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ON A FRACTIONAL INTEGRO-DIFFERENTIAL INCLUSION OF
CAPUTO-KATUGAMPOLA TYPE

AURELIAN CERNEA

ABSTRACT. We study an initial value problem associated to a fractional integro-
differential inclusion involving Caputo-Katugampola fractional derivative and
a set-valued map with non convex values. We establish a Filippov type exis-
tence theorem.

1. INTRODUCTION
This note is devoted to the following Cauchy problem
DY Px(t) € F(t,x(t), V(x)(t)) a.e. ([0,T]), x(0) =z, (1.1)

where a € (0,1], p > 0, D®* is the Caputo-Katugampola fractional derivative,
F:[0,7] x R x R — P(R) is a set-valued map, V : C([0,T],R) — C([0,T],R) is
a nonlinear Volterra integral operator defined by V(z)(t) = fot k(t, s, xz(s))ds with
k(. .,.):[0,T] x R x R — R a given function and zy € R.

If F' does not depend on the last variable, problem reduces to

D&Px(t) € F(t,z(t)) a.e ([0,T]), x(0)= zo. (1.2)

Recently, a generalized Caputo-Katugampola fractional derivative was proposed
in |10] by Katugampola and further he proved the existence of solutions for frac-
tional differential equations defined by this derivative. This Caputo-Katugampola
fractional derivative extends the well known Caputo and Caputo-Hadamard frac-
tional derivatives. Also, in some recent papers [1}/13], several qualitative properties
of solutions of fractional differential equations defined by Caputo-Katugampola de-
rivative were obtained.

In the present paper we consider the set-valued framework and our aim is to show
that Filippov’s ideas ( |9]) can be suitably adapted in order to obtain the existence
of solutions for problem . We recall that for a differential inclusion defined
by a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ( [9])
consists in proving the existence of a solution starting from a given almost solution.
Moreover, the result provides an estimate between the starting almost solution and
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the solution of the differential inclusion. In this way we extend Katugampola’s ex-
istence result obtained for fractional differential equations to fractional differential
inclusions.

We note that similar results for other classes of fractional differential inclusions
defined by Riemann-Liouville, Caputo or Hadamard fractional derivatives exists in
the literature [47] etc.. The present paper extends and unifies all these results in
the case of the more general problem .

Finally, we mention that in the last years one may see a strong development
of the theory of differential equations and inclusions of fractional order ( [3,/8,[11]
etc.). The main reason is that fractional differential equations are very useful tools
in order to model many physical phenomena.

The paper is organized as follows: in Section 2 we recall some preliminary results
that we need in the sequel and in Section 3 we prove our main results.

2. PRELIMINARIES

In what follows we denote by I the interval [0,7], C(I,R) is the Banach space
of all continuous functions from I to R with the norm ||z||c = sup,¢; |2(t)| and
L'(I,R) is the Banach space of integrable functions u(.) : I — R endowed with
the norm [[ul|s = [ [u(t)|dt.

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff distance of
the closed subsets A, B C X is defined by

D(A, B) = max{d*(A, B),d"(B,A)}, d*(A,B)=sup{d(a,B);a € A},
where d(z, B) = infyep d(z,y).
Let p > 0. The next notions were introduced in [10].
Definition. a) The generalized left-sided fractional integral of order a > 0 of a
Lebesgue integrable function f: (0,00) — R is defined by
= t
a P a—1_p—1
1) = s [ @ =)t sy, (21)
I(a) Jo
provided the right-hand side is pointwise defined on (0,00) and I'(.) is the (Euler’s)
Gamma function defined by T'(o) = [ t* e~ dt.
b) The generalized fractional derivative, corresponding to the generalized left-
sided fractional integral in (2.1) of a function f:[0,00) — R is defined by

«, _ — d n/rn—a, _ pa7n+1 — d n ! Spilf(s)
D¥Pf(t) = (' p@) (! p)(t)—m(tl p%) /0 st

if the integral exists and n = [a] + 1.
¢) The Caputo-Katugampola generalized fractional derivative is defined by
n—1
F®(0)
D f(t) = (DP[f(s) = Y =" D(®),

k=0

with n = [o] + 1.

We note that if p = 1, the Caputo-Katugampola fractional derivative becames
the well known Caputo fractional derivative. On the other hand, passing to the
limit with p — 04, the above definition yields the Caputo-Hadamard fractional
derivative.
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In what follows p > 0 and « € [0, 1]

Lemma 2.1. For a given integrable function f(.) : [0,T] — R, the unique solution
of the initial value problem

DPa(t) = f(t) ae ([0,T]), (0) = o,

is given by
-«

I(t) =0 + ?(O&) /(; (tp — Sp)a—lsp—lf(s)ds

For the proof of Lemma 2.2, see [10]; namely, Lemma 4.2.

A function € C(I,R) is called a solution of problem (1.1) if there exists a
function f € L'(I,R) with f(t) € F(t,z(t),V(x)(t)) a.e. (I) such that D®*z(t) =
f() a.e. (I) and z(0) = xo.

3. THE MAIN RESULT

First we recall a selection result which is a version ( [2]) of the celebrated Kura-
towski and Ryll-Nardzewski selection theorem ( |12]).

Lemma 3.1. Consider X a separable Banach space, B is the closed unit ball in
X, H:I— P(X) is a set-valued map with nonempty closed values and g : I —
X,L:1I— Ry are measurable functions. If

Ht)Nn(gt)+ L{#t)B) #0 a.e.(I),
then the set-valued map t — H(t) N (g(t) + L(t)B) has a measurable selection.

In the sequel we assume the following conditions on F' and V.

Hypothesis H1. i) F(.,.) : I x R x R — P(R) has nonempty closed values and
is L(I) @ B(R x R) measurable.

ii) There exists L(.) € L'(I,(0,00)) such that, for almost all t € I, F(t,.,.) is
L(t)-Lipschitz in the sense that

D(F(t,x1,y1), F(t,22,92)) < L(t)(|z1 — 22| + [y1 — v2|) YV @1,22,y1,92 € R.

iii) k(.,.,.) : I x R x R = R is a function such that Yz € R, (t,s) — k(t,s,x)
is measurable.
iv) |k(t,s,z) — k(t,s,9)| < L{t)|lx —y| ae. (t,s) el xI, Vz,yeR.

We use next the following notation
t
M) = L)1 +/ L(u)du), tel.
0

We are now ready to prove the main result of this section.

Theorem 3.2. Assume that Hypothesis H1 is satisfied, assume that I**M(T) < 1
and let y € C(I,R) be such that there exists q(.) € L*(I,R) with [*°q(T) < +o00
and d(DEPy(t), F(t,y(t), V()(£)) < a(t) a.e. ().

Then there exists x(.) € C(I,R) a solution of problem (L1.1) satisfying for all

tel )
[2(6) =¥ < T saregy (170 — ¥(O) + I*"4(T)). (3.1)
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Proof. The set-valued map t — F(t,y(t), V(y)(t)) is measurable with closed values
and

F(t,y(t), V() () n{Dgy(t) + ¢(t)[-1,1]} # 0 a.e. ().
It follows from Lemma 3.1 that there exists a measurable selection f;(t) €
F(t,y(t), V(y)(t)) a.e. (I) such that

|f1(t) = D&Py(t)] < q(t) a.e. (I) (3.2)
Define z1(t) = xo + ’;1(—:; fot(tp — sP)2~1sP=1 f1(s)ds and one has
|z1(t) — y(t)| = |zo — y(0) + £ F(a fo (t° — 7)o 1sP=1(f1(s) — DOPy(s))ds
< fwo — y(0)] + I*Pq(T).

We claim that it is enough to construct the sequences z,(.) € C(I,R), fn(.) €
LY(I,R), n > 1 with the following properties

pl—a i P a—1_p—1
T (t) = xo + m/o (tP = sP)* s fu(s)ds, tel, (3.3)
fu®) € F(t,2pn1(t), V(Tpn-1)(#)) a.e.(I), (3.4)
[frg1(t) = fu ()] < LE) (|20 (t) — 201 (D)) +/0 L(8)xn(s) = zn-1(s)lds) a.e.(I)

(3.5)
If this construction is realized then from (3.2)-(3.5) we have for almost all ¢t € I

041 (t) = 2n ()] < (TP M(T))" (|20 — y(0)] + I*P¢(T)) Vn e N.

Indeed, assume that the last inequality is true for n — 1 and we prove it for n.
One has

rua () = (0] < T [0 =) i (9) = ful9)lds <

l-«

14 tp_spa—lsp—lsxs_x (s s Do () — lu s
b [ = e (o) — a9+ [ ()~ s(w)ldudd

-«

4 t Yol pya—1_p—1 a,p n—1 B ap
Sr(@/o(t = ") P TIM (s) (1P M(T))" ™ (|20 — y(0)| + I**q(T))ds

= (I*"M(T))" (Jzo — y(0)| + I*7¢(T)).

Therefore {z,(.)} is a Cauchy sequence in the Banach space C(I,R), hence
converging uniformly to some z(.) € C(I,R). Therefore, by (3.5), for almost all
t € I, the sequence {f,(t)} is Cauchy in R. Let f(.) be the pointwise limit of f,(.).

Moreover, one has

|[zn () —y(£)] < |1931( ) =y + X0 i () = i(t)] < |g *O( ;Ij; .
197g(T) + 3215 (I M(T)) (a0 = y(O)] + 1**q(T)) = 232 >( |
3.6
On the other hand, from (3.2 , and ( we obtain for almost all t € T

|[fult) = DPy(t)] < 35 P fia(t) = '(t)l + /1) = Dery(t)] <

0)|+1 T
L( )|900 ly(I(zle( ;1( ) + q( )

Hence the sequence f,(.) is integrably bounded and therefore f(.) € L'(I,R).
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Using Lebesgue’s dominated convergence theorem and taking the limit in (3.3)),
(3.4) we deduce that z(.) is a solution of . Finally, passing to the limit in
we obtained the desired estimate on z(.).

It remains to construct the sequences x,(.), f»(.) with the properties in —
(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some N > 1 we already
constructed z,(.) € C(I,R) and f,(.) € L'(I,R), n = 1,2,...N satisfying (3.3),
, forn =1,2,...N and forn =1,2,...N — 1. The set-valued map
t = F(t,zn(t),V(zn)(t)) is measurable. Moreover, the map ¢t — L(¢)(|zy(t) —
xn-1(t)| + fg L(s)|xn(s) — xn—1(s)|ds) is measurable. By the lipschitzianity of
F(t,.) we have that for almost all t € T

Bt oy () 0 {fv () + L) (en () = zn-1 6]+
Jo L(s)lzn(s) — 2n—1(s)lds)[—1,1]} # 0.

Lemma 3.1 yields that there exist a measurable selection fyi1(.) of F(.,zn(.),
V(zn)(.)) such that for almost all t € T

[fne1(®) = fn (O] < L(#) (o (8) — 21 (D)] +/0 L(s)[xn(s) — xn—1(s)|ds).

We define 2n41(.) as in (3.3) with n = N + 1. Thus fy1(.) satisfies (3.4) and
(3.5) and the proof is complete. O

If F' does not depend on the last variable, Hypothesis H1 becames

Hypothesis H2. i) F(.,.) : I x R — P(R) has nonempty closed values and is
L(I) @ B(R) measurable.

ii) There exists L(.) € L'(I,(0,00)) such that, for almost all t € I, F(t,.) is
L(t)-Lipschitz in the sense that

D(F(t7$1),F(t,$2)) < L(f)|:b‘1 — 33‘2| Y 21,20 € R.
Theorem has, in this case, the following statement.

Theorem 3.3. Assume that Hypothesis H2 is satisfied, I*PL(T) < 1 and let
y € C(I,R) be such that there exists q(.) € L'(I,R) with I*Pq(T) < +oo and
A(DEy(1), F(t,y(0) < g(t) ac. (D).

Then there exists x(.) € C(I,R) a solution of problem (1.2)) satisfying for all
tel

20) = ¥0)] < Tz (0~ H(O)| + I70(T).

The assumptions in Theorem are satisfied, in particular, for y(.) = 0 and
with ¢(.) = L(.). We obtain the following consequence of Theorem [3.3

Corollary 3.4. Assume that Hypothesis H2 is satisfied, I*?L(T) < 1 and d(0, F(¢,0)) <

L(t) a.e. (I).
Then there exists x(.) a solution of problem (1.2)) satisfying for allt € T
|xo| + 1P L(T)

e = = — o L(T)
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4. CONCLUSIONS

In this paper we obtained an existence result for fractional integro-differential in-
clusion involving Caputo-Katugampola fractional derivative in the situation when
the values of the set-valued map are not convex employing a method originally
introduced by Filippov. Afterwards, this result may be useful in order to obtain
qualitative results concerning the solutions of fractional differential inclusions de-
fined by Caputo-Katugampola fractional derivative such as: controllability along a
reference trajectory, differentiability of solutions with respect to the initial condi-
tions of the problem considered. At the same time the technique presented in this
paper may be suitable adapted to the study of Darboux problems associated to
fractional hyperbolic integro-differential inclusion defined by Caputo-Kutagampola
fractional derivative.

Concerning numerical methods, in the literature there exists adaptations of the
classical techinques to the set-valued framework (e.g., a version of Newton’s method
in [2]) but it is difficult to implement it for our problem which contains a nonlinear
integral operator. However, the case when F is single valued and does not depend
on the last variable is studied in [2], where certain general discretization steps and
error analysis are provided.
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