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STABILITY OF VARIOUS ITERATIVE TYPE FUNCTIONAL

EQUATIONS IN MENGER ϕ− NORMED SPACES

JYOTSANA JAKHAR, RENU CHUGH, JAGJEET JAKHAR

Abstract. The objective of this study to examine some stability results con-
cerning the iterative type functional equations like Gamma, Schröder func-

tional equations and also generalize the stability results of quintic and sextic
functional equations (QF Equations and SF Equations) in complete Menger

ϕ−normed spaces.

1. Introduction

The first stability problem was established by Ulam [37] in 1940. He raised a
question whether there exists an exact homomorphism close to approximate homo-
morphism. The solution of Ulam problem was given by Hyers [10] in Banach spaces.
Last some decades, stability problems have been studied by several mathematicians.
In order to have more knowledge on the stability of various functional equations
and also stability problems in probabilistic and fuzzy normed spaces, see[3-10, 18-
21, 24-29]. Radu [30] gave an answer of Ulam’s doubt strongly by using the fixed
point method. In [1, 2, 19-20], the authors studied the theory of fixed point for the
probabilistic stability of functional equations.

In this paper, we employ this method to find the stability of the iterative, quintic
and sextic functional equations in Menger probabilistic ϕ− normed spaces origi-
nated by Golet in [9]. During this article, we denote complete Menger probabilistic
ϕ− normed space by CMP ϕ− normed space.

Definition 1.1. [21] “A function F : R→ [0, 1] is called a distribution function if
it is non-decreasing and left continuous with sup F (t) = 1 and inf F (t) = 0. The
class of all distribution functions F with F (0) = 0 is denoted by D+ and ε◦ is the
specific distribution function defined through

ε◦ =

{
0, t ≤ 0

1, t > 0.”

Let ϕ be a function defined on the real field R into itself, with the following
properties:
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(a) ϕ(−t) = ϕ(t) for every t ∈ R;
(b) ϕ(1) = 1;
(c) ϕ is strictly increasing and continuous on [0,∞), ϕ(0) = 0 and

lim
α→∞

ϕ(α) =∞

where α ∈ R.

Examples of such functions are:

ϕ(α) = |α|; ϕ(α) = |α|l, l ∈ (0,∞); ϕ(α) = 2α2n

|α|+1 , n ∈ N.

Definition 1.2. [9]“ A Menger probabilistic ϕ−normed space is a triple (Z, ν, T ),
where Z is a real vector space, T is a continuous t− norm and ν is defined from Z
into D+ such that the following conditions hold:

(PN1) νz(t) = ε◦(t) for all t > 0 if and only if z = 0;
(PN2) ναz(t) = νz(

t
ϕ(α) ) for all z in Z , α 6= 0 and t > 0;

(PN3) νz+y(t+ s) > T (νz(t), νy(s)) for all z, y ∈ Z and t, s > 0.”

Definition 1.3. [9] “Let (Z, ν, T ) be a Menger probabilistic ϕ−normed space.
(1) A sequence {zn} in Z is said to be convergent to z in Z in the topology τ if
for every t > 0 and ε > 0, there exists positive integer N such that νzn−z(t) > 1− ε
whenever n > N.
(2) A sequence {zn} in Z is called Cauchy if for every t > 0 and ε > 0, there exists
positive integer N such that νzn−zm(t) > 1− ε whenever n,m ≥ N.
(3) A Menger probabilistic ϕ− normed space (Z, ν, T ) is said to be complete if every
Cauchy sequence in Z is convergent to a point in Z.”

Let (Y, ν, TM ) be a CMP ϕ− normed space, Z be a vector space and G be a
function from Z × R into [0, 1], in such a way that G(z, .) ∈ D+ ∀ z. Taking the
set F = {h : Z → Y : h(0) = 0} and the function dG defined on F × F by

dG(h, ψ) = inf{u ∈ R+ : νh(z)−ψ(z)(ut) ≥ G(z, t) for all z ∈ Z and t > 0}

where inf φ = +∞. The next lemma can be showed as in [20]:

Lemma 1.4. ([19,20]) “ dG is a complete generalized metric on F”.

2. Probabilistic stability of iterative functional equation

A general iterative functional equation can be presented as

F (z, f1(z), f2(z), ..., fm(z)) = 0, (2.1)

where m ≥ 2, is one of the iterative functional equations [15] and was studied in
many papers. We mention here some classical functional equations as
• Gamma Functional Equation

f(z + 1) = (z + 1)f(z)

• Schröder Functional Equation

f(g(z)) = sf(z)
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Our main result is the following stability theorem for the iterative functional equa-
tion.

Theorem 2.1. Let (Y, ν, Tm) be a CMP ϕ−normed space, Z be a real vector space
and let f : Z → Y be a Φ− approximate solution of the equation

F (z, f1(z), f2(z), ..., fm(z)) = 0

in the sense that

νF (z,f1(z),f2(z),...,fm(z))(t) ≥ Φ(z, t) (2.2)

for all z ∈ Z, t > 0, where Φ is function from Z to D+. If there exists α ∈ (0, ϕ(m))
for all z ∈ Z, t > 0 such that

Φ(fm(z))(αt) ≥ Φ(z)(t) (2.3)

and

limn→∞Φ(mn(z),mnf1(z), ...,mnfm(z))

(
t

ϕ( 1
mn )

)
= 1

then there exists one and only one function h : Z → Y such that

νh(z)−f(z)(t) ≥ Φ(z)((ϕ(m)− α)t).

Moreover,

h(z) = limn→∞
F (fm(z))n

mn .

Proof. Let G(z, t) = Φ(z)(ϕ(m)t), F = {h : Z → Y |h(0) = 0} and the function dG
defined as F × F by

dG(h, ψ) = inf{u ∈ R+ : νh(z)−ψ(z)(ut) ≥ G(z, t)}.

By using the lemma 1.4, we obtain (F, dG) is a generalized metric space which is
complete. Now, we assume the linear function J : F → F defined by

J(h(z)) =
1

m
h(fm(z)).

It is convenient to verify that J is a self mapping on F which is strictly contractive
together the Lipschitz constant k = α

ϕ(m) . In fact, let h, ψ be functions lies in F

gives that dG(h, ψ) < ε. Then

νJh(z)−Jψ(z)
(

α
ϕ(m)εt

)
≥ G(z, t)

hence

νJh(z)−Jψ(z)
( α

ϕ(m)
εt
)

= νh(fm(z))−ψ(fm(z))(αεt)

≥ G(fm(z), αt)

Since, G(fm(z), αt) ≥ G(z, t) then νJh(z)−Jψ(z)
(

α
ϕ(m)εt

)
≥ G(z, t) i.e.,

dG(h, ψ) < ε⇒ dG(Jh, Jψ) ≤ α

ϕ(m)
ε.

This implies that

dG(Jh, Jψ) ≤ α

ϕ(m)
dG(h, ψ), ∀ h, ψ ∈ E.

It follows that dG(f, Jf) ≤ 1 from

νf(z)−m−1f(fm(z))(t) ≥ G(z, t).
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By using Luxemburg theorem (see[17]), we derive the presence of a function h :
Z → Y in such a way that

h(fm(z)) = mh(z) for all z ∈ Z.

Also, dG(f, h) ≤ 1
1−kd(f, Jf)⇒ dG(f, h) ≤ 1

1− α
ϕ(m)

from which it instantly follows

νh(z)−f(z)
( ϕ(m)
ϕ(m)−α t

)
≥ G(z, t).

This yields

νh(z)−f(z)(t) ≥ G
(
z, ϕ(m)−α

ϕ(m) t
)

hence, we obtain the conclusion

νh(z)−f(z)(t) ≥ Φ(z)((ϕ(m)− α)t) ∀z ∈ Z and t > 0.

Thus,

dG(u, v) < ε⇒ νu(z)−v(z)(t) ≥ G
(
z,
t

ε

)
and dG(Jnf, h) → 0, it follows limn→∞

F (fm(z))n

mn = h(z) ∀z ∈ Z. For the

confirmation of the additivity of h in the natural way, see [18, 22]. Actually, since
Tm is a continuous t-norm then x → vx is continuous and thus, see [34, Chapter
12],

νF (z,h1(z),h2(z),...,hm(z))(t)

= limn→∞νF (mn(z),mnf1(z), ...,mnfm(z))

(
t

ϕ( 1
mn )

)
≥ limn→∞Φ(mn(z),mnf1(z), ...,mnfm(z))

(
t

ϕ( 1
mn )

)
= 1

We conclude that νF (z,h1(z),h2(z),...,hm(z)) = 1 which implies

F (z, h1(z), h2(z), ..., hm(z)) = 0.

The uniqueness of h is due to the verity that h is the specific fixed point of J which
belongs the {ψ ∈ F : dG(f, ψ) < ∞} i.e., same with property νh(z)−f(z)(Ct) ≥
G(z, t) where C ∈ (0,∞) and t > 0. �

2.1. Probabilistic stability of Gamma functional equation.

Throughout the subsection, we examine the stability of the following Gamma func-
tional equation in CMP ϕ− normed space

f(z + p) = g(z)f(z)

Theorem 2.2. Let f be a function from Z into a CMP ϕ− normed space (Y, ν, Tm),
Z be a real vector space, p ∈ R, g(z) 6= 0 with f(0) = 0 and let G : Z → D+ be a
function with the property G(z+ p, αt) ≥ G(z, t) where α ∈ (0, ϕ(g(z))), z ∈ Z and
t > 0. If

νf(z+p)−g(z)f(z)(t) ≥ G
(
z,
ϕ(g(z))− α
ϕ(g(z))

t

)
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then there exists one and only one function h : Z → Z such that h(z+p) = g(z)f(z).
Moreover,

h(z) = limn→∞
f [(z+p)n]
(g[(z)])n

for all z ∈ Z and t > 0.

Proof. Assume the set F = {h : Z → Y |h(0) = 0} and the function dG defined as
F × F by

dG(h, ψ) = inf{u ∈ R+ : νh(z)−ψ(z)(ut) ≥ G(z, t)}.

By lemma 1.4, we obtain (F, dG) is a generalized metric space which is complete .
Now, let us assume the linear function J : F → F defined as

J(h(z)) =
1

g(z)
h(z + p).

We prove that J is a self mapping on F which is strictly contractive together the
Lipschitz constant k = α

ϕ(g(z)) . In fact, let h, ψ in F be such that dG(h, ψ) < ε.

Then νh(z)−ψ(z)(εt) ≥ G(z, t), hence

νJh(z)−Jψ(z)

(
α

ϕ(g(z))
εt

)
=

1

g(z)
νh(z+p)−ψ(z+p)

(
α

ϕ(g(z))
εt

)
= νh(z+p)−ψ(z+p)(αεt) ≥ G(z + p, αt).

As G(z + p, αt) ≥ G(z, t), after this νJh(z)−Jψ(z)
(

α
ϕ(g(z))εt

)
≥ G(z, t), i.e.,

dG(h, ψ) < ε⇒ dG(Jh, Jψ) ≤ α

ϕ(g(z))
ε.

This yields

dG(Jh, Jψ) ≤ α

ϕ(g(z))
dG(h, ψ), ∀h, ψ ∈ E.

Now, it follows from

νg(z)f(z)−f(z+p)(t) ≥ G(z, t)

that dG(f, Jf) ≤ 1. By using Luxemburg theorem (see [17]), we derive the presence
of a fixed point i.e., the existence of a function h : Z → Y in such a way that

h(z + p) = g(z)h(z) for all z ∈ Z.

Also, dG(u, v) < ε, this indicates from dG(Jnf, h)→ 0 that

νh(z)−v(z)(t) ≥ G
(
z, tε
)
,

it follows that limn→∞
f [(z+p)n]
(g[(z)])n = g(z). Also dG(f, h) ≤ 1

1−kd(f, Jf) indicates the

inequality dG(f, h) ≤ 1
1− α

ϕ(g(z))
from which instantly follows

νh(z)−f(z)(t) ≥ G
(
z, ϕ(g(z))−αϕ(g(z)) t

)
.

The uniqueness of h is due to the fact that h is the specific fixed point of J with
the property

νh(z)−f(z)(Ct) ≥ G(z, t)

where C ∈ (0,∞). �
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Corollary 2.3. Let f be a function from Z into a CMP ϕ− normed space (Y, ν, TM ),
Z be a real vector space with f(0) = 0 and let G : Z → D+ be a function with the
property G(z + p, αt) ≥ G(z, t) where α ∈ (0, ϕ(4)), z ∈ Z and t > 0. If

νf(z+p)−4f(z)(t) ≥ G(z, t)

and

limn→∞ αnϕ

(
1

22n

)
= 0,

then the formula h(z) = limn→∞
f(z+pn)

22n defines one and only one function h :

Z → Z in such a way that νh(z)−f(z)(t) ≥ G(z,Mt) where M = ϕ(4)−α
ϕ(4) .

Proof. By setting z = p, we obtain νf(2z)−4f(z)(t) ≥ G(z, t) hence ν 1
4 f(2z)−f(z)

≥
G(z, t) where

G(z, t) = G

(
z,

t

ϕ( 1
4 )

)
.

�

2.2. Probabilistic stability of the Schröder functional equation.

Throughout the subsection, we examine the stability of the following Schröder
functional equation in CMP ϕ− normed space

f(g(z)) = sf(z)

Theorem 2.4. Let f be a function from Z into a CMP ϕ-normed space (Y, ν, Tm),
Z to be a real vector space, s 6= 0 with f(0) = 0 and let G : Z → D+ be a function
with the property ∃ α ∈ (0, ϕ(s)) for all z ∈ Z, t > 0 in such a way that

G(g(z), αt) ≥ G(z, t). (2.4)

If

νf(g(z))−sf(z)(t) > G(z, t)

then there exists one and only one function h : Z → Y in such a way that h(g(z)) =
sh(z) and

νh(z)−f(z)(t) > G

(
z,
ϕ(s)− α
ϕ(s)

)
.

Moreover, h(z) = limn→∞
f(g(z)n)

sn .

Proof. Assume the set F = {h : Z → Y : h(0) = 0} and the function dG defined as
F × F by

dG(h, ψ) = inf{u ∈ R+ : νh(z)−ψ(z)(ut) > G(z, t)∀z ∈ Z, t > 0}.

By Lemma 1.4, we obtain (F, dG) is a generalized metric space which is complete.
Now , let us assume the linear function J : F × F defined by

Jh(z) =
1

s
h(g(z)).
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We prove that J is a self mapping on F which is strictly contractive together the
Lipschitz constant k = α

ϕ(s) . Let h, ψ be functions lies in F gives that dG(h, ψ) < ε.

After this, for all z ∈ Z, t > 0, we obtain νh(z)−ψ(z)(εt) > G(z, t), hence

νJh(z)−Jψ(z)

(
α

ϕ(s)
εt

)
= ν 1

s (h(g(z))−ψ(g(z)))

(
α

ϕ(s)
εt

)
= νh(g(z))−ψ(g(z))(αεt)

> G(g(z), αt).

Since G(g(z), αt) > G(z, t) then νJh(z)−Jψ(z)
(

α
ϕ(s)εt

)
> G(z, t) that is,

dG(h, ψ) < ε⇒ dG(Jh, Jψ) 6
α

ϕ(s)
ε.

This implies that

dG(Jh, Jψ) 6
α

ϕ(s)
dG(h, ψ),

for all h, ψ in E. Now νf(z)− 1
s f(g(z))

(t) > G(z, t) it follows that dG(f, Jf) 6 1.

Using Luxemburg theorem(see [17]), we derive the existence of a fixed point of J
i.e., the existence of function h : Z → Y in such a way that h(g(z)) = sh(z) for all
z ∈ Z and

dG(u, v) < ε⇒ νu(z)−v(z)(t) > G

(
z,
t

ε

)
,

from dG(Jnf, h) → 0, it follows that limn→∞
f((g(z))n)

sn , for any z ∈ Z. Also ,

dG(f, h) 6 1
1−kd(f, Jf) implies dG(f, h) 6 1

1− α
ϕ(s)

from which it instantly follows

νh(z)−f(z)
( ϕ(s)
ϕ(s)−α

)
> G(z, t). By means of this

νh(z)−f(z)(t) > G

(
z,
ϕ(s)− α
ϕ(s)

t

)
.

The uniqueness of h is due to the verity that h is the specific fixed point of J with
the property : there is C ∈ (0,∞) in such a way that

νh(z)−f(z)(Ct) > G(z, t).

�

3. Probabilistic stability for the QF and SF equations

Recall that the functional equation

f(z + 3y)− 5f(z + 2y) + 10f(z + y)− 10f(z)

+5f(z − y)− f(z − 2y) = 120f(y) (3.1)

is called QF equation as f(z) = cz5 is a solution. In [38], Xu et. al. firstly studied
the stability problem for the QF equation. The functional equation

f(z + 3y)− 6f(z + 2y) + 15f(z + y)− 20f(z) +

15f(z − y)− 6f(z − 2y) + f(z − 3y) = 720f(y) (3.2)

is called SF equation since f(z) = cz6 is a solution. In [38], Xu et. al. firstly
studied the stability problem for the SF equation. Later, the stability of QF and
SF equations have been established by several mathematicians [16, 33, 39, 40].
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Theorem 3.1. Let f be a function from Z into a CMP ϕ-normed space (Y, ν, TM ),
Z be a real vector space with f(0)= 0 and Φ be a function from Z2 to D+ (Φ(z,y) is
denoted by Φz,y) in such a way that, for some 0 < α < ϕ(32),

Φ(2z,2y)(αt) > Φz,y(t). (3.3)

If

νf(z+3y)−5f(z+2y)+10f(z+y)−10f(z)+5f(z−y)−f(z−2y)−120f(y)(t) > Φz,y(t) (3.4)

for all z, y ∈ Z and

limn→∞α
nϕ

(
1

25n

)
= 0 (3.5)

then the formula h(z) = limn→∞
f(2nz)
25n defines one and only one quintic function

h : Z → Y in such a way that

νh(z)−f(z)(t) > Φz,z(Mt) (3.6)

where M = ϕ(32)−α
ϕ(32)ϕ

(
1
64

) .
Proof. By putting z = y in (3.1) , we obtain

νf(4z)−5f(3z)+10f(2z)−10f(z)−f(−z)−120f(z)(t) ≥ Φz,z(t).

It follows that

νf(4z)−5f(3z)+10f(2z)−10f(z)−f(−z)−120f(z)(t) > G(z, t)

where G(z, t) = Φz,z
(

t
ϕ( 1

64 )

)
. From theorem (2.2), we infer that

h(z) = limn→∞
f(2nz)

25n

is the unique function h : Z → Y in such a way that h(2z) = 25h(z) and

νh(z)−f(z)(t) > Φz,z

(
ϕ(32)− α
ϕ(32)ϕ( 1

64 )

)
.

It is sufficient to show the mapping h is quintic, when h is a solution of quintic
equation. We have

νh(z)+h(y)−h(z+y)(t) >Min{ν
h(z)− f(2

nz)

25n
(
t

4
),

ν
h(y)− f(2

ny)

25n
(
t

4
),

ν
h(z+y)− f(2

n(z+y))

25n
(
t

4
),

ν f(2n(z+y))

25n
− f(2

nz)

25n
− f(2

ny)

25n
(
t

4
)}.

The first three terms on R.H.S. of the above inequality approaches to 1 as n →
∞. Furthermore, let us observe from (3.3) it instantly follows by mathematical
induction on n that Φ2nz,2ny(αnt) > Φz,y(t), hence

Φ2nz,2ny(t) > Φz,y

(
t

αnt

)
. (3.7)

Then by using (3.4), we obtain
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ν f(2n(z+y))

25n
− f(2

nz)

25n
− f(2

ny)

25n
( t4 ) = ν f(2n(z+y))

25n
− f(2

nz)

25n
− f(2

ny)

25n

(
t

4ϕ( 1
25n

)

)
> Φ2nz,2ny

(
t

4ϕ( 1
25n )

)

> Φz,y

(
t

4αnϕ( 1
25n )

)
.

From (3.7) we derive that the fourh term also approaches to 1 when n approaches
to ∞, achieving h is quintic. �

Theorem 3.2. Let f be a function from Z into a CMP ϕ−normed space (Y, ν, TM ),
Z be a real vector space with f(0) = 0 and let Φ : Z2 → D+ be a function with the
property ∃ α ∈ (0, ϕ(26)) ∀z, y ∈ Z, t > 0 such that

Φ2z,2y > Φz,y(t). (3.8)

If

νf(z+3y)−6f(z+2y)+15f(z+y)−20f(z)+15f(z−y)−6f(z−2y)+f(z−3y)−720f(y)(t)

≥ Φz,y(t) (3.9)

and

limn→∞ αnϕ

(
1

26n

)
= 0 (3.10)

then the formula h(z) = limn→∞
f(2nz)
26n defines one and only one sextic function

h : Z → Y such that νh(z)−f(z)(t) ≥ Φz,z(Mt) where

M =
ϕ(64)− α
ϕ(64)ϕ

(
1

128

) .
Proof. By putting z = y in (3.2), we obtain

νf(z+3y)−6f(z+2y)+15f(z+y)−20f(z)+15f(z−y)−6f(z−2y)+f(z−3y)−720f(y)(t)

≥ Φz,z(t),

hence

νf(z+3y)−6f(z+2y)+15f(z+y)−20f(z)+15f(z−y)−6f(z−2y)+f(z−3y)−720f(y)(t)

≥ Φz,z

(
t

ϕ( 1
128 )

)
.

Let G(z, t) = Φz,z

(
t

ϕ( 1
128 )

)
. From theorem 2.2 it follows the presence of a unique

function h : Z → Y in such a way that h(2z) = 26h(z), for all z ∈ Z and

νh(z)−f(z)(t) ≥ Φz,z

(
ϕ(26)− α
ϕ(26)ϕ( 1

128 )

)
.

Moreover, limn→∞
f(2nz)
26n . The proof of the fact that h has a sextic function is

similar to the proof of the linearity in the preceeding theorem. �
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4. particular cases

For specific choices of ϕ,Φ and ν, one can acquire stability theorems for different
functional equations in RN-spaces or in linear normed spaces.

Theorem 4.1. Let (Y, ν, TM ) be a CMP ϕ− normed space, Z be a real vector
space and Φ be a function from Z2 to D+ in such a way that, for some (0 < α <
32),Φ2z,2y(αt) ≥ Φz,y(t) for all z ∈ Z, t > 0. If f : Z → Y is a function with
f(0) = 0 and

νf(z+3y)−5f(z+2y)+10f(z+y)−10f(z)+5f(z−y)−f(z−2y)−120f(y)(t) ≥ Φx,y(t).

then there exists one and only one quintic function h : Z → Y in such way that

νf(z)−h(z)(t) ≥ Φz,0(2(32− α)t).

Proof. The completion follows by assuming ϕ(α) = |α| in theorem 3.1 (we observe

that ϕ(32)−α
ϕ(32)ϕ( 1

64 )
= ϕ(2(32−α))). The condition limn→∞ αnϕ

(
1

25n

)
= 0 is fulfilled,

as it diminishes to

limn→∞

(
α

32

)n
= 0.

�

Theorem 4.2. Let (Y, ν, TM ) be a complete RN-space, (Z, ‖.‖) be a real normed
linear space and q be non negative real number. If f : Z → Y is a function in such
a way that

νf(z+3y)−5f(z+2y)+10f(z+y)−10f(z)+5f(z−y)−f(z−2y)−120f(y)(t)

≥ t

t+ ‖z‖q + ‖y‖q
(4.1)

and 1 < q < 5, then there exists one and only one quintic function h : Z → Y in
such a way that

νf(z)−h(z)(t) ≥
(32q − 2)t

((32q − 2)t+ 2−q‖z‖q)
∀z ∈ Z, t > 0. (4.2)

Proof. Cosider the function Φ : Z2 → D+ defined by

Φz,y(t) =
t

t+ ‖‖q + ‖y‖q

and let ϕ(t) = |t|q (t ∈ R), where 1 < q < 5, α = 32. It is instant that
0 < 32 < ϕ(32), Φ2z,2y(αt) ≥ Φz,y(t) and

limn→∞ αnϕ

(
1

32n

)
= limn→∞ 32(1−q)n = 0.

Now the completion follows from theorem 3.1. �

Theorem 4.3. Let (Z, ‖.‖) be a real normed vector space, (Y, ν, TM ) be a complete
RN-space and q be non negative real number. If f : Z → Y is a function such that

νf(z+3y)−5f(z+2y)+10f(z+y)−10f(z)+5f(z−y)−f(z−2y)−120f(y)(t)

≥ t

t+ ‖z‖q + ‖y‖q
(4.3)
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and 1
5 < q < 1, then there exists one and only one quintic function h : Z → Y such

that

νf(z)−h(z)(t) ≥
(32q − 2)t

((32q − 2)t+ 2−q‖z‖q)
∀z ∈ Z, t > 0. (4.4)

Proof. Cosider the function Φ : Z2 → D+ defined through

Φz,y(t) =
t

t+ ‖z‖q + ‖y‖q

and let ϕ(t) = |t|q, (t ∈ R), where 1
5 < q < 1, α = 2. It is instant that 0 < 2 <

ϕ(32), Φ2z,2y(αt) ≤ Φz,y(t) ∀z ∈ Z, t > 0 and

limn→∞ αnϕ

(
1

32n

)
= limn→∞ 2(1−5q)n = 0.

Now the completion follows from the theorem 3.1. �

Corollary 4.4. ([16:Theorem 2], with δ = 0, θ = 2) Let 1
5 < q < 1 be fixed and

f : Z → Y be a function between real Banach spaces that satisfies the inequality

‖f(z + 3y)− 5f(z + 2y) + 10f(z + y)

−10f(z) + 5f(z − y)− f(z − 2y)− 120f(y)‖
≤ ‖z‖q + ‖y‖q

for all z, y ∈ X, then there exists one and only one quintic function h : Z → Y in
such a way that

‖f(z)− h(z)‖ ≤ 2−q

32q − 2
‖z‖ ∀z ∈ Z.

Proof. Consider the induced RN-space (Z, ν, TM ), where νz(t) = t
t+‖z‖q . Then

(4.3) is equivalent to

‖f(z + 3y)− 5f(z + 2y) + 10f(z + y)− 10f(z)

+5f(z − y)− f(z − 2y)− 120f(y)‖
≤ ‖z‖q + ‖y‖q,

while (4.4) is identical to

‖f(z)− h(z)‖ ≤ 2−q

32q − 2
‖z‖.

�

Theorem 4.5. Let (Y, ν, TM ) be a CMP ϕ− normed space, Z be a real vector space
and Φ be a function from Z2 to D+ in such a way that, for some (0 < α < 64),
Φ2z,2y(αt) ≥ Φz,y(t). If f : Z → Y is a function with f(0) = 0 and

νf(z+3y)−6f(z+2y)+15f(z+y)−20f(z)+15f(z−y)−6f(z−2y)+f(z−3y)−720f(y)(t) ≥ Φz,y(t).

then there exists one and only one sextic function h : Z → Y in such a way that

νf(z)−h(z)(t) ≥ Φz,0(2(64− α)t) ∀z ∈ Z, t > 0.
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Proof. The completion follows by assuming ϕ(α) = |α| in theorem 3.1 (we observe

that ϕ(64)−α
ϕ(64)ϕ( 1

128 )
= ϕ(2(64− α))). The condition

limn→∞α
nϕ

(
1

26n

)
= 0

is fulfilled, as it diminishes to limn→∞

(
α
64

)n
= 0. �

Theorem 4.6. Let (Y, ν, TM ) be a complete RN-space, (Z, ‖.‖) be a real normed
vector space and q be non negative real number. If f : Z → Y is a function in such
a way that

νf(z+3y)−6f(z+2y)+15f(z+y)−20f(z)+15f(z−y)−6f(z−2y)+f(z−3y)−720f(y)(t)

≥ t

t+ ‖z‖q + ‖y‖q
(4.5)

and 1 < q < 6, then there exists one and only one sextic function h : Z → Y in
such a way that

νf(z)−h(z)(t) ≥
(64q − 2)t

((64q − 2)t+ 2−q‖z‖q)
∀z ∈ Z, t > 0. (4.6)

Proof. Cosider the function Φ : Z2 → D+ defined by

Φz,y(t) =
t

t+ ‖z‖q + ‖y‖q

and let ϕ(t) = |t|q (t ∈ R), where 1 < q < 6, α = 64. It is instant that
0 < 64 < ϕ(64), Φ2z,2y(αt) ≥ Φz,y(t) and

limn→∞ αnϕ

(
1

64n

)
= limn→∞ 64(1−q)n = 0.

Now the completion follows from Theorem 3.2. �

Theorem 4.7. Let (Y, ν, TM ) be a complete RN-space, (Z, ‖.‖) be a real normed
vector space and q be non negative real number. If f : Z → Y is a function in such
a way that

νf(z+3y)−6f(z+2y)+15f(z+y)−20f(z)+15f(z−y)−6f(z−2y)+f(z−3y)−720f(y)(t)

≥ t

t+ ‖z‖q + ‖y‖q
(4.7)

and 1
6 < q < 1, then there exists one and only one sextic function h : Z → Y in

such a way that

νf(z)−h(z)(t) ≥
(64q − 2)t

((64q − 2)t+ 2−q‖z‖q)
∀z ∈ Z, t > 0. (4.8)

Proof. Cosider the function Φ : Z2 → D+ defined by

Φz,y(t) =
t

t+ ‖z‖q + ‖y‖q

and let ϕ(t) = |t|q, (t ∈ R), where 1
6 < q < 1, α = 2. It is instant that 0 < 2 <

ϕ(64), Φ2z,2y(αt) ≤ Φz,y(t) and

limn→∞α
nϕ

(
1

32n

)
= limn→∞ 2(1−6q)n = 0.
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Now the completion follows from the theorem 3.2. �

Corollary 4.8. ([16:Theorem 3], with δ = 0, θ = 2) Let 1
6 < q < 1 be fixed and

f : Z → Y be a function between real Banach spaces that satisfies the inequality

‖f(z + 3y)− 6f(z + 2y) + 15f(z + y)− 20f(z)

+15f(z − y)− 6f(z − 2y) + f(z − 3y)− 720f(y)‖
≤ ‖z‖q + ‖y‖q

for all z, y ∈ Z, then there exists one and only one sextic function h : Z → Y in
such a way that

‖f(z)− h(z)‖ ≤ 2−q

64q − 2
‖z‖ ∀z ∈ Z.

Proof. Consider the induced RN-space (Z, ν, TM ), where νz(t) = t
t+‖z‖q . Then

(4.7) is equivalent to

‖f(z + 3y)− 6f(z + 2y) + 15f(z + y)− 20f(z)

+15f(z − y)− 6f(z − 2y) + f(z − 3y)− 720f(y)‖
≤ ‖z‖q + ‖y‖q

while (4.8) is identical to ‖f(z)− h(z)‖ ≤ 2−q

64q−2‖z‖. �
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