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IDENTIFYING THE UNKNOWN SOURCE OF TIME

FRACTIONAL DIFFUSION EQUATION ON A COLUMNAR

SYMMETRIC DOMAIN

LE DINH LONG

Abstract. In this paper, I deal with the inverse problem of identifying the
unknown source of time-fractional diffusion equation on a columnar symmetric

domain. This problem is ill-posed. Firstly, we establish the conditional stabil-

ity for this inverse problem. Then the regularization solution is obtained by
using the Tikhonov regularization method and the error estimates are derived

under the a priori and a posteriori choice rules of the regularization parameter.

1. Introduction

Determine the source of the problem inverse problem most common in heat
conduction. These problems have been studied for decades by significant in many
applications such as science and engineering in groundwater migration, identify
and control sources of pollution, environmental protection [1]. The inverse heat
source problems have extensive application background and important theoretic
significance, so this have a long development history [2]–[6]. These problems are
classical ill-posed problems, and some theories and extremely effective algorithms
have been obtained. For instance, uniqueness and conditional stability results can
be seen in [7]. This problem is usually uncorrected in the Hadamard sense, that
is, the solution existing is not constantly dependent on the measured data. For
that reason, it is very difficult to model the numbers for computation. Therefore,
calibration methods and stability estimates are provided to correct the problem.
A lot of regularization have been studied to deal with the inverse problem for
time-fractional diffusion equation on a columnar axis-symmetric domain such as
these methods include the fundamental solution method [8], [9], boundary element
method [10] and [11] with iterative algorithm method, a mollification method [13],
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[14]. In this work, we consider the following problem:

Dγ
t u(r, t)− 1

r
ur(r, t)− urr(r, t) = p(t)f(r), (r, t) ∈ (0, r0)× (0, T ),

u(r, 0) = a(r), 0 ≤ r ≤ r0,
u(r0, t) = 0, 0 ≤ t ≤ T,
lim
r→0

u(r, t) bounded , 0 ≤ t ≤ T,

c1u(r, T ) + c2

T∫
0

u(r, t)dt = b(r), 0 ≤ r ≤ r0,

(1.1)

In case c1 = 1 and c2 = 0 then the final condition becomes u(r, T ) = b(r), there have
been published a lot of research results (see [19]-[20], [21]). For instance, in [19],
using the spectral method, Chu Li Fu and his colleagues surveyed the mathematical
model by the following radial heat equation. In their study, estimation errors
between the exact solution and is established strictly as the logarithmic-type is
given under a suitable choice of regularization parameter. Next, in [20], using
the spectral method, a Holder type estimate of the error between the approximate
solution and the exact solution is obtained by C-L. Fu and his group, see [21], based
on a modified Tikhonov regularization method, authors studied proposed for solving
this inverse problem (1.1) with p(t)f(r) = 0. They showed a quite sharp estimate
of the error between the approximate solution and the exact solution is obtained
with a suitable choice of regularization parameter. Problem (1.1) in case 0 < γ <
1, and p(t) = 1, seeing [15], the researchers have solved the (1.1) by using the
Tikhonov regularization method, they show the error estimates are derived under
the a priori and a posteriori choice rules of the regularization parameter, additional
three numerical examples are presented to illustrate the validity and effectiveness
of their method. However, in our study, we investigate case F (r, t) = q(t)f(r),
and q(t) > 0, by assuming that the time-fractional source term q ∈ L∞(0, T ) is
known, the space-dependent source term f(r) is unknown. Regarding the problem
(1.1), Fan Yang and his group identify value for a time-fractional diffusion equation
on a columnar axis-symmetric domain such as the inverse source problems [16],
with the Tikhonov regularization method, and the initial value problem [18] with
the Fractional Tikhonov regularization method. Authors identify the initial value
for a time-fractional diffusion equation on a columnar axis-symmetric domain and
Two different kinds of fractional Tikhonov methods are used to solve this problem.

We use the data c1u(r, T ) + c2

T∫
0

u(r, t)dt = b(r) to determine f(r), instead of

u(r, T ) = b(r) with r0 is the radius, c1, c2 ≥ 0, and f(r) is the unknown heat
source. To the best of ourknowledgement, there are several papers for the time-
fractional diffusion equation on a columnar symmetric domain. therefore, we can
say our results is one of the first results. Next, the Caputo fractional derivative Dγ

t

is defined as follows:

Dγ
t u(r, t) =

1

Γ(1− γ)

t∫
0

us(r, s)

(t− s)γ
ds, 0 < γ < 1, (1.2)
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where Γ is the gamma function, and u(r, 0) = a(r). In practice, the exact data
(a,b,p) is noised by measured data (aε, bε, pε) satisfy:

‖bε − b‖L2(0,r0;r) ≤ ε, ‖a
ε − a‖L2(0,r0;r) ≤ ε, ‖p

ε − p‖L∞(0,T ) ≤ ε. (1.3)

where ε > 0 is the measurable error noise level, L2(0, r0; r) denotes the Hilbert space
of squares Lesbegue measurable functions with weight r defined on (0, r0). Our
target in this paper is to apply the Landweber method to solve the inverse source
problem in a general bounded domain. The Landweber iterative method is a very
popular algorithm and regularization method in inverse problem research. Here, we
show the convergent rate between the exact solution and its approximations under
a a-priori parameter choice rule and a-posteriori parameter choice rule. The case
L2 − norm used to evaluate the error estimation.

The outline of the paper is given as follows: In Section 2, we give some prelimi-
nary theoretical results. Ill-posed analysis and conditional stability are obtained in
Section 3. In Section 4, we propose the iterated Landweber regularization method
and give a convergence estimate under an a-priori regularization parameter choice
rule and an a-posteriori regularization parameter choice rule for the deterministic
case, respectively. The concluding remarks are shown in Section 5.

2. Statement of the problem

Throughout this paper, we denote by L2(0, r0; r) the Hilbert space of Lebesgue
measurable function f with weight r on [0, r0].

〈〉
and ‖ · ‖ denote inner product

and norm on L2(0, r0; r), respectively. Specifically, the norm and the inner product
in L2(0, r0; r) are defined as follows:

‖f‖ := ‖f‖L2(0,r0;r) =

( r0∫
0

r
∣∣f(r)

∣∣2dr) 1
2

,
〈
f, g
〉

=

r0∫
0

rf(r)g(r)dr, (2.1)

for f, g ∈ L2(0, r0; r). For s > 0, defining

Hs(0, r0; r) =
{
ν ∈ L2(0, r0; r) :

∞∑
j=1

(λj
r0

)4s∣∣〈ν, ξj〉∣∣2 < +∞
}
, (2.2)

where
〈
.
〉

is the inner product in L2(0, r0; r), then Hs(0, r0; r) is a Hilbert space
equipped with the norm

‖ν‖Hs(0,r0;r) =

( ∞∑
j=1

(λj
r0

)4s∣∣〈ν, ξj〉∣∣2) 1
2

. (2.3)

Definition 2.1. (See [22]) For any constant γ and κ ∈ R, the Mittag-Leffler func-
tion is defined as:

Eγ,α(z) =

∞∑
j=0

zj

Γ(γj + α)
, z ∈ C, (2.4)

where γ > 0 and α ∈ R are arbitrary constant.

Lemma 2.1 ([24]). For 0 < γ < 1, y > 0, we get 0 ≤ Eγ,1(−y) < 1. Therefore,
Eγ,1(−y) is completely monotonic, that is

(−1)c
dc

dyc
Eγ,1(−y) ≥ 0, y ≥ 0. (2.5)
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Lemma 2.2. [15] For γ > 0 anh β ∈ R, then we get

Eγ,β(z) = zEγ,γ+β(z) +
1

Γ(β)
, z ∈ C. (2.6)

Lemma 2.3. [16] Assuming that 0 < γ0 < γ1 < 1, then there exist constants A1

and A2 depending only on γ, γ1 such that

A1

Γ(1− γ)

1

1− z ≤ Eγ,1(z) ≤ A2

Γ(1− z)
1

1− z , z ≥ 0. (2.7)

Lemma 2.4. [18] For λj ≥ λ1 > 0, then there exists constant A1 and A2 depending
only on γ, T, λ1, r0 such that

r20 A1

λ2
j

≤ Eγ,1
(
−
(λj
r0

)2
T γ
)
≤ r20 A2

λ2
j

· (2.8)

Proof. This proof can be found in [25]. �

Lemma 2.5. Let A3,A4 ≥ 0 satisfy A3 ≤ |p(t)| ≤ A4, ∀t ∈ [0, T ], let choose
ε ∈

(
0, A3

2

)
, by denoting B(A3,A4) = A4 + A3

2 , we get

A3

2
≤ |pε(t)| ≤ B(A3,A4). (2.9)

Proof. This proof can be found at [23]. �

Lemma 2.6. [25] For ξj > 0, γ > 0, and positive integer j ∈ N, we have:

d

dt

(
tEγ,2(−ξjtγ)

)
= Eγ,1(−ξjtγ),

d

dt

(
Eγ,1(−ξjtγ)

)
= −ξjtγ−1Eγ,γ(−ξjtγ).

(2.10)

Lemma 2.7. For any ζ,m, β, p > 0, N is a positive constant, we get

F1(ζ) =
(

1−mN
2

ζ4

)2β
ζ−4p ≤

( p

mN 2

)p(
p+ 2β

)−p
. (2.11)

Proof. Taking the derivative of F ′1(ζ) = 4
(

1−mN
ζ4

)2β
ζ−4p−1

(
mN 2(2β+p)−pζ4

)
. To

solve F ′1(ζ0) = 0, we get ζ0 =
[mN 2(p+ 2β)

p

] 1
4
, so F1(ζ0) =

( 2β

p+ 2β

)2β[ p

mN 2(p+ 2β)

]p
≤( p

mN 2

)p(
p+ 2β

)−p
, this implies that F1(ζ) ≤

( p

mN 2

)p(
p+ 2β

)−p
. �

Lemma 2.8. For any ζ,m, β, p > 0, Q is a positive constant, we get

F2(ζ) =
(

1−mQ2

ζ4

)2β−2
ζ−4p−4 ≤

( p+ 1

2βmQ2

)p+1

. (2.12)

Proof. Taking the derivative of F ′2(ζ) =

4
(

1−mQ2

ζ4

)2β−2

ζ−4p−5

ζ4 −mQ2

[
2(β−1)mQ2− (ζ4−

mQ2)(p+ 1)
]
.

To solve F ′2(ζ0) = 0, we get ζ0 =
[ (p+ 2β − 1)mQ2

p+ 1

] 1
4
, so

F2(ζ0) =
( 2β − 2

p+ 2β − 1

)2β−2( p+ 1

mQ2(p+ 2β − 1)

)p+1

≤
( p+ 1

2βmQ2

)p+1

,

this implies that F2(ζ) ≤
( p+ 1

2βmQ2

)p+1

. �
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Lemma 2.9. For any 0 < γ < 1, and the fact that Eγ,1(−tγ) is completely mono-
tonic, with

Cj(γ, t, r0, ς) = (t− ς)γ−1Eγ,γ
(
− (

λj
r0

)2(t− ς)γ
)
, we get

a)
( r0
λj

)2(
1− Eγ,1

(
− (

λ1
r0

)2T γ
))
≤

T∫
0

Cj(γ, T, r0, ς)dς ≤
( r0
λj

)2
, (2.13)

b)
( r0
λj

)2
T
(

1− Eγ,2
(
− (

λ1
r0

)2T γ
))
≤

T∫
0

( t∫
0

Cj(γ, t, r0, ς)dς
)
dt ≤

( r0
λj

)2
A5·

(2.14)

Proof. The proof of part a) in this lemma can be found in the reference [27]. Next,
using the Lemma 2.6, we prove the inequality 2.17 .

T∫
0

( t∫
0

Cj(γ, t, r0, ς)dς
)
dt =

( r0
λj

)2 T∫
0

(
1− Eγ,1(−(

λj
r0

)2tγ)
)
dt

=
( r0
λj

)2 T∫
0

dt−
( r0
λj

)2 T∫
0

Eγ,1(−(
λj
r0

)2tγ)dt =
( r0
λj

)2
T −

( r0
λj

)2 T∫
0

d

dt
tEγ,2(−(

λj
r0

)2tγ)dt

=
( r0
λj

)2
T −

( r0
λj

)2
TEγ,2

(
− (

λj
r0

)2tγ
)

=
( r0
λj

)2
T
(

1− Eγ,2
(
− (

λj
r0

)2T γ
))

≥
( r0
λj

)2
T
(

1− Eγ,2
(
− (

λ1
r0

)2T γ
))
. (2.15)

T∫
0

( t∫
0

Cj(γ, t, r0, ς)dς
)
dt =

( r0
λj

)2 T∫
0

(
1− Eγ,1(−(

λj
r0

)2tγ)
)
dt

≤
( r0
λj

)2 T∫
0

dt+
( r0
λj

)2 T∫
0

Eγ,1
(
− (

λj
r0

)2tγ
)
dt

≤
( r0
λj

)2
T +

( r0
λj

)2 T∫
0

A2(λj
r0

)2
tγ
dt =

( r0
λj

)2
T +

( r0
λj

)4A2 T
1−γ

1− γ

≤
( r0
λj

)2 (
T +

( r0
λ1

)2A2T
1−γ

1− γ

)
︸ ︷︷ ︸

:=A5

. (2.16)

�

3. Ill-posed analysis and conditional stability

Using the separation of variables and Laplace transform of Mittag Leffler func-
tion, we obtain



46 LE DINH LONG

Theorem 3.1. Assume that p(t) ∈ L∞(0, T ), f(r), a(r), b(r) ∈ L2(0, r0; r), the
solution of problem (1.1) is:

u(x, t) =

∞∑
j=1

( t∫
0

(t− ς)γ−1Eγ,γ(−
(λj
r0

)2
(t− ς)γ)

〈
f, ξj

〉
p(ς)dς + Eγ,1

(
−
(λj
r0

)2
tγ
)〈
a, ξj

〉)
ξj(r).

(3.1)

whereby ξj(r) =

√
2

r0J1(λj)
J0
(λjr
r0

)
, inwhich j = 1, 2, 3, . . ., {ξj(r)} is an orthonor-

mal basic an L2[0, r0; r], J0 and J1 is a zero-order and first-order Bessel function.
{ξj}∞j=1 are the positive zeros of the zero-order Bessel function of the first kind
J0(λ) and satisfy

0 < ξ1 < ξ2 < ξ3 < . . . < ξj < . . . , lim
j→+∞

ξj = +∞. (3.2)

Proof. From now on, for a shorter, by denoting Cj(γ, t, r0, ς) = (t − ς)γ−1Eγ,γ
(
−

(
λj
r0

)2(t− ς)γ
)
. Next, using the condition c1u(r, T ) + c2

T∫
0

u(r, t)dt = b(r), we have

c1u(r, T ) = c1

∞∑
j=1

Eγ,1
(
−
(λj
r0

)2
T γ
)〈
a, ξj

〉
ξj(r)

+ c1

∞∑
j=1

〈
f, ξj

〉( T∫
0

Cj(γ, T, r0, ς)p(ς)dς
)
ξj(r), (3.3)

c2

T∫
0

u(r, t)dt = c2

∞∑
j=1

T∫
0

Eγ,1
(
−
(λj
r0

)2
tγ
)
dt
〈
a, ξj

〉
ξj(r)

+ c2

∞∑
j=1

〈
f, ξj

〉 T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt ξj(r). (3.4)

From (3.3) and (3.4), then

b(r) = c1

∞∑
j=1

Eγ,1
(
−
(λj
r0

)2
T γ
)〈
a, ξj

〉
ξj(r) + c2

∞∑
j=1

T∫
0

Eγ,1
(
−
(λj
r0

)2
tγ
)
dt
〈
a, ξj

〉
ξj(r)

+ c1

∞∑
j=1

〈
f, ξj

〉( T∫
0

Cj(γ, T, r0, ς)p(ς)dς
)
ξj(r) + c2

∞∑
j=1

〈
f, ξj

〉 T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt ξj(r).

(3.5)

From (3.5), we can see that

〈
b, ξj

〉
= c1

∞∑
j=1

Eγ,1
(
−
(λj
r0

)2
T γ
)〈
a, ξj

〉
ξj(r) + c2

∞∑
j=1

T∫
0

Eγ,1
(
−
(λj
r0

)2
tγ
)
dt
〈
a, ξj

〉
ξj(r)

+

∞∑
j=1

〈
f, ξj

〉(
c1

T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt
)
· (3.6)
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Through some basic transformations, which implies that

〈
f, ξj

〉
=

〈
b, ξj

〉
−
〈
a, ξj

〉(
c1Eγ,1

(
−
(λj
r0

)2
T γ
)

+ c2

T∫
0

Eγ,1
(
−
(λj
r0

)2
tγ
)
dt
)

c1

T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt

· (3.7)

From (3.7), we conclude that

f(r) =

∞∑
j=1

〈
b, ξj

〉
−
〈
a, ξj

〉(
c1Eγ,1

(
−
(λj
r0

)2
T γ
)

+ c2

T∫
0

Eγ,1
(
−
(λj
r0

)2
tγ
)
dt
)

c1

T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt

ξj(r).

(3.8)

�

3.1. The ill-posedness and stability of problem (1.1).

Theorem 3.2. The inverse source problem is non-stability.

Proof. A linear operator P : L2(0, r0; r)→ L2(0, r0; r) as follows.

Pf(r) =

r0∫
0

`(r, ω)f(ω)dω = ϕ(r), (3.9)

with

ϕ(r) =
〈
b, ξj

〉
−
〈
a, ξj

〉(
c1Eγ,1(−(

λj
r0

)2T γ) + c2

T∫
0

Eγ,1(−(
λj
r0

)2tγ)dt
)
, (3.10)

and

`(r, ω) =

∞∑
j=1

[
c1

T∫
0

Cj(γ, T, r0, ς)p(ς)dς+c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt

]
ξj(r)ξj(ω).

Due to `(r, ω) = `(ω, r) we know P is self-adjoint operator. Next, we are going to
prove its compactness. Defining the finite rank operators PNTr as follows

PNTr f(x) =

NTr∑
j=1

[
c1

T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt

]〈
f, ξj

〉
ξj(r).

(3.11)
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Then, from (3.9) and (3.11), using the results from the Lemma 2.9, we have:

‖PNTrf − Pf‖2L2(0,r0;r)

=

∞∑
j=NTr+1

∣∣∣∣c1
T∫

0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt

∣∣∣∣2∣∣〈f, ξj〉∣∣2
≤

∞∑
j=NTr+1

1

λ4j

[
c1A4r

2
0 + c2A4A5r

2
0

]2∣∣〈f, ξj〉∣∣2
≤
[
c1A4r

2
0 + c2A4A5r

2
0

]2
λ4NTr

∞∑
j=NTr+1

∣∣〈f, ξj〉∣∣2. (3.12)

Therefore, ‖PNTrf−Pf‖L2(0,r0;r) in the sense of operator norm in L(L2(0, r0; r);L2(0, r0; r))
as M →∞. Also, P is a compact operator. Next, the singular values for the linear
self-adjoint compact operator P are

Ec1,c2
j (γ, T, t, r0, p) =

(
c1

T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt

)
.

(3.13)

and corresponding eigenvectors is ξj which is known as an orthonormal basis in
L2(0, r0; r). From (3.9), the inverse source problem we introduced above can be
formulated as an operator equation.

Pf(r) = ϕ(r). (3.14)

�

3.2. Conditional stability of source term f . In this section, we introduce a
conditional stability by the following theorem.

Theorem 3.3. If ‖f‖H2s(0,r0;r) ≤M for M is the positive constant, then we get

‖f‖L2(0,r0;r) is defined in (3.18) ,

Proof. From (3.8), whereby ϕ(r) is defined by (3.10) and Hölder inequality, we can
see that:

‖f‖2L2(0,r0;r)
=

∞∑
j=1

∣∣〈ϕ, ξj〉∣∣ 2
s+1
∣∣〈ϕ, ξj〉∣∣ 2s

s+1

∣∣∣c1 T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt
∣∣∣2

≤
( ∞∑
j=1

∣∣〈ϕ, ξj〉∣∣2∣∣∣c1 T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt
∣∣∣2s+2

) 1
s+1
( ∞∑
j=1

∣∣〈ϕ, ξj〉∣∣2) s
s+1

≤

(
∞∑
j=1

∣∣〈f, ξj〉∣∣2∣∣∣c1 T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, t, r0, ς)p(ς)dς
)
dt
∣∣∣2s
) 1
s+1

‖ϕ‖
2s
s+1

L2(0,r0;r)

(3.15)
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Due to Lemma 2.9, we can see that∣∣∣c1 T∫
0

Cj(γ, T, r0, ς)p(ς)dς + c2

T∫
0

( t∫
0

Cj(γ, T, r0, ς)p(ς)dς
)
dt
∣∣∣2s

≥
( r0
λj

)4s(
c1A3

(
1− Eγ,1(−(

λ1

r0
)2T γ)

)
+ c2A3T

(
1− Eγ,2(−(

λ1

r0
)2T γ)

))2s

︸ ︷︷ ︸∣∣Z(c1,c2,γ,T,A3,λ1,r0)

∣∣2s
, (3.16)

and this inequality leads to

‖f‖2L2(0,r0;r)
≤
∣∣Z(c1, c2, γ, T,A3, λ1, r0)

∣∣−2s
∞∑
j=1

(λj
r0

)4s∣∣〈f, ξj〉∣∣2
≤

‖f‖2Hs(0,r0;r)∣∣Z(c1, c2, γ, T,A3, λ1, r0)
∣∣2s · (3.17)

Combining (3.16) and (3.17), we get

‖f‖2L2(0,r0;r)
≤

‖f‖
2
s+1

Hs(0,r0;r)∣∣Z(c1, c2, γ, T,A3, λ1, r0)
∣∣ 2s
s+1

‖ϕ‖
2s
s+1

L2(0,r0;r)
· (3.18)

�

4. Landweber iteration regularization method and convergence
rates

Now, we use the Landweber iterative method to obtain the regularization solu-
tion for problem (1.1). In here, we can see that the equation Pf = ϕ in the form
fα =

(
I− ςP ∗P

)
fα−1(r)+ ςP∗ϕ(r) for some ς > 0 and give the following iterative

form :

f0(r) := 0, fα(r) =
(
I − ςP∗P

)
fα−1(r) + ςP∗ϕ(r), α = 1, 2, 3, ...

(4.1)

where α is the iterative step number, the coefficient α needs to meet the condition
0 < α < ‖P‖−2, this implies that

fα,ε(r) = ς

α−1∑
m=1

(
I − ςP2

)mPϕε(r). (4.2)

With (3.13), it gives

fα,ε(r) = Rςbε(r) =

∞∑
j=1

1−
(
1− ς

∣∣Ec1,c2
j (γ, T, t, r0, p

ε)
∣∣2)α

Ec1,c2
j (γ, T, t, r0, pε)

〈
ϕε, ξj

〉
ξj(r). (4.3)

Before we go into proving the main theorem in subsection, we need the following
lemma:

Lemma 4.1. Let ϕ be given by (3.10) depends on a and b functions. Similarly,
in a similar way we can find the function definition with the couple

(
bε, aε

)
are

observed data by (b, a) as follows
〈
ϕε, ξj

〉
=
〈
bε, ξj

〉
−
〈
aε, ξj

〉(
c1Eγ,1(−(

λj
r0

)2T γ) +

c2

T∫
0

Eγ,1(−(
λj
r0

)2tγ)dt
)
, denoting A6 =

(
c1A2 + c2

r20
λ2
1

A2T
1−γ

1− γ

)2
then
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Proof. Using the inequality (a + b)2 ≤ 2a2 + 2b2, ∀a, b ≥ 0, and the properties of Mittag
Leffler, see the Lemma 2.3, it gives

‖ϕε − ϕ‖2L2(0,r0;r)

=

∞∑
j=1

∥∥∥∥〈bε − b, ξj〉− 〈aε − a, ξj〉(c1Eγ,1(−(
λj
r0

)2T γ) + c2

T∫
0

Eγ,1(−(
λj
r0

)2tγ)dς
)∥∥∥∥2

L2(0,r0;r)

≤ 2

∞∑
j=1

∣∣〈bε − b, ξj〉∣∣2 + 2

∞∑
j=1

∥∥∥〈aε − a, ξj〉(c1A2 + c2

T∫
0

Eγ,1
(
− (

λj
r0

)2tγ
)
dt
)∥∥∥2

L2(0,r0;r)

≤ 2‖bε − b‖2L2(0,r0;r)
+ 2‖aε − a‖2L2(0,r0;r)

(
c1A2 + c2

r20
λ2
1

A2T
1−γ

1− γ

)2
≤ 2ε2

(
1 +A6

)
.

(4.4)

�

4.1. An a priori parameter choice rule.

Theorem 4.2. Suppose that f is given by (3.8). Let fα,ε is the its approximation,
in here, we assume that conditions f ∈ Hs(0, r0; r) and (1.3) hold. By choosing

α =
(M
ε

) 2
s+1 , then the following estimates:

‖fα,ε − f‖L2(0,r0;r) is of order ε
s
s+1 · (4.5)

Proof. Using the triangle inequality, we get

‖fα,ε − f‖L2(0,r0;r) ≤ ‖f
α,ε − fα‖L2(0,r0;r) + ‖fα − f‖L2(0,r0;r) (4.6)

We divide the proof into two steps:
Step 1: We have estimate ‖fα,ε − fα‖L2(0,r0;r),

‖fα,ε − fα‖2L2(0,r0;r)
≤ 2

∞∑
j=1

∥∥∥∥1−
(
1− ς|Ec1,c2j (γ, T, t, r0, p

ε)|2
)α

Ec1,c2j (γ, T, t, r0, pε)

〈
ϕε − ϕ, ξj

〉∥∥∥∥2
L2(0,r0;r)︸ ︷︷ ︸

I21

+ 2

∞∑
j=1

∥∥∥∥[1−
(
1− ς|Ec1,c2j (γ, T, t, r0, p

ε)|2
)α

Ec1,c2j (γ, T, t, r0, pε)
−

1−
(
1− ς|Ec1,c2j (γ, T, t, r0, p)|2

)α
Ec1,c2j (γ, T, t, r0, p)

]〈
ϕ, ξj

〉∥∥∥∥2
L2(0,r0;r)︸ ︷︷ ︸

I22
(4.7)

Claim 1: Estimate of I21 , with 0 < y < 1, we know that y ≤ √y and (1− y)α ≥ 1− yα,

with α > 0, we obtain 1−
(
1− ς|Ec1,c2j (γ, T, t, r0, p

ε)|2
)α ≤ ς 1

2α
1
2Ec1,c2j (γ, T, t, r0, p

ε), this
is due to the use of the Bernoulli’s inequality, combining the estimation from the Lemma

4.1, with A6 =
(
c1A2 + c2

r20
λ2
1

A2T
1−γ

1−γ

)2
, we have

I21 ≤ 4ςαε2
(
1 +A6

)
. (4.8)



IDENTIFYING THE UNKNOWN SOURCE ON A COLUMNAR SYMMETRIC DOMAIN 51

Claim 2: Estimation for I2, it is easy to see that
Ec1,c2j (γ, T, t, r0, p

ε − p)
Ec1,c2j (γ, T, t, r0, pε)

≤ 2ε

A3
, we get

I22 ≤ 4

∞∑
j=1

∥∥∥∥ Ec1,c2j (γ, T, t, r0, p
ε − p)

Ec1,c2j (γ, T, t, r0, pε)
(λj
r0

)2s
(λj
r0

)2s〈
ϕ, ξj

〉
Ec1,c2j (γ, T, t, r0, p)

∥∥∥∥2
L2(0,r0;r)

+ 4

∞∑
j=1

∥∥∥∥(1− ς|Ec1,c2j (γ, T, t, r0, p)|2)α
(λj
r0

)−2s

(λj
r0

)2s〈
ϕ, ξj

〉
Ec1,c2j (γ, T, t, r0, p)

∥∥∥∥2
L2(0,r0;r)

+ 4

∞∑
j=1

∥∥∥∥Ec1,c2j (γ, T, t, r0, p)(1− ς|Ec1,c2j (γ, T, t, r0, p
ε)|2)α

Ec1,c2j (γ, T, t, r0, pε)

(λj
r0

)−2s

(λj
r0

)2s〈
ϕ, ξj

〉
Ec1,c2j (γ, T, t, r0, p)

∥∥∥∥2
L2(0,r0;r)

.

(4.9)

From (4.9), using the estimation in Lemma 2.7, we can know that

I22 ≤ 16r4s0
ε2M2

A2
3λ

4s
1

+ 4r4s0

( s

ςQ2

)s(
s+ 2α

)−sM2 + 16r4s0

(A4

A3

)2( s

ςN 2

)s(
s+ 2α

)−sM2

≤ ε2M2 16r4s0
A2

3λ
4s
1

+ α−sM2
(

16r4s0
A2

4

A2
3

( s

2ςN 2

)s
+ 4r4s0

( s

2ςQ2

)s)· (4.10)

Step 2: Estimation for ‖fα − f‖L2(0,r0;r)
, it gives

fα(r)− f(r) =

∞∑
j=1

(
1− ς|Ec1,c2j (γ, T, t, r0, p)|2

)α 〈
ϕ, ξj

〉
Ec1,c2j (γ, T, t, r0, p)

ξj(r) (4.11)

From 4.11, we get

‖fα − f‖2L2(0,r0;r)
=

∞∑
j=1

∥∥∥(1− ς|Ec1,c2j (γ, T, t, r0, p)|2
)α(λj

r0

)−2s(λj
r0

)2s〈
f, ξj

〉∥∥∥2
L2(0,r0;r)

.

(4.12)

Apply the same proof as in claim 1, we receive

‖fα − f‖2L2(0,r0;r)
≤ N

∞∑
j=1

r4s0
(
1− ς|Ec1,c2j (γ, T, t, r0, p)|2

)2α
λ−4s
j ‖f‖2Hs(0,r0;r)

≤ r4s0
( s

ςQ2

)s(
s+ 2α

)−sM2. (4.13)

Combining (4.7), (4.8), (4.9) and (4.13), taking the square root on the both side, we have

‖fα,ε − f‖L2(0,r0;r)
≤ 2ς

1
2α

1
2 ε
(
1 +A2

6

) 1
2 + εM

( 4r2s0
A3λ2s

1

)
+ α−

s
2M(A7)

1
2 · (4.14)

Combining (4.14), and (4.32), we receive

‖fα,ε − f‖L2(0,r0;r)
≤ ε

s
s+1M

1
s+1H

(
s, r0, ς, δ, |Q|,A6,A7

)
· (4.15)

whereby A7 =
(

16r4s0
A2

4

A2
3

( s

2ςN 2

)s
+ 5r4s0

( s

2ςQ2

)s)
. For iterative step α is a integer, by

choosing

α =
(M
ε

) 2
s+1 , we obtain

‖fα,ε − f‖2L2(0,r0;r)
≤ ε

s
s+1M

1
s+1A8· (4.16)

whereby A8 =
(

2ς
1
2
(
1 +A6

) 1
2 + ε

1
s+1M

s
s+1

( 4r2s0
A3λ2s

1

)
+ (A7)

1
2

)
, N =

[
B(A3,A4)c1r

2
0 +

B(A3,A4)A5c2r
2
0

]
, and Q = A4c1r

2
0 +A4c2r

2
0A5 . The proof of theorem is completed. �
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4.2. An a posteriori parameter choice rule. In this subsection, we give the
posteriori regularization choice rule. This algorithm will be stopped at the first
occurrence of α = α(δ) with

‖Pfα − ϕε‖L2(0,r0;r) ≤ δε ≤ ‖Pf
α−1 − ϕε‖L2(0,r0;r). (4.17)

where ‖bε‖ ≥ δε. We need Lemma 4.3 to obtain the existence and uniqueness of
(4.17).

Lemma 4.3. Let V(α) = ‖Pfα − ϕε‖L2(0,r0;r), then we have

(a) V(α) is a continous function;

(b) limα→0 V(α) = ‖ϕε‖L2(0,r0;r);

(c) limα→+∞ V(α) = 0;

(d) V(α) is a strictly decreasing function for any α ∈ (0,+∞).

Proof. This can be easily found in the references [17] in Lemma 3.3. We omit
here. �

Lemma 4.4. Assume that δ > 1, let α = α(ε, ϕε) ∈ N0, choose from (4.17), then
we obtain the regularization parameter α satisfies:

α ≤
(
s+ 1

2ς

)(
r2s0 M

Qs
(
δ −
√

2(1 +A6)
1
2

)
ε

) 2
s+1

· (4.18)

Proof. From operator expression (4.2) and (3.10), we obtain

Rαϕε(r) =

∞∑
j=1

1−
(
1− ς|Ec1,c2j (γ, T, t, r0, p)|2

)α
Ec1,c2j (γ, T, t, r0, p)

〈
ϕε, ξj

〉
ξj(r). (4.19)

and thus

‖PRαϕ− ϕ‖2L2(0,r0;r)
=
∞∑
j=1

(
1− ς|Ec1,c2j (γ, T, t, r0, p)|2

)2α∣∣〈ϕ, ξj〉∣∣2· (4.20)

So ‖PRα−1 − I‖L2(0,r0;r)
≤ 1. From (4.19), we know that

‖PRα−1ϕ− ϕ‖L2(0,r0;r)
≥ ‖PRα−1ϕ

ε − ϕε‖L2(0,r0;r)
− ‖(PRα−1 − I)(ϕ− ϕε)‖L2(0,r0;r)

≥ δε− ‖(PRα−1 − I)‖L2(0,r0;r)
≥ δε−

√
2ε
(
1 +A6

) 1
2

≥
(
δ −
√

2(1 +A6)
1
2
)
ε. (4.21)
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On the other hand, due to
∥∥f∥∥Hs(0,r0;r) ≤M, we know that∥∥PRα−1ϕ− ϕ

∥∥2
L2(0,r0;r)

=

∞∑
j=1

∥∥∥∥(1− (1− ς|Ec1,c2j (γ, T, t, r0, p)|2
)α−1)〈

ϕ, ξj
〉
−
〈
ϕ, ξj

〉∥∥∥∥2
L2(0,r0;r)

=

∞∑
j=1

∥∥∥∥(1− ς|Ec1,c2j (γ, T, t, r0, p)|2
)α−1∣∣〈ϕ, ξj〉∣∣∥∥∥∥2

L2(0,r0;r)

=

∞∑
j=1

∥∥∥(1− ς|Ec1,c2j (γ, T, t, r0, p)|2
)α−1|Ec1,c2j (γ, T, t, r0, p)|

(λj
r0

)−2s
(λj
r0

)2s∣∣〈ϕ, ξj〉∣∣
Ec1,c2j (γ, T, t, r0, p)

∥∥∥2
L2(0,r0;r)

=

∞∑
j=1

∥∥∥(1− ς|Ec1,c2j (γ, T, t, r0, p)|2
)α−1|Ec1,c2j (γ, T, t, r0, p)|

(λj
r0

)−2s(λj
r0

)2s∣∣〈f, ξj〉∣∣∥∥∥2
L2(0,r0;r)

≤
∞∑
j=1

r4s0
(
1− ς|Ec1,c2j (γ, T, t, r0, p)|2

)2α−2|Ec1,c2j (γ, T, t, r0, p)|2λ−4s
j M2. (4.22)

From (4.22), we denote

S(j) := r4s0
(
1− ς|Ec1,c2j (γ, T, t, r0, p)|2

)2α−2|Ec1,c2j (γ, T, t, r0, p)|2λ−4s−4
j , (4.23)

From (4.23), through several evaluation steps, we receive

S(j) ≤ r4s0 |Q|2
(

1− ς Q
2

λ4
j

)2α−2

λ−4s−4
j . (4.24)

So (
δ −
√

2(1 +A6)
1
2
)
ε ≤ [S(j)]

1
2M. (4.25)

Using the Lemma 2.8 and (4.24), we get

S(j) = r4s0 |Q|2
(

1− ς Q
2

λ4
j

)2α−2

λ−4s−4
j ≤ r4s0 |Q|−2s

(s+ 1

2ας

)s+1

· (4.26)

Combining (4.21) and (4.26), we can asert that

(
δ −
√

2(1 +A6)
1
2
)
ε ≤ r2s0 |Q|−s

(s+ 1

2ας

) s+1
2 M. (4.27)

This implies that

α ≤
(s+ 1

2ς

)( r2s0 M
Qs
(
δ −
√

2(1 +A6)
1
2

)
ε

) 2
s+1 · (4.28)

whereby Q = c1A4r
2
0 + c2A4A5r

2
0. �

Theorem 4.5. For s > 0, let f(r) given by (3.8), and fα,ε(r) be the regularization
solution, assume that condition f ∈ Hs(0, r0; r) and (1.3) holds. Then we have the
following error estimate:

‖fα,ε − f‖L2(0,r0;r) is of order ε
s
s+1 · (4.29)

Proof. Using the triangle inequality, one has

‖fα,ε − f‖L2(0,r0;r) ≤ ‖f
α,ε − fα‖L2(0,r0;r) + ‖fα − f‖L2(0,r0;r)· (4.30)
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Using the estimate (4.7) and the Lemma 4.4, we get

‖fα,ε − fα‖L2(0,r0;r) ≤ 2ς
1
2α

1
2 ε
(
1 +A6

) 1
2︸ ︷︷ ︸

L1

+ εM 4r2s0
A3λ2s1︸ ︷︷ ︸
L2

+α−
s
2MA

1
2
9︸ ︷︷ ︸

L3

. (4.31)

inwhich A9 =
(

16A2
4

A2
3

( s

2ςN 2

)s
+ 4
( s

2ςQ2

)s)
. Subtituting (4.18) into (4.31), we

can know that

L1 ≤ ε
s
s+1M

1
s+1

(√
2
[
(s+ 1)(1 +A6)

] 1
2

( r0

|Q|s
(
δ −
√

2(1 +A6)
1
2

)) 1
s+1
)
,

L2 ≤ ε
s
s+1M

1
s+1

(
ε

1
s+1M

s
s+1

4r2s0
A3λ2s1

)
,

L3 ≤ ε
s
s+1M

1
s+1

(( 2ς

s+ 1

) s
2
( |Q|s(δ −√2(1 +A6)

1
2

) 1
2

r2s0

) s
s+1

(A7)
1
2

)
. (4.32)

Combining (4.14), and (4.32), we receive

‖fα,ε − fα‖L2(0,r0;r) ≤ ε
s
s+1M

1
s+1 H

(
s, r0, ς, δ, |Q|,A6,A7

)
. (4.33)

whereby

H
(
s, r0, ς, δ,|Q|,A6,A7

)
=

(√
2
[
(s+ 1)(1 +A6)

] 1
2

( r0

|Q|s
(
δ −
√

2(1 +A6)
1
2

)) 1
s+1

+ ε
1
s+1M

s
s+1

4r2s0
A3λ2s1

+
( 2ς

s+ 1

) s
2
( |Q|s(δ −√2(1 +A6)

1
2

) 1
2

r2s0

) s
s+1

(A7)
1
2

)
·

(4.34)

For the second, we can know that

P
(
fα − f

)
=

∞∑
j=1

1−
(
1− ς|Ec1,c2

j (γ, T, t, r0, p)|2
)α

|Ec1,c2
j (γ, T, t, r0, p)|

〈
ϕ, ξj

〉
ξj(r)

=
∞∑
j=1

1−
(
1− ς|Ec1,c2

j (γ, T, t, r0, p)|2
)α

|Ec1,c2
j (γ, T, t, r0, p)|

〈
ϕ− ϕε, ξj

〉
ξj(r)

+

∞∑
j=1

1−
(
1− ς|Ec1,c2

j (γ, T, t, r0, p)|2
)α

|Ec1,c2
j (γ, T, t, r0, p)|

〈
ϕε, ξj

〉
ξj(r). (4.35)

From (4.35), we can see that

‖P
(
fα − f

)
‖L2(0,r0;r) ≤ ς

1
2α

1
2 ε+ δε = ε

(
ς

1
2α

1
2 + δ

)
. (4.36)

Due to∥∥fα − f∥∥Hs(0,r0;r) =

( ∞∑
j=1

(λj
r0

)4s(
1− ς|Ec1,c2

j (γ, T, t, r0, p)|2
)2α ∣∣〈ϕ, ξj〉∣∣2
|Ec1,c2
j (γ, T, t, r0, p)|2

) 1
2

≤
( ∞∑
j=1

(
1− ς|Ec1,c2

j (γ, T, t, r0, p)|2
)2α(λj

r0

)4s∣∣〈f, ξj〉∣∣2) 1
2 ≤M.

(4.37)
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Because of Theorem 3.3, it is easy to see that∥∥fα − f∥∥
L2(0,r0;r)

≤ ε
s
s+1M

1
s+1 (ς

1
2α

1
2 + δ)

s
s+1

∣∣Z(c1, c2, γ, T,A3, λ1, r0)
∣∣− s

s+1 ·
(4.38)

Combining (4.33) and (4.38), we conclude that

‖fε,α − f‖L2(0,r0;r) ≤ is of order ε
s
s+1 · (4.39)

�

5. Conclusion

In this paper, by using the Landweber method, we solved the unknown prob-
lem to recover the source term of time-fractional diffusion equation on a columnar
symmetric domain. In the theoretical results, we show the error estimates between
sought solution and regularized solution of both prior and posterior parameter
choice rule methods based on a priori condition belongs to Hs(0, r0; r). We can see
that the convergence rate of the level is similarly.
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