0. For 0 < p < §; , we have

ti—p
0la) [ I8lt = p = 5) - Salts — 5)p(s)ds
|h(tr = p) — h(t))] < 0 4
—I—Me“’tlz/)(q)/ e~ “p(s)ds if t; — p,t1 € [0,t4],
t_p
and

Z/ [Sa(t; — p —tr) — Salt; — tx)||-
HIIS (t41 = t)1Sa(t: — 8)lllp(s)]ds

00) [ 1Satt = p =) = Salt ) In(s)ds
|h(ti—p)—h(t1)] < K t
+Mp(q)ett /t e"“p(s)ds

+Z [Sa(ti — p—tk) = Salti — ti) |-

H 1o i1 = )iy (&I, if i1 — p,t1 € (tk, trya .
Which tends to zero as p — 0.
Define
ho(t) = h(t), ift e [0,t]
and

R h(t), ifte (ti,ti+1]
hi(t) =
r(th), if t=t

Next, we prove equicontinuity at ¢ = ¢;. Fix d; > 0 such that {tg, k # i} N [t; —
da,t; + 53] = 0. First we study the equicontinuity at ¢t = 0%.
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If t € [0,t1] we have

R h(t), if te (07t1]
0, if t=0

For 0 < p < 2 , we have

() — B (0)] < e=Pi(q) / " e p(s)ds

The right hand-side tends to zero as p — 0. (I is the unitary operator)
Now we study the equicontinuity at ¢t = tj,z‘ >1For 0 < p < dy , we have

it + ) — bt < v / " 1Salo) — 1]l
=1

ti—1

1—1
[T 1Sa 41 = t)I11Sa(t = s)llp(s)|ds
7=l

ti+p
+ Mw(q)e“(ti+p)/ e~“p(s)ds
t;

+ > lISalp) —1IlI.
=1

TT1Su(tse1 — )10
j=l

The right hand-side tends to zero as p — 0.

The equicontinuity for the cases 7 < 75 < 0 and 71 < 0 < 75 As a consequence of
Steps 1 to 2 together with Arzeld-Ascoli theorem it suffices to show that A maps

B, into a precompact set in E.

Let 0 < t* < b be fixed and let € be a real number satisfying 0 < € < t*. For z € B,

, we define
t*—e
/ Sa(t" —e—s)v(s)ds if t* € [0,t1],
0
k ti k—1
Z/ Sa(t* —t) [] Saltiv: —t;).
) = = =
Sao(ti — s)v(s)ds + / Sa(t™ —e—s)v(s)ds
k 1
+ 3 Sa(t* —t) [ Saltisr — ti)Li(x(t)), if t* € (ty, trga).
i=1 j=i
where v € S 43 _ . Since S, (t*) is a compact operator, the set
otz er) T p(tzeteyr)

He(t*) ={h(t"): heec Alx)}
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is precompact in E for every €, 0 < e < t*. Moreover, for every h € A(z) we have

t*—e
¥(@) / 1Sa(t*) — Sa(t* — ©)[lp(s)ds
0 -
—|—M1/1(q)e“’t*/ e~ “*p(s)ds if t* € 0,t],
t*—e
h(t*) — h (t%)] < e
IA(E") = he(E0) 0@ [ 180t = Salt” — lp(s)ds
tr ) -
+M(q)et /t*_ e “p(s)ds
if t*e (tk,tlﬁ,ﬂ,

Therefore, there are precompact sets arbitrarily close to the set H(t*) = {h(t*) :
h € A(x)}. Hence the set H(t*) = {h(t*) : h € A(By)} is precompact in E. Hence
the operator A is completely continuous.

Step 4: A has a closed graph.
Let 2™ — a*, h™ € A(z)(z™), and h™ — h*. We shall show that h* € A(x*).

h"™ € A(x™) means that there exists v € S, . +3 _ . such that:
ot +dr) p(tz+or)
0, if e (—o00,0],
i
/ Sa(t — s)v"™(s)ds if te0,t1],
0
k t; k—1
W (t) = z;/t 1 Sa(t = tx) H Saltj+1 = t)-
1= K J=1
t
Sa(t; — s)v™(s)ds + / St — s)v™(s)ds
k k1
+> Salt —ti) [] Saltjsr — t)Ti(x(t;), i t € (te, trya]-
i=1 j=i

We must prove that there exists v* € Sp . . such that for each

7x0(t11t+$t)+¢”(t’”’f+‘7’t)
t € J we have

/t St — s)v*(s)ds if te0,t1],
0

k ti k—1
S [ Satt—t) [ Sttt
i=1vti-1 =i

Sty — s)v*(s)ds + / Sa(t — s)v*(s)ds
k o1

+3 Salt —t) [[ Saltjn —t)L(=(t;),  if t€ (b, thga].

i=1 j=i
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Consider the linear and continuous operator £ : L'(J,R) — B} defined by

/t Sa(t — s)v(s)ds if te]0,t1],
Ig t; k-1

(co® = > [ Salt—t) [] Sultin — 1)

i=1Yti-1 j=i

Sati —s)v(s)ds+ | Sa(t—s)v(s)ds if t € (g, thyr]-

ti

We have, if t € [0, 4]
|R"(t) —h*(t)] < [[A" = h¥[[ec = 0, as n > oo.

From Lemma [3.2] it follows that £ o Sp is a closed graph operator and from the
definition of £ one has
h™(t) € Lo Spyn.

As 2™ — 2" and h™ — h*, there exists v* € Sp,+ such that

h*(t) = /0 St — s)v*(s)ds.

Ifte (tk, tk+1]

{770 = 32 Salt = 1) TT Saltyn = ) LiCe(e7)
k k—1
— |70 = X St~ 1) [T Saltyer — 1)Lt ) | |

R () — h*(t)‘
<||h" —h*|lec = 0, as n— oo.

From Lemma [3.2] it follows that £ o Sp is a closed graph operator and from the
definition of £ one has

k k—1
W) =Y Sa(t —tr) [] Saltiv: — t)Li(x(t;)) € Lo Span.
i=1 j=i

As 2™ — z* and h" — h*, there is a v* € Sp 4+ such that

k k—1
h*(t) — Z Sa(t —tr) H Sa(tjrr — ;) Lz (t;))

k t; k—1
ZZ/ Sa(t = tx) [ Saltizr —t)).
i=1"ti-1 j=i

t
Sa(ti —s)v*(s)ds+ [ Sa(t —s)v*(s)ds
tr
Hence the multivalued operator A is upper semi-continuous therefore, it has a
closed graph.

Step 5: A priori bounds on solutions.
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Now, it remains to show that the set

is bounded.

Let Let x € £ be any element. Then there exist v € S

such that

E={xeB):xc ) A(x), 0<A<1}

F7xp(tv-7~‘t, +é¢) +¢p(t11‘1, +d1) ’

t
/Sa(t—s)v(s)ds, it e [0,4],
0
k t; k—1
Z/ Sa(t —t) [ [ Saltizr —t;)-
i=1"ti-1 j=i

Sa(ti — s)v(s)ds +/t Sa(t — s)v(s)ds
k k-1

+ D Salt = 1) [T Saltivr = t)Li(y(t7)),  if t € (te, trsa]-

i=1 j=i

Then from (H1),(H2),(H3)

()] <

()] <

()] <

t
Mewt/o e D)1 12, 43,) + Pt 30|15, if t € [0,1],

t;
t

k
Z Mk_z""QeWt / e_wsp(s)’l/)(nxp(t,wt*i’(;t) + (bp(t’thr(Zt) ||ds
=1

i—1

t o~
M [ 0215 + By I

tr

MY D ME ) if t € (b, trsa)-
=1

t
Me‘*’t/ efwsp(s)w<Kb|x(s)| + (M, + L? + MK;,)\|(;§||p)ds7 if t € [0, 4],
0

k ti
Skt [ ey (Kifa(s)| + (M + L+ M) ) ds.
i=1

ti—1

t
Mt / e p(s)p (Kolo(s)] + (My + L + MKyl ) ds

tr
k

MY M) if t € (tg, trg1]-

i=1

t
Me‘*’b/ e “p(s)y (Kb|x(s)| + (M, + L? + MKb)||¢\|D>ds, if t € [0,¢4],
0

t
Ci+Co [ e spls)u(Kofas)| + (My + L7 + MEG) el ds
ti
ifte (tk,tk_;,_ﬂ.
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t
Ci+C [ e ls)o(Kila(s)

(M + LO + MKb)||¢>\|D>ds, it te0,t],
(My+L+MEKy)|| || p+ Ko |z()]| <

t
Ci+ 3 [ e pls)u(Kilats)

tk
+(Mb+L¢’+MKb)||¢\|D)ds, it € (b tran:
(3.11)
Thus
(0 + 29+ MED6l + Kolix(Oley_ S i
C: + g (Kolla(o)lsg + (O + L0+ MK ollp) [ e p(s)ds
(3.12)

From ([3.2) it follows that there exists a constant R > 0 such that for each z € £ with
|z]sy > R the condition (3.12) is violated. Hence [|z[|50 < R for each € &€, which
means that the set £ is bounded. As a consequence of Theorem of Leray-Schauder,

the multivalued operator A has a fixed point z BY, hence the multivalued operator
N has one on the interval [—r, b] which is a mild solution of problem (1.1))-(1.3). O

4. EXAMPLE

Let X = L?(0,7), 0 < a < 1. Consider the following fractional order partial
differential inclusion of the form:

j%w(t, z) € 2w(t,z) + k(t)a(t,w(t — o(w(t,0)),)), (4.1)

x e 0,m),teJ:=[0,1, t#t, k=1,....,m

w(t,0)=w(t,m) =0, tel0,1], t#ty, k=1,...,m (4.2)
w(t,z) = h(t,z), t € (—o0,0],2 € [0, 7]

Aw(ti)(l”):/: %i(ti = s)[(—[w(s, )], [w(s, z)|)]ds, (4.4)

where h : (—00,0] x [0,7] — R, ; : [0,00) — R are continuous functions,
0 <t <ty <...<ty<1k:[01 — R"a:[0,1] xR — Py p(R),
o : R — RT is continuous. We assume the existence of positive constants by, by
such that

la(t,u)| < bi|x| +bs for every (t,u) €[0,1] x R
Let A be the operator defined as:
Au==u" with D(A)={ue Hj(0,7)NH*(0,7)}
The operator A is the infinitesimal generator of an anlytic semi-group S(t).
Set v > 0. For the phase space, we choose D to be defined by:
D= PC" = {<I> € PC((~00,0],X) : lim_ ¢’ ®(0) exists in X}

with norm ,
l[ll, = sup €7 [#(0)], ¢ € PC”
€ (—00,0]
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For this space, axioms (A1), (A2) are satisfed(see [II]) The problem (4.1))-(4.4)
takes the abstract form (1.1))-(1.3]) by making the following change of variables.

y(t)(z) = w(t,z), x € (0,m),t € J:=10,1],
¢(0)(x) = h(t, z), z € (0,7),0 <0,

F(t,p)(x) = k(t)a(t, »(0,2)), t €[0,1], = € [0,7],p € PC7 (4.5)
0
Te(yr) = /_ W (=8)[{=h(s, z)[, |h(s, 2)|)]ds (4.7)

Moreover, we have
IE @ )llp < k() (b1ll@llp + be, forall (¢,¢) € J xD
with

> ds /OO ds oo

1 Y(s) 1 bis+0bo
Theorem 4.1. Let ¢ € B such that H, holds, the problem - has at least
one mild solurion.
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