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SOME RESULTS ON IMPLICIT MULTISTEP FIXED POINT
ITERATIVE SCHEMES FOR CONTRACTIVE-LIKE OPERATORS
IN CONVEX METRIC SPACES

OLALEKAN TAOFEEK WAHAB, KAMILU RAUF

ABSTRACT. In this paper, we establish and prove strong convergence, T-stability,
convergence rate and data dependence results for multistep fixed point itera-
tive schemes using a class of contractive-like operators in convex metric spaces.
Our results show that the proposed implicit multistep schemes have better con-
vergence rate than the well-known explicit multistep schemes and multistep
SP-iterative schemes. This is shown by analytical processes and validated with
numerical examples. Several known results in the literature are embedded in
these present results.

1. INTRODUCTION
The Picard iteration defined by: For zg € X
Ty =Tx,_1, n>1 (1.1)

was first considered by Banach (1922) for a self-map T in a complete metric space
(X, d) satisfying

d(Tx, Ty) < cd(z,y) (1.2)
(called strict contraction), for all z,y € X and some ¢ € (0,1). When the Banach’s
contractive condition is weaker, then the Picard iteration will no longer con-
verge to a fixed point, hence, other iterative procedures are considered to approxi-
mate fixed point of weaker conditions.

Mann (1953) defined a more general iteration in a Banach space E setting sat-
isfying Lipschitz pseudocontraction operator. The Mann iteration is given as: For
g € F

Tn=(1—ap)tn_1+anTTn1, n>1 (1.3)
where o, C [0,1]. By letting o, = 1 in (1.3) yields Picard scheme (1.1).
Ishikawa (1974) defined another iteration as: For g € E

Tn = (1 - O‘n)xn—l + anTyn—l

1.4
Yn—1 = (1 - ﬁn)l'nfl + 5nTxn717 n Z 1 ( )
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where av,, 8, C [0,1]. The Ishikawa iteration is a double Mann iteration and has
better convergence rate than Mann iteration.
The three-step iteration was defined by Noor (2000) as: For z¢ € E

Tn =1 —ap)xn—1+ anTyn—1
Yn—1 = (1= Bp)an-1+ fnT2n— (1.5)
Zn-1=(1=v)Zn-1+T2p_1, n>1
where ay,, Bn, ¥n € [0, 1] with 3 a,, = co. The Noor iteration is more general than
Mann and Ishikawa iterative schemes.

Rhoades and Soltuz (2004) defined a multistep iterative scheme in a normed
linear space as: For g €

Ty = (]- - an)xnfl + anTyrflljl

y;l)fl = (1 - Bgl))xnfl + szl)Tylejll)v l = 17 27 ceey k - 2 (16)
ygk:f) = (1 - ﬁn)mnfl + BnTxnflv k Z 27 n 2 1
where a,, B € [0,1], for I = 1,2,...,k — 1 with > @, = co. The scheme (1.6)
generalized the Noor iteration (1.5), Ishikawa iteration (1.4) and Mann iteration
(1.3), in particular, if £ = 3 in (1.6), we recover the form of (1.5); if kK = 2, we have
(1.4); on putting k = 2 and BY =0 for each I, we have (1.3).
Another iterative scheme, called the Thianwan scheme, was introduced by Thian-
wan (2009) as: For g € F,
Tn = (1 - 057L)yn—1 + anTyn—l
Yn—1 = (1 - ﬁn)mnfl + BnTxnflv n> 1
where ay,, 8, C [0,1] with > a,, = oo. The three steps of (1.7) called SP-iteration

was introduced by Phuengrattana and Suntai (2011) and was defined by, for zy € E,

(1.7)

Ln = (1 - an)yrlb_l + OénTy}l_l
y71171 =(1- 5n)y721,1 + ﬂnTy371 (1.8)
v2 = (1 —y)zn + T2y, n>1

where «,,, Bn,7 C [0,1] with > @, = oo. The two step of Thianwan scheme is
easily seen from (1.8) when -, = 0.

In an attempt to generalize both (1.7) and (1.8), Giirsoy et al. (2013) introduced
a multistep-SP scheme in a Banach space as: For xy € F,

Tn =1 —an)yp 1+ Ty,
Yoy = (L= BLyn™ + BTy, 1=1,2,3,.. k=2 (1.9)
Yl = (1= Yy + B T, 0, B> 2, n >0

where a,,, 8,,C [0,1], 1 =1,2,...,k — 1 with >_ a,, = c0.

Numerous results have been proved for the strong and weak convergence of the
aforementioned schemes for the fixed points of different types of contractive-like
operators in various spaces [Reich (1979), Ciric (1999), Berinde (2004), Chugh and
Kumar (2011), Xue and Zhang (2013)]. Their stability results have been discussed
in Osilike (1995), Berinde (2002), Imoru and Olatinwo (2003), Olatinwo (2011) and
Berinde (2011). The results concerning the data dependence of these schemes have

been established and proved by [ Soltuz (2008), Chugh and Kumar (2012) and
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Giirsoy et al (2013)].

Implicit schemes of fixed point have received low attention and few works have
been done regarding its stability, convergence rate and data dependence results.
The implicit schemes are mostly employed to reduce the computational cost when
the explicit or SP-iterative schemes are heavy-handed. For some recent results on
implicit schemes of fixed points, see [Ciric et al. (2008), Xue and Zhang (2013),
Chugh et al. (2015)].

2. PRELIMINARIES

We begin this section with the following definitions which are useful to our
results.

Definition 2.1 (Takahashi, 1970). Let (X,d) be a metric space. A mapping W :
X x X x [0,1] = X is called a convex structure on X if for all z,y € X and
A€ [0,1]

dlq, Wz, 9, N) < Ad(g,) + (1 - N)d(q, ) (2.1)
holds for all ¢ € X. The metric space (X,d) together with a convex structure W is
called a convex metric space.

See also Reich and Shafrir (1990).

Definition 2.2 (Guay et al (1982)). A convex metric space (X,d, W) is said to
satisfy Property (1) if for all x,y,p € X and X € [0, 1],

d(W (z,p, \), W(y,p, ) < Ad(z,y) (2.2)

Property (I) is always satisfied in a normed linear space.
Obviously, every normed space (X, ||.||) and their subsets are strongly convex metric
spaces with W defined by W(z,q,\) = Az + (1 —N)g for all z,¢ € X and X € [0,1].
But not every convex metric space is embedded in normed space.

Definition 2.3 (Takahashi, 1970). A nonempty subset K of a convex metric space
(X,d, W) is said to be convex if W(x,y,\) € K for all z,y € K and X\ € [0, 1].

Definition 2.4. A nonempty subset K is said to be p-starshaped, where p € K,
provided W(xz,p,A\) € K for all x € K and XA € [0,1] i.e. the segment [p,x] =
{W(x,p,A) : 0 < A <1} joining p to x is contained in K for all z € K.

K is said to be starshaped if it is p-starshaped for some p € K.

Clearly, each convex set is starshaped but not conversely.
The concept of T-stability is defined as follow:

Definition 2.5 (Olatinwo, 2011). Let (X,d,W) be a convexr metric space and
T:X — X a self-mapping. Suppose that Fr = {p € X : Tp = p} is the set of fived
points of T

Let {xn},- o C X be the sequence generated by an iterative procedure involving T

which is defined by

Tpp1 = [, n=0 (2.3)
where xg € X is the initial approximation and f;"an 18 some function having convex
structure such that a,, € [0,1]. Suppose that {x,} converges to a fized point p of T.
Let {yn},~y C X and set e, =d (ynH, mean), n=0,1,2,.... Then, the iterative

procedure (2.15) is said to be T-stable or stable with respect to T if and only if
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Definition 2.6 (Berinde, 2002). Let {a,},-, and {b,},-, be two nonnegative real
sequences which converge to a and b, respectively. Let

[ = lim lan — al

n—oo |b, — b

1. if L =0, then {a,},, converges to a faster than {b,},-, to b.

2. if 0 < 1 < oo, then both {a,},~, and {b,},-, have the same convergence
rate.

3. if l = oo, then {b,},_, converges to b faster than {a,},. to a.

Let {x,} and {y,} be two iterative sequences converging to the same fixed point
z of T such that
d(xn,2) < ap and d(yn,2) < b,, n>1

where a,, and b, are sequences of positive real numbers (converging to zero). In
view of Definition 2.6, if a,, converges faster than b,, then we say that the sequence
x, converges faster than the sequence y,,.

Definition 2.7 (Gursoy et al., 2013). Let S and T be two operators on a metric
space X. One says S is approzimate operator of T if, for all x € X and for a real
number € > 0, one has d(Tx,Sz) <.

One of the most generalized Banach operator (1.2) used by several authors is the
one proved by Zamfirescu operator [Zamfirescu (1972)]. The Zamfirescu operator
is stated as:

Let X be a complete metric space and T be a self map of X. The operator T is
Zamfirescu operator if for each pair of points x,y € X, at least one of the following
18 true:

Zy: d(Tx,Ty) < ad(x,y)
Zy: d(Tz,Ty) < bld(z,Tx) + d(y, Ty)] (2.4)
Zy: d(Tx,Ty) < cld(z, Ty) + d(y, Tz)]

where a, b and ¢ are non-negative constants satisfying a € [0,1), b,c < %
An equivalent form of (2.4) is

<
<

1 1
dT0,Ty) < amax {d(e,). 3 e, T) + dl Ty o To) + dly. )}
(2.5)
for x,y € X and a € [0,1). See also [Reich (1971)]
Berinde (2002) observed that the condition (2.5) implies
d(Tx, Ty) < 2hd(x, Tx) + hd(z,y) (2.6)

where h = max {a, 5 }

Rhoades (1993) used a more general contractive condition than (2.5): For x,y €
X, there exists a € [0,1) such that

d(Tz,Ty) < amax {d(m, Y) L d(xz,Tx) + d(y, Ty)],d(x, Ty), d(y, Tx)} (2.7)

) 5 [
Osilike (1995) extended and generalized the contractive condition (2.7): For
x,y € X, there exists a € [0,1) and L > 0 such that

d(Tz,Ty) < Ld(z,Tx) + ad(x,y) (2.8)
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Imoru and Olatinwo (2003) employed a much more general class of operators T
than (2.8) satisfying the following contractive conditions
d(Tz,Ty) < ad(z,y) + ¢ (d(z,Tx)) for z,y € X (2.9)

where a € [0,1) and ¢ : R — R™ is a monotone increasing function with ¢(0) = 0.
The following Lemmas will be helpful.

Lemma 2.8 (Berinde, 2004). Let 6 be a real number such that 0 < § < 1 and
{en }Zo o s a sequence of positive numbers such that lim,_, €, = 0, then for any
sequence of positive numbers {uﬂ} _o satisfying

Up+1 §5Un+€n7 n:0,1,2,...
we have lim,, o U, = 0.

Lemma 2.9 (Soltuz S. M., 2008). Let {a,},., be a nonnegative sequence for which
there exists ng € N such that, for all n > ng, one has the following inequality:

Anp+1 S (1 - Tn)an + Tntna
where 1y, € (0,1), for alln € N, 3> | r,, = 00, and t,, > 0 for n € N. Then,

0 < lim supa, < hm supt,

n—oo

3. MAIN RESULTS

In this section, we present our main results.

3.1. Analytical Results. Let K be a nonempty closed subset of (X,d, W) and
xo € K, we introduce an implicit multistep scheme, called WR-iterative scheme, in
a convex metric space as:

Tn = W( »Ell)pTxnvan)
0, = WD, a2, 40
e = W(xfjﬂ),Tx”) BOY =23, k-2

g = W (- 1,Tx(k b B(k 1)) k>2 n>1

n—1

(3.1)

oo
where {a,} " 7(11)} are real positive sequences in [0,1] with > (1 — ay,) = 0.
Let k = 3 in (3.1), we obtain the implicit Noor iteration [Chugh et al., 2015] in

convex metric spaces given by:

—

121aT$n7an)

xn, =W(x
2D =w(@®, 12, W) (3.2)

(2)1 —W(.’I}n laTxn 1)6(2))

3

A

An equivalent form of (3.2) in a linear vector space is
Ty, = anxfllzl + (1 —-ap)Tx,

zy = B0+ (1= BT, (33)
R e
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Putting k = 2 and B = 1 for I = 2,3,...,k — 1 in (3.1) resulted to Implicit
Ishikawa iteration [Xue and Zhang (2013)] in convex metric spaces and it is given
as:

x, = W(x (1) Ty, an)

Tnli1s

(1) _ W(In—l,Tl'(l) ﬂv(Ll))

Tpo1 = n—1»
We get the Implicit Mann iteration [Ciric et al. (2008), Xue and Zhang (2013)]
when Y =1, for all I, in (3.1) as

(3.4)

Ty = W (xp—1,T%n, ap) (3.5)

Throughout, an operator T' shall be assumed fixed, and a fixed point p € F(T)
for the contractive-like operator (2.9) is unique.

Theorem 3.1. Let (X,d, W) be a convex metric space and K a nonempty closed
subset of (X,d,W). Assume T is self map of K satisfying the contractive-like
operator (2.9) with F(T) # ¢. Then, for xo € K, the sequence {x,} defined by
(3.1) with 3.7 | (1 — ay,) = 00 converges strongly to the fized point p € F(T).

Proof
Let zg € K and p € F(T), then using (2.9) and (3.1) we have

dcm“p>=:d(wwx£9ﬁzhm,anxp)f;and@4” p) + (1 — an)d(Tn, p)
<a d( 1,p) + (1 — ap)ad(xy,,p)
+(1- an)so (d(Tp,p))
= apd(@),,p) + (1 — an)ad(wn, p)
This implies

<« O )
d(zn,p) < 17— a _an)ad(w p) (3.6)
Also, from (3.1), we have
A, .p) = d (W, Ta®, 50).p) < 50da®, p) + (1 - B)ATD),. )
< BPd(a?),,p) + (1~ A )ad (), p)
+(1-8M)e (d(Tp,p))
= BVd(z? ,p)+ (1 - BV)ad(zV,p)
This becomes
(1) x (2)
d lap +d( 17p) (37)
( n— ) 1 _ (1 _ ’Sll))a n—
Also, from (3.1)
d@®,.p) = d (W, 7o 52).p) < 5Od(,.p) + (1 - BD)d(T2®), . p)
< BPd(® )+ (1 - BP)ad(z?),p)

+(1- B2 )) (d(Tp,P))
= pPd® ,p)+ (1 - B )ad(z? , p)
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which implies

By
d@,2,,p) € gy —d(@,?,.p) (3.8)
—(1-=5")a

Continue in this manner up to k — 1 in (3.1), we have

A0, p) =d (Ww,_, To, . 850)p) < BE Ve, p) + (1= 85 D)d(Tz, ., p)
< gV, ,,p)+ (1 - Y V)ad(z, ,,p)
+ (1= B (d(Tp,p))
=B Vd(x, ,,p)+ (1 =L V)ad(z, ,,p)

Implying that
(k—1)
(k—1) n
d(xn_l 3p) S 1 . (1 . (k*l))ad(xn_l’p) (39)

By substituting (3.7) up to (3.9) into (3.6) becomes

o o i
d(xn,p) < (1 —a an)a> (1 (- ﬁll))a) <1 —(1- Eﬁ))Cl)

(k—1)
X n d(z, ,,p)
(1—(1— ék“)a)

(3.10)

an
Let Q, = ————, th
et Q = (1= an)a en
an, 1—(ap+ (1 —ap)a)
1-Qn=1-— - >1— (an+ (1 — an
@ 1—(1—ap)a 1—(1—ap)a - (n + (1= an)a)
This implies
1 ‘ 1
Qn <an+(1—ay)a= Zan,jaj < Zam =1 (3.11)
3=0 3=0

where o, = a0 and (1 — @) = ap 1.
Similarly, we can show that

(1) 1 4 1
o <A A=A <35 =
1-(1- Ja §=0 j=0

(2) 1 4 1
— P <A+ (1= e = Y e < 38 =
L—(1—-pp")a =0 =0
ey (k—1) (k—1) - (k 1) (k—=1) _
n — o — _ 7
1— (1_ (k 1)) <ﬁn +(1 /Bn )a‘ — n] a <Zﬁ
J=

(3.12)
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By applying (3.11) and (3.12) in (3.10), we have

d(xn,p) < (an+ (1 —ap)a)d(z,_,,p)=[1—(1—a,)(l—a)ldz,_,,p)
SHl-00-o)1-a)l[l =(1—-an1)(1-a)d,_,,p)

1= B (e g, p)

Clearly, d(z,,p) is fixed and as n — o0, >0, (1 — ) = oc.
Hence, lim,,_,« d(z,,p) = 0.
Therefore, the implicit multistep scheme (3.1) converges strongly to p € F(T)).

Corollary 3.2. Let (X,d, W) be a convex metric space and K a nonempty closed
subset of (X,d, W). LetT be a self map of K satisfying the contractive-like operator
(2.9) with F(T) # ¢. For xzp € K and Y .-, (1 — a,) = 0o. Then, the sequence
{z,} defined by
i (8.2) converge strongly to the fized point of T.
il (3.4) converge strongly to the fixed point of T.
iii (8.5) converge strongly to the fixed point of T.

Proof
The proof of Corollary 1 is immediate from Theorem 3.1 by putting 67(11) =1 for
eachl=1,2,....,k—1,k=2,k=3in (3.1).

Remark. Corollary 1(iii) above is Theorem 9 in Chugh et al. (2015).

Theorem 3.3. Let K be a nonempty closed subset of a convexr metric space (X,d, W).
Let T : K — K be a map satisfying the contractive-like operator (2.9) with F(T) #
¢. Then, for zg € K, the sequence {x,,} defined by (1.9) with > - | (1 — ) = ©
converges strongly to the fized point p € F(T).

Proof
Using (1.9) and (2.9), we have, for g € K and p € F(T)
dwn,p) = d (WD, T2, an),p) < and(@®,,p) + (1 = an)d(T2V,, p)
<a d(x(l) p) + (1= an)ad(zV ,p)
+ (I —an)e (d(Tp,p))

= [ + (1 — ap)a]d(zM) |, p)
(3.13)
with
4@, p) = d (W, To® ,50),p) < SOdD, p) + (1 - SO)d(Tal?),,p)
< pWd(zM p)+ (1 - BM)ad(=M ,p)

n—1"7

= [B + (1= 8] d=,,p)
(3.14)
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A, p) = d (W, 72, 52),p) < BPd(x?,,p) + (1 = B2)d(T2),, p)
< BPd@?,,p) + (1= B ad(x?), . p)

= [6 +<1—/3£ﬁ>>a} da),.p)
(3.15)

A0 = d (We, ., To, o BE70)p) < BEDd(e, op)+ (L= B (T, o)
< g Vd(e, ,,p)+ (1 - Y )ad(z, ,,p)
= [0+ (= el dz, 1)

(3.16)
By combining inequalities (3.13), (3.14), (3.15) and (3.16), we obtain
A(n,p) < [om + (1= o)l [ﬁ< +(1-B)a } (62 + (1 - 8P)al x
(3.17)

[ﬁ(k D 4 (1 - gD } )
Putting in mind inequalities (3 11) and (3.12), and let
8= [on + (1 = ap)a [5(1) +(1-=8M) } [5(2) +( 57(3))@} [B;k—l) (- 57(11«—1))@}

1 1
St | (Sl ) (a2 ) Zﬂ““ U
j=0 j=0 j=0

1 1 1 1
1 2 k—1
Doans | | 208 (28] (2 h ] =1
j=0 j=0 Jj=0 Jj=0
with o, = ano, (1—n) = a1, (0 — ﬂﬁf,)m (lf,B,(Ll)) = 57(Ll,)1 forl > 1landa’ € [0,1)
for j =0,1.
By the application of Lemma 1, we have lim,,_, o d(z,,p) = 0.

Therefore, the scheme (1.9) with contractive-like operator (2.9) converges strongly
top e F(T).

Remark. The strong convergence of (1.7) and (1.8) can be proved successfully in
Theorem 3.2 by letting [3,(1[) =1forl>2,k=2and k=3 in (1.9), respectively.

The convergence rate of the schemes (1.7), (1.8), (1.9), (3.1), (3.2), (3.4) and
(3.5) are summarized in the following theorem.

Theorem 3.4. Let K be a nonempty closed subset of a convex metric space (X, d, W)
and let T be a contractive-like operator satisfying (2.9) with F(T) # ¢. Then, for
xo € K, the sequence {x,,} defined by (3.1), a (k—1)th step scheme converges faster
than its (k—2)th step scheme. Furthermore, the scheme (3.1) converges faster than
the multistep SP-iteration (1.9) and for k > 2.

Proof
Let {x,} be a sequence (k — 1)th step that converges to p as (n — 00) satisfying
the estimate (3.10) with

0)
d(xy,p) <T,_, = (11%) L <M>d(xn-1,p)

[ i
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And let {y,} be a sequence of (k — 2)th step that also converges to p such that

N k=2 0)
d(yn,p) <T,_, = (1_(1jan)a) 11 <1—(1—7(f))a> d(Yn-1,p)

1=1
By Definition 2.6, we have

r v dae1p) d(n-1,p)
0< At = n D Pl < 1= (1= BRI (1 — a)) ol
Lo 1-1-8%"adWn-1.p) ~ = J1 = a) d(Yn—1,p)
< o—(1—a) 57 (1—p¢) d(20,P)
o d(y07p)
(3.18)
d(x()vp) . . . .
Clearly a( ) with d(yo,p) # 0 is fixed and as n — oo, the right hand side
Yo, P

inequality of (3.18) diminishes. Hence, the sequence {x,} for (k —1)th step scheme
(3.1) converges faster than the sequence {y,}, its (k — 2)th step scheme for k > 2.
Furthermore, by using Definition 2.6, inequalities (3.11) and (3.12), we have

k-1 O]
Y S
L, = (1 —(1- an)a> H <1 - (1- Sbl))a>

k:
< (o + Q=0 T (30 + 1 - 0)
1:1
1 k=1 [ 1
= Zan,jaj ZB(Z) =I_
7=0 =1 \j=0

where I~ € (0, 1) is the estimate in (3.17) of multistep SP-iteration (1.9).

It is easy to verify that
kal
r Y
k—1
Therefore, the scheme (3.1) converges faster than the multistep SP-iteration (1.9)
for k > 2.

Remark. (i) The positive terms I',, T, and T', are, respectively, found in the
estimates of implicit Mann scheme, implicit Ishikawa scheme and implicit Noor
scheme.

(ii) The positive terms I, T and T, are found in estimates of Mann iteration,
Thianwan iteration and SP-iteration, respectively.

(iii) Since SP-iteration is better than the explicit iterative scheme, the implicit
iterative schemes are better than both the explicit iterations and the SP-iterative
schemes.

Theorem 3.5. Let (X,d, W) be a convex metric space and K a nonempty closed
subset of (X,d,W). Suppose T is a self map of K satisfying the contractive-like
operator (2.9) with F(T) # ¢. Then, for xo € K, the sequence {x,} defined by
(3.1) is T-stable.

Proof
Let {y,} € K be an arbitrary sequence and let €, = d(yn, W(z(l) TYn, n)),

n—1»

where zfllzl = W(zr(i)l,Tzr(Bl, T(Ll)), 27(1221 =W(z ) Tz,(f)l, ,(12)) up to z(q 1)

Zp—1>
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W( (0217TZ(Q 1) 6(’1—1)).

n—1 >

Suppose lime, =0 as n — 0o and p € F(T), then, by using (2.9) we have
d(ynap) < d(yna W( 7(1 )1’ Tyn, Oén)) + d(p7 W<Z7(ll—)1’ Tyn, a”>)
< en 4 and(z, p) + (1 = a)d(Tyn, p)
<e,+ and(zfll_)l,p) + (1 — an)ad(yn,p)
Therefore

€n N an,
1-1—-ap)a 1-(1-ay)a
From inequalities (3.11) and (3.12) we have

d(=",.,p) (3.19)

d(yn,p) <

A=) p) < d=2 1 p) < - < p) < dya1,p)

n—1D Zn1>
and that — % =§ <1
1—(1—ap)a '
Then, Inequality (3.19) becomes
€
d(Yn,p) < 6d(Yn-—1, —

By Lemma 1, we have
d(yn,p) = 0, n — 0
Conversely, suppose d(y,,p) — 0 for p € F(T), then

en = d(Yn, W(z,(Ll_)l,Tyn,ozn))
< d(yn,p) + dlp, W (', Ty, )
< d(yn,p) + and (2}, p) + (1 — an)d(Tyn. p)
< (1 -1~ an)a)d(yn,p) + and(yn—1,p)

By taking limit as n — oo, we have d(y,,p) — 0.
Hence
lime, =0
Therefore, the new iterative scheme (3.1) is T-stable.
Remark. The stability results for implicit Mann scheme, implicit Ishikawa scheme

and implicit Noor scheme, using contractive-like operator (2.9) are special cases of
our results in Theorem 3.3 above.

The following Theorem discusses the data dependence results of the iterative
scheme (3.1).

Theorem 3.6. Let T be a map of K into itself satisfying (2.9) and let S be an
approximate operator of T. If {xn},{yn} C K are two iterative schemes associated
to T, S respectively, where {x,,} is the scheme (8.1) and

Yn = W(yfbl)la Synv an)

97(11)1:W(yn 17‘9yn 19 1))
(3.20)

yfzk 11) = W(ynflasyy(ﬁ 11 aﬂ(k 1)) n=0,1,2,3,...
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where a,, B, 1 =1,2,...,k — 1, are nonnegative real sequence in [0, 1] satisfying
S (1 —ayp) =00. Then, forp € F(T), g € F(S) and for any given e > 0 and k € N
we have,

Proof
Using the iterative schemes (3.1), (3.20), Definition 2.7 and condition (2.9), we
obtain

which further implies

On

< o ) b s et o (Ao, Sa).

(3.21)

d(fL‘n, yn)

with

(1)
d(z (1) y(l) ) < n

Tp-1>Yn1

(1 - Mn )
md(fsgzpyr(?_)l)"'m [G—F@(d( ,” 1751' )>:| ,
(3.22)

2) 182
dwy 520 < — i@,y @)+ )T o (4,552
( 1 1 1_a(1_57(12)) 1 1) l—a(l— 7(3))[ (( 1 1)}
(3.23)

(3) (3)
3 3 n 4 4 (1-5x7)
d(z ;)17117(;)1) < —d@cslzp 7(1—)1)‘*‘

1—a(l- S’)) m [e +p (d(xf'_)l, S;CS’_)I))} ;

(3.24)

(4) (4)
4 4 5 5 (1-06r")
d(z ;)173/7(1)1) < —————d( 27)17 ng)l)—’_

1—a(l- 7(14)) t m [e +¢ (d(xﬁflp Smfjl))} ;

(k—2) (k—2)

d(z (k=2) (k- 2)) L(E=D) (k—l))+ 1-6."") {e—ﬂa(d(m(k_z)

n— y In— — ( n— 7yn7 n— I
1 1 1—a(l— ;kﬁ)) 1 1 I a(l - 7(1’“2)) 1
T(kal) (1- 7(Lk71))

k—1 k—1
d(z 70y <

d(xnfla ynfl) +

_1—au— (1)) 1—a(l- %)

(3.25)

e o (da0 520
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Combining inequalities (3.21) up to (3.25), we have

W

Q
; . @ @
@mwﬂ‘l—aﬂ—amlldl5?)@"1w”0

CET: 0 B S N >)}

o) (e, Se))]

1—a(1-85") 1—a(l—ay)
S1—aan—ozn) L_ (61#) 0 |1 ( & )d(xﬁf>1,y§f>1)
+“B@%+¢@ (2?52 ﬂ}

B e (a2 5420)] |+ s b s

N (1) 52
l—a(l—an) [1-a(l - W) [1-al—8P) [1—a(1-8Y)

e e s

+1—(1a(_1—(2;,23)) {e—i-go( (x 512)1,530(2) ))H

— Y 1 1
+].—(];l(].—nﬂzll)) {64’@( (z 2)1,530() ))]

(1—ay)

T al a6+ ¢ (d(an, Sa))

+

< n v v ’§L3) ﬂglk_l)d(xn—layn—l)
Tl-all—an) [1-a1-8D) [1-a(t—8P) [1-a(l—57) | | 1-a(1— 85
(1 — g1 {e—kgp(d( (kll’S(k11)>} 4.
1—a(1-p8Y) o "
(1-8%) 3) .3
m {€+<P<d( Ty, 5%, ))}
(1-57) @) )
+1—a(1— ) {E—i_ (d R )]
(1- 7(L1)) (1) (1) (1—-ay)
iy [ o (e SER) ]|+ G e dlan e
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This further gives

i) = [1a(1nozn) L ]
a (k 1)
+[1—a(1—ozn) L_al— ] [ 1_6(k )
an (1 (k=2)
+[1—a(1—ozn) L_al_ ] [ (i 2))

Qn r(tl) 1 1
R L—aa—anJ L—a(l—ﬁ,&”) [eJrgo(d( M ezM ))]

+ [1_(2(_10%] [e + ¢ (d(zn, S14))]

e+ ¢ (aal), 52l

n—1

e+ (A, salt?

(3.26)
Using (3.11) and (3.12) in (3.26), we have

(k—1)
[e%
d(xnayn) S |:n:| d Tn—1,Yn— + =
= a(l—a) | A0t n) 1-a(1— ")

e+ (aal), sal))]

+ 1_a(1£k__2)7(ﬁ_2)) |:€+Q0(d( glk 12)75 (k— 2)))] 4.
+ 1@(1’("‘1)5% e+ (a2 s20))] + [%] e+ (d(n, S7.))]

< 0= (1= )0 = an)l oo, nn) + G [ (. 5ol
# O oo (e 5+

+ m e+ ¢ (a2, s200)] + ((11_—62)((11_—023) le + @ (d(n, Sz))]
- u<1a><1an>1d<zn_1,yn_1>+m [ke + ¢ (A0 Sal3)) +
o (A0, 8280)) + o+ o (A, 8202)) + ¢ (d(an, Sz))]

(3.27)
By letting a,, = d(@n,Yn), 1 = (1 —a)(1 — @) and
e+ 5071 o (a2, 80))) + 0 (A, S2)|

(1—a)?

Then, inequality (3.27) becomes

tn, =

an < (1 - Tn)an—l + rptn

Since ¢ is continuous and ¢(0) = 0, then

ICE:SO( Tpl1:S 4)1)) = ¢ (d(zy, Szn)) =0

(k1)
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Thus, by Theorem 3.1 and Lemma 2, we have
ke
d < —
(p.q) < e
Remark. If k = 3 in the schemes (3.1) and (3.20), the result concerning data
dependence of implicit Noor iteration can be obtained easily from our result in The-

orem 8.5. Also, when k =2 and 8, = 0 in (3.1) and (3.20), the data dependence of
Implicit Ishikawa and Mann iterations follows, respectively from the same Theorem.

3.2. Numerical Results. Here, we shall consider two numerical examples to jus-
tify the aforementioned claim in Theorem 3.3.

Example 3.7. The function f : [6,8] — [6,8] defined by f(x) = § + 3 is an

increasing function with fized point p = 6.0000 and initial quess xo = T using
1—an:1—35:ﬁ,forl21.

Example 3.8. The function f : [3,2] — [,2] defined by f(z) = L is an oscillatory
function with fized point p = 1.0000 and initial guess xo = 4 using 1 —a, = 1— . =
%_H, forl>1.

We compute the results using MATLAB program and the comparison of the
results are listed in Tables 1 and 2.

Table 1: Rate of convergence of fixed point schemes for Example 1.

Mann Implicit Thianwan Implicit SP-scheme Implicit SP-Multistep ~ WR-scheme
’ n scheme (1.3) Mann (3.5) scheme (1.7) Ishikawa (3.4) H (1.8) Noor (3.2) ‘ scheme (1.9) (3.1)
0 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000 7.0000
1 6.7500 6.6667 6.5625 6.4444 6.4219 6.2963 6.3164 6.1975
2 6.5167 6.3657 6.2670 6.1338 6.1380 6.0489 6.0713 6.0179
3 6.1405 6.3203 6.1156 6.0309 6.0393 6.0054 6.0134 6.0010
4 6.0897 6.1391 6.0472 6.0058 6.0102 6.0004 6.0022 6.0000
5 6.0561 6.0556 6.0184 6.0009 6.0025 6.0000 6.0003 6.0000
6 6.0345 6.0208 6.0070 6.0001 6.0006 6.0000 6.0000 6.0000
7 6.0209 6.0073 6.0026 6.0000 6.0001 6.0000 6.0000 6.0000
8 6.0125 6.0024 6.0009 6.0000 6.0000 6.0000 6.0000 6.0000
9 6.0075 6.0008 6.0003 6.0000 6.0000 6.0000 6.0000 6.0000
10 6.0044 6.0002 6.0001 6.0000 6.0000 6.0000 6.0000 6.0000
11 6.0026 6.0001 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
12 6.0015 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
18 6.0001 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
19 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000
20 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000

Remark. For an increasing function f(x) = § + 3 with initial guess xo = 7 and
l—a, =1-8, = ﬁ, the WR-scheme converges at 4 iterations while the
SP-multistep scheme at 6 iterations. Also, the implicit Noor, implicit Ishikawa and
implicit Mann converge in 12, 7 and 5 iterations, respectively, whereas the Mann,
Thianwan and SP schemes converge in 19, 11 and 8 iterations. We can easily

obtain 1 iteration in WR-scheme when k = 6.

Table 2: Rate of convergence of fixed point schemes for Example 2.

Mann Implicit Thianwan Implicit SP-scheme Implicit SP-Multistep ~ WR-scheme
n scheme (1.3) Mann (3.5) scheme (1.7)  Ishikawa(3.4) (1.8) Noor (3.2) scheme (1.9) (3.1)
1 2.1250 2.2247 1.2978 1.4558 1.0342 1.1592 1.0006 1.0540
2 1.0221 1.2675 1.0199 1.0190 0.9988 1.0013 1.0000 1.0000
3 0.9893 1.0388 1.0049 1.0004 1.0002 1.0000 1.0000 1.0000
4 1.0065 1.0043 1.0018 1.0000 1.0000 1.0000 1.0000 1.0000
5 0.9957 1.0004 1.0008 1.0000 1.0000 1.0000 1.0000 1.0000
6 1.0031 1.0000 1.0004 1.0000 1.0000 1.0000 1.0000 1.0000
7 0.9977 1.0000 1.0002 1.0000 1.0000 1.0000 1.0000 1.0000
8 1.0018 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000
28 1.0001 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000
29 0.9999 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000
30 1.0001 1.0000 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000
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Remark. In Table 2, we observe from the oscillatory function f(x) = % with initial

quesszog =T and 1 —a, =1 — 8 = %_H, that the multistep SP-scheme has good

starting points than the WR-scheme, nevertheless, the WR-scheme does better in
the successive approximations.

4. CONCLUSION

We have established and proved strong convergence, convergence rate, T-stability
and data dependence results for the implicit multistep scheme of fixed point of
contractive-like operators in convex metric spaces. This study concluded that the
scheme (3.1) is valid and it has better convergence rate when compare with other
iterative schemes such as: multistep SP-iteration, explicit multistep scheme, SP-
iteration, two-step of Thianwan scheme, implicit Noor iteration, implicit Ishikawa
iteration, implicit Mann iteration, Noor iteration, Ishikawa iteration, Mann itera-
tion and many more iterative schemes of fixed point in the literature.
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