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SUMMATION FORMULA FOR GENERALIZED DISCRETE
¢-HERMITE II POLYNOMIALS

SAMA ARJIKA

ABSTRACT. In this paper, we provide a family of generalized discrete g-Hermite
I1 polynomials denoted by hn, o (z,y|q). An explicit relations connecting them
with the g-Laguerre and Stieltjes-Wigert polynomials are obtained. Summa-
tion formula is derived by using different analytical means on their generating
functions.

1. INTRODUCTION

In their paper, Alvarez-Nodarse et al [2], have introduced a g-extension of the
discrete g-Hermite II polynomials as:

Hy (@) = (~1)"(g:0)n LY P (@%0)
(1.1)
HI(wg) s = (1)"(q @) 2 LI (a?1q)
where p > —1/2, LS{’)(x; q) are the g-Laguerre polynomials given by
a+1. ) —n
7,(e) zq): = (¢ 1 4)n P ( q - n+a+1x>
o (25q) T (B g j6a
(1.2)
_ 1 q_"7—90 . nta+l
= @ Dn 2@ < 0 ‘q,q €
n—1
with (a;¢)o = 1, (a;¢)n = H(l —aq®), n=1,2,--, the g-shifted factorial, and
k=0
qina a2, y Qp . _
T(I)S ( bl; b2a : 7bs q7x> N (13)

o0

(¢ " @)k(a2; Qr -~ (ar; @ 2* [(_1)qu(k_1)/z] lte—r

= (b1 Qb2 @)k~ (bsi D (6D
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the usual generalized basic or g-hypergeometric function of degree n in the variable
x (see Slater [I0, Chap. 3], Srivastava and Karlsson [IT, p.347, Eq. (272)] for

details). For p =0 in 1) the polynomials H&O)(x; q) correspond to the discrete
g-Hermite 1T polynomials [T} [§], i.e., "Hslo)(x; ¢?) = ¢"" VD, (x;q). They show that
the polynomials 7—[5# ) (z; q) satisfy the orthogonality relation

/ H (25 q)HY (23 )w(z)dz = 7 ¢ (¢ % 4" *)n(d%:0)1 /2 G (1.4)
on the whole real line R with respect to the positive weight function w(z) =

1/(=22;¢)o0. A detailed discussion of the properties of the polynomials H (z;q)
can be found in [2)].

Recently, Saley Jazmat et al [7], introduced a novel extension of discrete g-
Hermite IT polynomials by using new g-operators. This extension is defined as:

7 n _—n(2n— (q,Q)Qn a —2a—
hona(ziq) = (=1)"q " 1)m L) (22q72 7Y ¢?)
(4**2;6%)n

(1.5)

n —n(2n 4 Q)2nt1 a+l) (.2 —2a-1, 2
_yrgnenn (@0 pasy (2201, g2y,
=y (@2 ¢%) 1 ( )
For « = —1/2 in |i the polynomials Bnﬁ%(x;q) correspond to the discrete
g-Hermite II polynomials, i.e., h, 1 T;q) = h, x;q). The generalized discrete g-
=3

Hermite IT polynomials (|L.5]) satisfy the orthogonality relation

iL2n+1,a (75 q)

+oo ~
/ Pona (@5 @) om0 (25 Qwa (2 q)|x\2°‘+1dqac (1.6)

—00

2
20" (1-9)(-¢,-0.¢* P~ (6:9)7 5
(_q—2a—l, _q2a+37 q2oz+2; q2)oo (q7 q)n,a n,m

on the whole real line R with respect to the positive weight function w,(x) =
1/(—=q 271 22:¢?). A detailed discussion of the properties of the polynomials
P o (3 q) can be found in [7].

Srivastava and Jain [12] [6], investigated multilinear generating functions for ¢-
Hermite, g-Laguerre polynomials and other special functions. Relevant connections
of these multilinear generating functions with various known results for the classical
or g-Hermite polynomials are also indicated. They also proved many combinatorial
g-series identities by applying the theory of g-hypergeometric functions (see [6], for
more details).

Motivated by Saley Jazmat’s [7] and Srivastava et al [I2] [6] works, our interest
in this paper is to introduce new family of “generalized discrete q-Hermite II poly-
nomials (in short gdg-H2P) hy.o(x,y|q)” which is an extension of the generalized
discrete g-Hermite II polynomials ltha (z; q) and investigate summation formulae.

The paper is organized as follows. In Section 2, we recall notations to be used in
the sequel. In Section 3, we define a gdq-H2P h,, o(z,y|q) and investigate several
properties. In Section 4, we derive summation and inversion formulae for gdg-H2P
iLma(x, ylg). In Section 5, concluding remarks are given.
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2. NOTATIONS AND PRELIMINARIES

For the convenience of the reader, we provide in this section a summary of the
mathematical notations and definitions used in this paper. We refer to the general
references [4, [§] and [7] for the definitions and notations. Throughout this paper,
we assume that 0 < g <1, a > —1.

For a complex number a, the g-shifted factorials are defined by:

n—1 0o
(@;q)o =1; (@;q)n = [J (1 —ag®),n=1,2,---; (a59)0 = [[(1 —ag") (2.1)
k=0 k=0

and the g-number is defined by:

1 _on n
[nlg = 1 —qq ;o onlg = H[k]qa Ol :==1, neN. (2.2)
k=1

Let = and y be two real or complex numbers, the Hahn [5] g-addition &, of x and
y is given by:

(r@gy)": = @+y)(z+aqy

n

(
q
= (GDn Z (@
while the g-subtraction ©, is given by
(6 y)n = (2 B (—y))n (2.4)

The generalized g¢-shifted factorials [7] are defined by the recursion relations

). (z+q"My)
5) pn—kyk
q)

Y 0._
D n>1, (zdgy) =1, (2.3)

n+1ga!=[Mn+14+60,2a+ 1)), [n]q.q! (2.5)
and
(¢ Dnv1.0 = 1 —q)[n+ 140,200+ 1)]4(¢; @) s (2.6)
where
=0 inoad 2
Remark that, for o« = —1/2, we have
(¢ Dn—172 = (G Dns [0]g,—12' = (1 = 0)" (g5 @)n- (2.8)
We denote
(@3 Q)2n.0 = (6% 6*)n(@® % 6, (2.9)
and

(@ D2n+1.0 = (@563 n (@ T2 6% ns1- (2.10)

The two Euler’s g-analogues of the exponential functions are given by [4]

Z q(q I —Z;q) 0o (2.11)
and
>~ ¥ 1
- ,;) Gor ~ wow T (2.12)
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For m > 1 and by means of the generalized g-shifted factorials, we define two
generalized g-exponential functions as follows
0 mk(k=1)/2 .k

- q
Eqw17a(l’) = W’ (213)
k=0 (q ' q )k,a
and
c - a 2] < 1 (2.14)
Egm o(T) = — x| < 1. .
e l?) kzzo (@™ 4™ )k,a
Remark that, for m =1 and o = —%, we have:
E,La(x) = Eq(@v éq,a(x) = eq(x). (2.15)

For m = 2, the following elementary result is useful in the sequel to establish the
summation formulae for gdq-H2P:

éqz’,%(x)qu’,%(y) = éq2’7%(1' @qz y), (216)
€ —%(I)qu —%(*y) = &q(z Og,02 9), €q2 —%(I)E(ﬁ —%(*I) =1, (2.17)
where
n Yk k=1)
(aSg,q2 O)" Z a" R, (@04 0)0 = 1. (2.18)

2

3. GENERALIZED DISCRETE ¢-HERMITE II POLYNOMIALS

In this section, we introduce a sequence of gdq-H2P {h, (7, y|q)}52,. Several
properties related to these polynomials are derived.

Definition 3.1. For z, y € R, the gdg-H2P {hy o(,y|q)}5, are defined by:

Ln/2] (—1)kq2nk+k(2k+1) pn—2k ,k

i Y
hn,a Z,Y\q) ‘= q;9)n 3.1
(rla) = (@) kzzo (@ Dn—2k,0 (4% )i (3-1)

and (@d
T q;4)n
hno(z,0]q) = ————2". 3.2
(=0lg) (¢ Dn,a (3:2)
Remark that,
(1) for y =1, we get

Eﬂ,a(xa 1‘(]> = ]’:Ln,a(-’m Q) (33)

where iLn,a (z;q) is the generalized discrete g-Hermite II polynomial [7];
(2) for a« = —1/2 and y = 1, we have

h,, —1/2(z,1]q) = (33 q). (3.4)

where h,,(2;q) is the discrete g-Hermite II polynomial [T, [§].
(3) Indeed since
(4% Dn
lim d 2 Dn gy 3.5
one readily verifies that

- Ty (V1= %, 10g) RS2 (2)

g1 (1 —g?)n/2 o
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[e3 1 . . . .
where hy "2 () is the Rosenblums generalized Hermite polynomial [9].

Lemma 3.2. The following recursion relation for gdq-H2P {iLma(x, yl@) 152 holds

true.
n+14+0, (2a+1) _

1—gq
hn-l—l,a(xayM) (37)

1— anrl

= Thna(z,910) — ya 2" (1 = ¢")hn-1,(2, yl9).

Proof. To prove the assertion (3.7, we consider separately even and odd cases of
the expression

Thna(2,yl0) — ya 2" (1 = ¢ o1, (@, ylq). (3.8)

For n even, we have:

n k ,—2nk+k(2k+1),.2n—2k+1 , k
z 4 9)2 —1)%q r Y
Thon,a (@, ylg) = M 2+ (g3 2nz : 2. ;2
(@ D2na = (43 @)2n—2k,0 (4% 4%k
The right-hand side of the last relation can be written as
(¢ 9)2n 2n+1
= +(4:9)2 3.9
(43 @)2n o (4 )2 (39)
Yog—2h2nt1)+R(2h1) g 2n+1=2k ok

Y _
q2k(1 o q2n+2+2a Qk)] )

X
Z (¢ @) 2n+1-2k,0 (% 6%k

In the same way,

—yq " (1= ) hon—1.a(z,ylg) = —ya T (g59)2n

1)k —2k(2n+1)+k(2k+1)m2n+1 2(k+1) b

X 3.10
Z Q)2n+1—2(k+1),a (q 34 ) ( )
Change k to £ — 1 in , one obtains
n Yrog—2h2nt1)+R(2h1) g 2n+1-2k o
Z : (1—q¢?%). (3.11)
e (@ D2n+1-2k,0 (2% )k
Then combining (3.9)) and -, we have
thn,a(ma y|Q) —Yyq —antl (1 - Zn) ﬁQn—l a(z y|‘]) = (312>
(¢;9)2n 2 4 (g o En: 1)k —2k(2n+1)+k(2k+1)$2n+1 2k g
(¢ @)2n o P (43 @)2n+1-25,0 (4% 4%
% [qQk(l q2n+2+2a 2k) + (1 _ q2k)] )
After simplification, it is equal to
(q7 q)Zn 2n+1+
(Qa )2n(x
n kg—2k(2n k(2k+1) .2n+1-2k , k
(1 q2n+2+2a q Qn Z 1 (2n+1)+k(2h+ )CU + Y
Pt (q D2nt1-2k,a (4% 0%k
The last expression can be written as
1— q2n+2+2a B
h2n+1,a(x7y|q)' (313)

1— q2n+1
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Summarizing the above calculations in (3.12))-(3.13)), we get the assertion (3.7) for
n even. In the odd case, the proof follows the same steps as the even case. ([
Theorem 3.3. We have:

lim hona(,yla) = 7"V (g 0)2n (—9)" Sn (2*y a7 "5 0%) (3.14)
a——+00
and

D (g5 @)angr 2 (—y)" Sn (22y a7 6%)  (3.15)

where Sy (x;q) are the Stieltjes-Wigert polynomials [8].

lim  hony1.0(z,ylq) =g

a—+00

In order to prove Theorem we need the following Lemma.

Lemma 3.4. For o > —1, the sequence of gdq-H2P {ﬁn,a(x, ylg) o2 can be writ-

ten in terms of q-Laguerre polynomials L%a) (z;q) as

7 —n(2n— 4;9)2n -1, —2a—
han,a (2, ylg) = q n(@n UM(‘Q)”MLQ) (Izy tg2e 15612) (3.16)

and

—n(2n q;9)2n n 7 (a -1, —2a—
(2n+1) ( )2+1 x(—y) L7(1+1)(2 1 -2 1'q2).

h2n+1,a(xay|Q) =4q (q20‘+2;q2)n+1 vy ’

(3.17)
In order to prove Lemma we need the following Proposition.

Proposition 3.5. For a > —1, the sequence of gdg-H2P {hn.o(2,y|q)}5, can be
written in terms of basic hypergeometric functions as

z (G Dn AT yq*or?
b (2, ylq) = mx 2Py 1 qo ¢ - 22 : (3.18)
Proof. In fact, for n even, and by using
(@ @)2n-2k0 = (6%6°)n-1(** % ¢ )nr, (3.19)
the gdq-H2P ilma(l’, ylq) defined in lb can be rewritten as
n
~ -1 k 74nk+k(2k+l)x2n72k k
han,o (T, Y1) = (¢;@)2n Y (1) ? (3.20)

= (0% 4 n—k(a**T2¢%)n—r (6% 4%k

From the formula [8} p.9, Eq. (0.2.12)]
a;q)n A
(@5 @Q)n—k = M (—a) gk, (3.21)
we have for a = ¢ and ¢2*12,
(q; q)2n p2n n (71)kq74nk+k(2k+l) (q72n’ q72n72a; q2)k Y k
Wi 2 @ )
After simplification, the last equation reads
n k
2 (@ D2 onx @202 [yt
han,a(,ylg) = = Yy — ) 322
(Q7q)2n,oz k=0 (q yq )k x

In the odd case, the proof follows the same steps as the even case. (Il

hon.a(T,ylq) =

Now, we are in position to prove Lemma [3.3]
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Proof. (of Lemma For n even, the relation (3.18]) becomes:

- . —2n ,—2n—2« 2a+3
.o (,ylg) = (é‘_]’q‘i)z" 2" 5, < T - ) (3.23)
y4)2n,a
By taking a™! = ¢ 2*72 and z = —¢*""1 22y~ and the formula [8, p.17, Eq.
(0.6.17)]
,nva,fl 1-n aqn+l i —n
2@, ( 1 0 1 G —— ) = (@ @lgz")"1®s qa gz)  (3.24)
we have 2 2n—2 2a+3
q g yq"
2Py ( 0 A ) = (3.25)
n —2n 2n+1 ,.2
20+2, 2 _i) —2n’+n P q 2. _q T
(q 34 )n ( 22 q 1%1 ( q2+2a q; 7y .

By using (1.2)), the relation ([3.25)) can be written as
- ’I'L2 n y " [e3% o—
R Ul o (—;) L (2*y a7 he?) (3.26)
The assertion ([3.16)) of Lemma follows by summarizing the above calculations

in (5:23)-(5.20).

In the odd case, the proof follows the same steps as the even case. [l

Proof. (of Theorem [3.4) By taking the limit o« — +oo in the assertions ((3.16))
and (3.17) of Lemma respectively, we get the assertions (3.14]) and (3.15) of
Theorem [3.41 O

4. CONNECTION FORMULAE FOR THE GENERALIZED DISCRETE ¢-HERMITE II
POLYNOMIALS {hn o (2, y]q) 152,

We begin this section with the following theorem:
Theorem 4.1. The sequence of gdg-H2P {hy.o(2,y|q) Yo%, which is defined by the
relation , satisfies the connection formula

2
L2/2) otk @B 1) (L 2 )b

(0% ¢)k (45 @)n—2k fnsk.al@yla)- (41)
k=0 ’ 74)n—

Bn,a(xa w‘q) = (Q7 q)’”«

To prove Theorem we need the following Lemma.

Lemma 4.2. The following generating function for gdg-H2P {hy, o (z,y|q)}%,
holds true.

. G ¢
~ q
eqz,,%(—yt2)Eq,a(xt) = g @ hno(z,ylg),  |yt] < 1. (4.2)
= (D
Proof. Let us consider the function
o ¢
q(t;,y) (q o (z,ylq). (4.3)

By replacing in 1' gdqg-H2P hn,a(m7 y\q) by its explicit expression 1D we obtain

[n/2] (—1)kq()—2nktk(2h+1) pn—2k b

foltz,y) = Zt” Z i

=0 (¢ Dn—2k,0 (€% 6%k

(4.4)
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The right-hand side of (4.4) also reads

00 Ln/QJ k ( Qk)(ytz)k(xt)n—%

Z Z n 2ka(q2;q2)k

n=0 k=0

Next, changing n — 2k by r, r = 0,1, - - -, the last relation becomes

o0

Z ( Z S . (4.6)

= (%00 = (@ Dra

Hence,

fq(t;x,y) = éq2,—%(_yt2)Eq,o¢(‘Tt>' (47)

Now, we are in position to prove Theorem [4.1]

Proof. (of Theorem Replacing t by u @, t in (4.2]), we find the following gen-
erating function

- (%) -
Eya|(u@alep | —ylus, 1) = qu“f hnolr.yle)  (48)

which by using (2.17)), becomes

- - @)( -
g2’ (ud
Bya[(ug )] = By [y(ue }Z q CluS D eyl (49)
=0
Replacing y by w and 7 respectively, in , we get
G (u@ -
N ’1 “hnalla) = (4.10)
n=0
- > q(32) n_
. g2’ (udgt
=€p2,_1 [ —w(u Pq t)ﬂ Ep 1 [y(u ®q t)ﬂ Z Mhn,a(x, ylq).
: : ~  (@GDn
By using (2.17)), the last relation reads
> 4(3) "~
Sl (ewl) (411)
= (@GDn
G (u® -
= éq _1 [( WEB 2 y ] Z a q hn,a(xayM)-
n=0
According to (2.12)), the right-hand side of (4 can be written as
N (~w D y)" u@ 2T°°q(z (u® -
D D L INCRTV N R
r=0 (q q n=0

Let us substitute n +2r =k = r <[ k/2] in (4.12)), then we have:

(( 2 )( w Dg2 y) .
nzz;) kZ:;J (0% @®)k (4 @)n—2x hn-or.a(,yla) | (u@qt)". (4.13)
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Next, replacing (4.13]) in (4.11)), we obtain

0 () n
g2 (udg )" -
T f (e, wlg) = 4.14
S g matelo) (4.14)
00 [n/2 | (n;Qk) B , ko
E g (q ( d EBq y) hn72k,o<(xa y|q) (’LL @q t)n

2. 12 .
n=0 k=0 (q 4 )k (Q7q)n—2k

Finally, on equating the coefficients of like powers of (u®,t)"/(¢;¢)n in (4.14), we
get the desired identity. [

We have the following special cases of Theorem of particular interest.

Corollary 4.3. Letting:

(i) y = 0 in the assertion of Theorem we get the definition of gdg-
H2P (31), i.e.,

Ln/2] k,—2nk+k(2k+1) ,n—2k , k

~ —1)%q T w

sl wlg) = (@0 S

k=0

(ii) w = 0 in the assertion of Theorem and using , we get the

inversion formula for gdq-H2P

; 4.15
(@:0®)k (¢ ODn—2k,0 (4.15)

Ln/2] g2k Bk

y ~
" = 5 4)n,a hn, al\T, . 4.16
((] Q) ) ’;:O: (qg; q2)k (q; Q)n—Qk 2k, ( y‘q> ( )

iii) Fory =1, the summation formulae can be expressed in terms of gen-
eralized discrete q-Hermite II polynomials Bn,a (x;q). Also, the summation
formulae can be written in terms of discrete q-Hermite II polynomials
o (5q) by choosing y =1 and o = -1/2.

5. CONCLUDING REMARKS

In the previous sections, we have introduced gdq-H2P lth,a(ac,y|q) and derived
several properties. Also, we have derived implicit summation formula for gdq-H2P
hn.,o(x,y|q) by using different analytical means on their generating function. This
process can be extended to summation formulae for more generalized forms of ¢-
Hermite polynomials. This study is still in progress.

We note that the generating function of even and odd gdq-H2P iLn,a(m, ylq) are

given by
> (_tQ)nqn(Qn—l) N

> (@ Dom hon.o(z,ylq) =

n=0

D) (% 4P 70T (20001 P)
(% ¢%) W1 ¢*) o

and

(e (_1)nqn(2n+1) t2n+1

D

n=0

— 2 —
hant1.a(7, ylq) = " (g% ¢?)e 2T (229 6)
n+1l,a{d; - at2. K
(@*7%5¢%)oo (¥1%:1¢%)0

(¢ @2nt1

where Jl(,Q)(z; q) is the g-analogue of the Bessel function [g].
Indeed, it is well known that from (4.2)), the generating function of gdq-H2P
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hno(2,ylq) is given by

N ~ 2 qn n— 1)/2tn
Ega(zt)ép _1(—yt7) Z na (7, y|q) (5.1)
n=0

which on separating the power in the right-hand side into their even and odd terms
by using the elementary identity

Y f)=) )+ f2n+1) (5:2)
n=0 n=0 n=0

becomes

Eq,a(xt)éq2,—%(*yt2) = (53)

n(2n—1) t2n >

n(
q q"

E —————hona(x E -
e 2 ( qu) "0 (Q;Q)2n+1

2n+1) t2n+1
h2n+1 o(z,ylq)-

Now replacmg t by itin (5.3)) and equating the real and imaginary parts of the resul-
tant equation, we get the generating function of even and odd gdq-H2P h,, (2, y|q)

as
e (_1 n n(2n 1) $2n )
> han.a(@,ylq) = Cosqalat)é, 1 (yt?) (5.4)
o Qaq)Qn e
and
© (—1)nrgn(2n+1) p2n+1 ‘ 3
y GV an i1 (e, 00) = Singa(@t)ép 4 ) (55)

= (¢ @)2n+1

where the generalized ¢-Cosine and ¢-Sine are defined as:

e (_1>nqn(2n—1) r2n
Cosga(x): = , 5.6
w:el) ,; (4 @)2n.0 (56)
) s (71)nqn(2n+1) x2n+1
Sinale) i = 2 (@:9)20+1,0 &)

k=0

By using (2.9) and (2.10), respectively, the relations (5.6)) and (5.7) can be expressed

in terms of basic hypergeometric functions as
Cospale) = o1 s | % —00?) 65:5)
Singa(r) = =gz o® ( e | _qzxz>_ (5.9)
The g-analogue of the Bessel function is defined [8, p.20, Eq.(0.7.14)] by
I (z;9) = (q(y:q’)i (§)V 0®1 ( q;rl ’ a; —qy+4122> (5.10)

from which the generating functions of (|5.8) and ([5.9) follow.
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