BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 1821-1291, URL: HTTP://WWW.BMATHAA.ORG
VOLUME 13 ISSUE 1(2021), PAGES 71-82

ON A CLASS OF ANALYTIC MULTIVALENT FUNCTIONS IN
¢-ANALOGUE ASSOCIATED WITH LEMNISCATE OF
BERNOULLI

BAKHTIAR AHMAD!, MASLINA DARUS2?, NASIR KHAN®* RAEES KHAN?4,
MUHAMMAD GHAFFAR KHAN®

ABSTRACT. The object of the paper is to examine some various interseting
properties of analytic multivalent functions in g-analogue associated with the
lemniscate of Bernoulli.

1. INTRODUCTION

First of all we recall some basic definitions and concepts of Geometric Function
Theory which are useful to understand the notions used in our main work, so
we present first the class A, of analytic multivalent functions f(z) in the region
D ={z € C: |z| <1}, with the representation

o0
f)=2"+ > ¥ (z€D,peN). (1.1)
k=p+1
For p = 1, it becomes the well-known class of analytic functions A.
Moreover, for two functions f and g analytic in ®, we say that the function f is
subordinate to the function g and write as

f=g o f(z2)<g(2),
if there exists a Schwarz function w which is analytic in © with
w(0) =0 and lw(2)] <1,
such that
f(2) = gw ().
Furthermore, if the function g is univalent in ® then we have the following equiv-
alence (cf., eg., [I7], see also [1§]) ::

f(z) <g(z)  (2€D)= f(0) =g(0) and [f(D)Cg(D).
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Let SL* be the class of functions defined by
12 2
(Zf @)> —1l<1y.
f(2)

The subclass SL* which motivates the researchers was investigated by Sokét et al.

SL{fG.A:

[22], containing functions f € A such that ZJ{;S) lies in the region bounded by

the right-half of the Bernoulli lemniscate given by ‘w (z)? — 1‘ < 1. In terms of
subordination, the class SL* consists of normalized analytic functions f satisfying
4
() <V1+z.
f(z)
This class was further investigated by [5} 7], 23] 24].

A function h (z) is said to be in the class P[A, B], if it is analytic in E with
p(0) =1 and

1+ Az
1+ Bz’

h(z) < 1<B<AL],

equivalently we can write

h(z)—1
A — Bh(z)
This class was introduced by Janowski [I0] and explored by a few creators like
[21], 16, 2, [16}, 25, 26, 19, 20, 27, 13].

The Calculus without the concept of limits which is called g-calculus has evolved
as key component in different fields of sciences and mathematics. Due to its nu-
merous physical and mathematical applications it attracted a lot of researchers.
The g-analogue of derivative and integral were introduced and studied by Jackson
[8,[@]. Srivastava and Bansal [28 pp. 62] used the g-analogue of derivative in Geo-
metric function theory by introducing the g-generalization of starlike functions for
the first time, see also [29) pp. 347 et seq.]. More details of the topic can be seen
in [111 4] [15] 3] [14].

The g-derivative (or g-difference)[9] D, of a function f defined is in a given subset
of C by

<1

=52 #0)
(Dqf) (2) = (1.2)
f7(0) (z=0).
provided that f(0) exists.
From Definition , we can observe that

lim (Dyf)(z) = lim 1) =/(02)

qg—1— qg—1— (]_ — q) z

=f'(2),

for a differentiable function f in a given subset of C. It is readily known from

(L.1) and (L.2) that
(DU () =1+ 3 s .
n=2

where

1—q" "
], = =1+ Y4 o], =o.
=1



¢-ANALYTIC FUNCTIONS IN LEMNISCATE OF BERNOULLI'S DOMAIN. 73
Now we define SE; 4> the class of analytic multivalent functions in g-analogue as-
sociated with the lemniscate of Bernoulli as

Sy, =12 el 2D i e
’ [pl, f(2)
we note that if ¢ — 1~ then Sﬁ;yq becomes SE;,the class of analytic multivalent
functions in domain of lemniscate of bernoulie, investigated by Qaiser et. al [12].
In recent past Ali et al. [5] have invrstigated and studied differential subordina-

tions 1+« hn((j) < v/1+ z and found that h(z) < v/1 + z where n = 0, 1, 2 for some
particular range of o. Similar kind of differential subordinations are also discussed
by various authors. In this article we are investigating some properties of analytic
multivalent functions in g-analogue associated with lemniscate of Bernoulli. We de-

termine some conditions on « so that 1+« zlip[D]“f(z), 1+ ozz[;])";((:)) 1+« z[;]*P(?(qu)()Z)
q q
and 1 + aw are in Janowski domain and £ (Z < +/1+ 2 . Then using

], (F(2))*
this we discuss the conditions so that a function will belong to S,Cp}q. To avoide
repetations it is admitted once that -1 < B< A<1,4q€(0,1),z€ D, pe N.
For proving main results we need the following Lemma.

Lemma 1.1. [I] (g-jack’s lemma) Let w(z) be analytic in © = {z € C: |z| < 1}
with w (0) = 0. If |w (2)| attains its mazimum value on the circle |z| = r at a point
2o = re'?) for 0 € [—m, 7], we can write that for 0 < q < 1

2oDqw (20) = mw (20) ,
where m is real and m > 1.
2. MAIN RESULTS

Theorem 2.1. If (z) € A, such that
az'"PD,f(z) 1+ Az

1+ =< ,
[p], 1+ Bz
with
s 2, A=) o)
T 1—|B[-4p(1+B])’ '
then
% < V14 z.
Proof. Define the function h by
1-p
1+0427qu(z):h(z)’ (2.2)
[pl,
where h (z) is analytic and h(0) = 1. Also consider
fz) _
i 14+ w(z). (2.3)

For proving the result it is enough to show that |w ()] < 1.
By carrying out logarithmic differentiation in (2.3)), and using (2.2)) we get

azDgw (2) apy/1+w(z)
2[pl, V1+w(z) [p], '

h(z)=1+
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Also
h(z)—1
A — Bh(z)
azDgw(z) + apy/1+w(z)
B 2[pl, /14w (z) [pl,
. azDgw(z) apy/14+w(z)

A-B (1 * 2[p],\/1+w(2) T >
B azDyw (2) 4 2pa (1 + w (2))

2 [p]q (A—B)+\/1+w(z) — B(azDyw (z) + 2pa (1 + w (2))) .

Now if w (z) attains its maximum value at some z = zy and |w (zp9)| = 1. Then
by Lemma , there exists a number m > 1 such that, zoDgw (z0) = mw (z0) .
And suppose that w (z9) = € for § € [—, n]. Then for zyp € D, we have
h(zp) — 1
e

amuw (29) — 2pa (1 4+ w (20)) ‘
2[pl, (A= B)/1+w(z) —aB(mw(z0) +2p (1 +w(20)))
la] (m — 2p (!1 + ew’))
2[pl, (A= B) |1+ e+ |al |B] (m+2p (|1 + €*]))
|af (m — 4p)
22, (A= B)+ Bllal(n v dp) "
Now by elementary calculus we have

27 [p], (A = B) |a| +8al*p|B|

(2% ], (A~ B) + B[l (m +4p))”

which shows that ¢ (m) is an increasing function and hence it will have its minimum
value at m = 1 and so

¢’ (m) = >0,

h(z) —1 af (1 —4p)
A= Bh(z0)| ™ 22 [p], (A~ B) +|B]lal (1 + 4p)
Now by (2.1) we have
hz) =1 | 1,
A — Bh (Z()) -
which contradicts the fact that h(z) < ng , and so |w(z)| < 1 and so we get
the desired result. ]

Corollary 2.2. If (z) € A,, such that

axDuf () <p+ |4 D) quf(2)> 1+ Az

1 - bl
TR ) I+ Bz

R ICEEE) 24

with .
22 A—-B
o] > [p], ( ) ’
1—|B|-4p(1+|BJ)

then f(z) € SL,, .
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Proof. Let us consider a function
1D, (2)
pl, f(2)
where [ (2) is analytic and 1(0) = 1. With some calculations we obtain

zD2f(z) =2 P
vl (z) = ZPaf () <p+1+ alz}f(i)) B l;(f ; )) |

l(z) =

[p], f (2)
Using and we obtain
az!7PDl (z) - 1+ Az
[p], 1+ Bz’
Now by the application of Theorem we get

=) _ 72qu (2) <V1+z.

2r - pf(2)

1+

and so f (2) € SL,, .

Theorem 2.3. If (z) € A,, such that
zDgf (2) 14 Az

1+a[p]qf(2) 1—‘,—327
with

s A B

~ 1—|B[-4p(1+B|)
then
fz(pz) <V1+az.
Proof. Setting a function h (z) as
h(z)=1+ O/Ep?q; ((z))
q

Then for

~

(2) =+v1+w(z)

zp
with some calculations we obtain that

B azDgw (2) ap
MO S G e ) T,
and so
h(z)—1
A — Bh(z2)
azDgw(z) ap

2[p], (1+w(2))  [pl,

. azDgw(z) ap
A-B (1 + ol 0wy T [mq)

azDyw (2) 4+ 2pa (1 + w (2))

2[pl, (A= B) (1 +w(2)) = B(azDyw (2) + 2pa (1 + w (2)))
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Now if w (z) attains its maximum value at some z = zy and |w (zp9)| = 1. Then
by Lemma (1.1)), there exists a number m > 1 such that, zoD,w (z0) = mw (z0) .
And suppose that w (2) = €' for 6 € [, 7). Then for 2y € D, we have
h (Zo) —1
A — Bh (20)

amuw (29) 4+ 2pa (1 4+ w (2))
2[pl, (A= B) (1 +w(20)) — B (amw (20) + 2pa (1 +w (20)))
ie‘

> la|m —2plal|1+e
~ 2[pl, (A= B)[1 +€* +|B||a|m+ 2p|B||a|[1 + €|

|alm — 2p|al v2 + 2cos b
2 ((A— B)pl, +|B| |a|p> V2+2cosf + |B||lalm

ol (m — 4p) o
1((A=B)lpl, +Bllalp) +|B]la|m

v

Now let
& (m) = 4(A—B)lallpl, +8plof’ |B| =0
(4 (4= Bl + 1Bl lal p) + Bl |alm)
which shows that ¢ (m) is an increasing function and hence it will have its minimum
value at m =1 and so
h (Z()) -1
‘ A — Bh (2’0)

ol (1 = 4p) |
~ 4((A=B)Ipl, + Bl lalp) + Bl ol

Now by(2.8) we have
>1

h (Zo) -1
A— Bh (Zo)
which contradicts ([2.7]), and so |w (z)| < 1 and so we get the desired proof. O

Corollary 2.4. If f(z) € A, such that

<p+1+zD§f(z) quf(z)> 1+ Az

0y f (2) B () 14+ Bz’

1+[qu
with
s DL G-B
T 1Bl —4p(1+|B])’

holds then f (z) € SL,, .

Theorem 2.5. If f (z) € A, such that
217PD, f (2) - 1+ Az

1+« , 2.9
TG 1B 29
with
2% ], (A~ B)
o= T By B) (2.10)
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then
f(z)

zP

<V1+z.

Proof. Here we define a function

aZl_qu f (2
v, (£ (2))°

Then for

1@ _ e

2P
Using some simplification we obtain that

azDyw (2) ap

h(z)=1 3 .
(2) +2[p]q(1—|—w(2))§+[p]q /14w (2)

Therefore,
hz)—1
A — Bh(z)
azDgw(z) ap

2[p], (1+w(2))3  [plyy/1+w(2)

A_B 1+ azDgqw(z) ap
( 2[p], (1+w(2)) 3 + [pl,v/1+w(z)

azDgw (z) + 2pa (1 + w (2))
2[pl,(A=B)(1+w(z))* — BazDqw (z) — 2paB (1 + w (2))

Now if w (z) attains its maximum value at some z = zy and |w(z)| = 1. Then
by Lemma (1.1)) , there exists a number m > 1 such that, zoDqw (z0) = mw (z0) .
And suppose that w (zg) = € for § € [—, 7). Then for 2y € D, we have

‘ h(ZO) -1
A— Bh(ZO)

amuw (29) + 2pa (1 4+ w (2))
2[p], (A~ B) (1 +w(20))? — Bamw (z) — 2paB (1 + w (z0))
jafm — 2pla] |1 + |

> 3 .
2[p]q(A—B) 1+ ¢e?|2 + |B||a|m + 2p|a| |B| |1 + €]
_ o (m — 4p)
22 [p], (A = B) +|B| |a|m + 4p|a| | B]
al(m—4
N o] (m — 4p) .

25 [p], (A — B) + |Bl||a|m + 4p|o| |B|

Now let
5 2
22 [p, lal (A= B) +8lal”|B|p

¢ (m) =

- 5 >0
(2 9], (A~ B) + Bla|m + 4p|a| B)
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which shows that ¢ (m) is an increasing function and hence it will have its minimum
value at m =1 and so

’Mm—l ol (1 — 4p)
A= Bh(z)|[ ™ 22 [p], (A~ B) +|B|la| + 4p|al | B]
Now by (2.10) we have
h (2’0) -1 >
A — Bh (Zo)
Hence a contradiction to (2.9), and so |w(z)] < 1 and so we get the required
proof. O

Corollary 2.6. If f (z) € A, such that

1+

af (2) 2D2f (2)  zD,f (2) 1+ Az
220+1D, f (2) <p+1+ aqu(z) a fq(z) ) “11B2

with
25 A-B
o] > [p], ( ) ’
1 —|B|—4p(1+|BJ)

then f(z) € SL, -
Theorem 2.7. If f (z) € A, such that

72D, f(2) 1+ Az

TP 1B
with
8], (A B)
o= T By (211)
then
% <V1+z.

Proof. Let us define a function
1-2p
M@:l+ai—l£ﬂ?.
[pl, (f (2))

Then if

zP

Using some calculations we obtain that

azDyw (2) ap

) S w@  H,(tw ()
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and so
h(z)—1
A — Bh(z)
azDgw(z) ap
. 2[p}q(liw(z))2 + [p], (1+w(z))
B _ azDyw(z) ap
A-B (1 3L ey T [p}q<1+w(z>>)
_ azDyw (z) + 2pa (1 + w (2))
2[p], (A= B) (1 +w(2))* — BazDyw (2) — 2paB (1 + w (2))
Now if w (z) attains its maximum value at some z = 2y and |w(zg)] = 1. Then

by Lemma (1.1)), there exists a number m > 1 such that, zoD,w (z0) = mw (zo) .
And suppose that w (2) = €' for 6 € [, 7]. Then for 2y € D, we have

h (20) -1
A — Bh (Zo)

amw (z9) + 2pa (1 + w (z0))
2pl,(A-B)(1+w (20))% = Bamuw (20) — 2paB (1 + w (2))
la|m —2p a1+ e”|

>
~ 2[pl, (A= B) [1+ " +[B||a| m+2p|al | B| [1 + €]
B la] m — 2p |a] /2 + 2 cosf
2[p]q(A—B)(\/2+26089)2+|B||a\m+2p|a|\B\\/2—|—2c089
|| (m — 4p)
> =o¢(m
= 8B, (4~ B) + [Bllaim + plaf(8] *"
Now let

8[p], ol (A — B) + 8Jaf*|Bp
(819, (A~ B) + Bl [a| m +4p|a| | B])

which shows that ¢ (m) is an increasing function and hence it will have its minimum
value at m =1 and so

¢’ (m) = >0

‘ h(z0) =1 ol (1 — 4p)
A= Bh(z)| ~ 8[pl, (A= B) +|B[|al + 4p|al B
Now as
h (Zo) -1
A — Bh (Z()) -
which is a contradiction to the fact that h(z) < }igz ,and so |w (z)] < 1 and so
we get the desired result. (Il

Corollary 2.8. If f (z) € A, such that

ap (f (2))° 2D2f(2) 2D f (2)\ 1+ Az
+zsp+z<qu(z>>2<p“+ - )*HBZ’

9y f (%) f(z)

with
8[p], (A—B)

(0% Z 9
2 T a3
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*
then f(z) € SL, -

3. CONCLUSION

The generalized form of analytic functions in lemniscate of Bernoulli were intro-
duced with the help of subordinations. Using the well known Janowski functions,
various interesting characterizations were formulated for this newly defined class.
The idea of g-calculus were utilized in this article as it is an interesting revela-
tion in this field. Basic (or ¢-) series and basic (or ¢-) polynomials, especially the
basic (or ¢-) gamma and (or ¢-)-hypergeometric functions and basic (or ¢-) hy-
pergeometric polynomials, are applicable particularly in several diverse areas (see,
for example, [[30], pp. 350-351] and [[31], p. 328)]. Moreover, in this recently-
published survey-cum-expository review article by Srivastava [30], the so-called (or
¢-)-calculus was exposed to be a rather trivial and inconsequential variation of the
classical g-calculus, the additional parameter p being redundant (see, for details,
[[30], p. 340]). This observation by Srivastava [31I] will indeed apply also to any
attempt to produce the rather straightforward (p, ¢)-variants of the results which
we have presented in this paper.
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