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STABILITY ANALYSIS FOR A RICKER MODEL

WITH A CONTROL TERM

ZHI-QIANG ZHU, WEI-JIANG LI, JIA-JIA GUO

Abstract. In this paper, we consider a class of Ricker models and study its
stability, including the controllable stability and the controllable periodicity.
Via analysis methods, we obtain a couple of criteria to guarantee our model is
controllably stable and controllably periodic. Two examples are also provided
to demonstrated our results.

To the best of our knowledge, this is the first time to discuss the controllable
stability for a Ricker model.

1. Introduction

This paper is devoted to consider the stability for a population model given by

x(t+ 1) = γ(t)x(t) + u(t)x(t− τ)er(t)−x(t−τ), t ∈ Z0, (1.1)

where Z0 is the set of nonnegative integers, γ(t) ∈ (0, 1) and r(t) denotes, respec-
tively, the survival rate (see [5]) and the intrinsic growth (see [8]) for each t ∈ Z0,
τ ∈ Z0 is the time delay, and u ∈ l∞ expresses a control term, here l∞ stands for
the set of real sequences {w(t)}t≥0 with sup0≤t<∞ |w(t)| < ∞.

The origination of our considerations stems from the papers [5, 7, 9, 12] and
their references. Precisely speaking, in [5, 12] the authors studied, respectively, the
periodic problem of population models

x(t+ 1) = γ(t)x(t) + f(t, x(t))

and

x(t+ 1) = γ(t)x(t) + f(t, x(σ(t))).

In [9] Perván et al. considered the global convergence for the discrete Ricker delay
model

x(t+ 1) = x(t)er−x(t−1),

and Liz [7] discussed the qualitative behavior of Ricker equation

x(t+ 1) = x(t)er(t)−x(t).
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We observe that the studies are scarce for the Ricker model (1.1) with control term
u. This motivates us to consider the present paper. We shall see later the extra
control term can be used to dominate the status of (1.1).

On the other hand, for stability problems of continuous or discrete models, the
practical stability (or finite-time stability) has garnered much attentions from the
researchers, see, for example, [1, 4, 10, 11] and the references therein. Roughly
speaking, a model is said to be practically stable if the model’s states do not exceed
a predesigned bound in a finite (or, an infinite) time interval. This type of stability
is different from the Lyapunov stability [10] and more suitable for the practical
purposes [11]. Inspired by the practical stability, we introduce a new stability to
(1.1), and will call it controllable stability in the sequel.

Our main objective in this paper is twofold. The first goal is to consider whether
we can find a constrained condition (of u) such that the states x(t) of (1.1) will
have been staying in a prescribed bound during a desired time interval. Our second
task is to consider whether we can seek out a control condition such that for a given
integer η > 0, the model (1.1) is asymptotically η-periodic.

For the purposes above, we assume that
(H1) there exist γ1, γ2 ∈ (0, 1) and r1, r2 ∈ (0,∞) such that

inf
t∈Z+

γ(t) = γ1, sup
t∈Z+

γ(t) = γ2 and inf
t∈Z+

r(t) = r1, sup
t∈Z+

r(t) = r2;

(H2) the functions f(t, ω) and F (ω) are defined, respectively, by

f(t, ω) = ωer(t)−ω and F (ω) = ωer2−ω for ω ≥ 0 and t ∈ Z0;

(H3) for w = {w(t)}t≥0 ∈ l∞, we denote the norm by ||w|| = sup0≤t<∞ |w(t)|.
Specially, ||w||T = supT≤t<∞ |w(t)| for w = {w(T ), w(T + 1), w(T + 2), . . .};
(H4) for a given integer η > 0 and two real numbers µ2 > µ1 > 0, the set
l∞η [µ1, µ2] ⊂ l∞ is defined by

l∞η [µ1, µ2] = {w := {w(t)}t≥0 ∈ l∞ : µ1 ≤ w(t) ≤ µ2 and w is η-periodic}.

Note that, (1.1) defines a set of real sequences. Indeed, given a u ∈ l∞ and initial
values x(−τ) = x−τ , x(−τ + 1) = x−τ+1, . . . , x(0) = x0, we may calculate

x(1) = γ(0)x(0) + u(0)x(−τ)er(0)−x(−τ),

x(2) = γ(1)x(1) + u(1)x(−τ + 1)er(1)−x(−τ+1),

. . . . . . . . .

in a unique manner, and this sequence x(t) := {x(t)}t≥−τ is called a solution of
(1.1).

Let D([−τ, 0],S) denote the set of the functions ϕ : {−τ,−τ+1, . . . , 0} → S ⊂ R

with the norm |ϕ| = max−τ≤t≤0 |ϕ(t)|. In general, we denote D([−τ, 0],R) by
D[−τ, 0]. In what follows, by x(t;ϕ, u) we denote the solution of (1.1), with the
control u ∈ l∞ and the initial conditions x(−τ) = ϕ(−τ), x(−τ + 1) = ϕ(−τ +
1), . . . , x(0) = ϕ(0) for ϕ ∈ D[−τ, 0]. If the context is clear, we will replace x(t;ϕ, u)
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by x(t). Then, the solution x(t;ϕ, u) of (1.1) satisfies that

x(t;ϕ, u) = ϕ(0)

t−1∏

k=0

γ(k) +

t−1∑

k=0

[
t−2∏

s=k

γ(s+ 1)

]
f(k, x(k − τ))u(k), t = 0, 1, 2, . . . ,

(1.2)
here the function f is defined as in (H2).

We remark that the solution x(t;ϕ, u) of (1.1) is positive when both the initial
value function ϕ and the control u are positive. Since (1.1) describes a type of
population models, in the sequel we only focus on the positive initial values ϕ and
the positive controls u.

Definition 1. We say (1.1) to be controllably stable with respect to {[β1, β2]; [µ1, µ2]}
if for given β2 > β1 > 0, there exist µ2 > µ1 > 0 such that any control u ∈ l∞ with
µ1 ≤ u(t) ≤ µ2 for t ∈ [0,∞), and any initial value ϕ ∈ D([−τ, 0], [β1, β2]), imply
that

β1 ≤ x(t;ϕ, u) ≤ β2 for all t ∈ Z0.

Definition 2. We say (1.1) to be controllably permanent with respect to {T, β;α, µ},
if for given T > τ and β > 0, there exist two real numbers α > 0 and µ > 0 such
that

|x(t;ϕ, u)| ≤ β for ϕ ∈ D([−τ, 0], (0, α]), ||u||T ≤ µ and t ≥ T.

Definition 3. We say (1.1) to be controllably periodic with respect to {η, [β1, β2]; l
∞
η [µ1, µ2]},

if for given integer η > 0 and two real numbers β2 > β1 > 0, there exists an η-
periodic set l∞η [µ1, µ2] ⊂ l∞ such that for each u ∈ l∞η [µ1, µ2],

x(t;ϕ, u) is asymptotically η-periodic for any ϕ ∈ D([−τ, 0], [β1, β2]).

Here we remark that our controllable stability is different from the practical
stability [10], in where the relation

β1 ≤ x(t;ϕ, u) ≤ β2

depends only on the initial value ϕ and the time t. We remark further that we have
not found some references involving the controllable periodicity.

2. Controllable Stability

This section is devoted to consider the stability of (1.1), including the controllable
stability and the controllable permanence.

Theorem 2.1. Suppose that

β1e
r1−β1 ≤ β2e

r1−β2 for 0 < β1 < β2. (2.1)

Then, under the assumptions (H1)–(H3), (1.1) is controllably stable with respect to
{[β1, β2]; [µ1, µ2]}, here

µ1 = (1− γ1)e
β1−r1 < µ2 = β2(1 − γ2)e

1−r2 .

Proof. It follows from (1.2) that

x(t;ϕ, u) ≤ γt
2|ϕ(0)|+

t−1∑

k=0

γt−1−k
2 |F (k, x(k − τ))u(k)|, t ∈ Z0, (2.2)
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where F as in assumption (H2). Note that F (ω) ≤ er2−1 for ω ≥ 0. Hence, from
(2.2) we obtain

x(t;ϕ, u) ≤ γt
2|ϕ(0)|+ er2−1||u||

t−1∑

k=0

γt−1−k
2

≤ γt
2||ϕ||+ er2−1||u||

1− γt
2

1− γ2

≤ β2 for t ∈ Z0 and ϕ ∈ D([−τ, 0], (0, β2]), (2.3)

where we have used ||u|| ≤ µ2 for the last step.
Similarly, by the assumption inft≥0 u(t) ≥ µ1 = (1 − γ1)e

β1−r1 , together with
the character of the function g(w) = wer1−w and the condition (2.1), we have

x(t;ϕ, u) ≥ γt
1ϕ(0) + (1− γ1)e

β1−r1

t−1∑

k=0

γt−k−1
1 f(k, x(k − τ))

≥ γt
1β1 + (1− γ1)e

β1−r1
1− γt

1

1− γ1
β1e

r1−β1

= β1, t = 1, 2..., τ + 1 and ϕ ∈ D([−τ, 0], [β1, β2]),

where f is from our assumption (H2). In general, by the mathematical induction,
we can infer that

x(t;ϕ, u) ≥ β1 for all t ≥ 0 and ϕ ∈ D([−τ, 0], [β1, β2]).

The proof is complete. �

The following is concerned with the controllable permanence of (1.1).

Theorem 2.2. Under the assumptions (H1)–(H3), (1.1) is controllably permanent
with respect to {T, β;α, µ}, here

µ < β(1− γ2)e
1−r2 and α =

(
β −

er2−1µ

1− γ2

)
γ−T
2 .

Proof. Similar to (2.3) in the proof of Theorem 2.1, we have

|x(t;ϕ, u)| ≤ γt
2|ϕ(0)|+ er2−1||u||T

t−1∑

k=0

γt−1−k
2

≤ γT
2 ||ϕ||+

er2−1||u||T
1− γ2

, t ≥ T,

which yields

|x(t;ϕ, u)| ≤ β for ϕ ∈ D([−τ, 0], (0, α]), ||u||T ≤ µ and t ≥ T.

The proof is complete. �

We now give an example to demonstrate the results above.

Example 1. Let

γ(t) = 0.225 + 0.025 sin
πt

4
, r(t) = 1.1 + 0.1 sin t.

Then, with the symbols in (H1) we have

γ1 = 0.2, γ2 = 0.25, r1 = 1 and r2 = 1.2.
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Now consider

x(t+ 1) = γ(t)x(t) + u(t)x(t − 2)er(t)−x(t−2), t ∈ Z0. (2.4)

Then, Theorem 2.1 implies that (2.4) is controllably stable with respect to ([0.2, 0.8]; [
0.36, 0.49]). That is, the solution x(t;ϕ, u) of (2.4) satisfies

0.2 ≤ x(t;ϕ, u) ≤ 0.8

as ϕ ∈ D([−2, 0], [0.2, 0.8]) and 0.36 ≤ u(t) ≤ 0.49 for t ≥ 0. See the following
graph:

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β
2
=0.8

β
1
=0.2

For u(t)∈[0.49, 0.55]

For u(t)∈[0.36, 0.49]

On the other hand, Theorem 2.2 implies that (2.4) is controllably permanent with
respective to {30, 0.8; 1015, 0.49}. That is, the solution x(t;ϕ, u) of (2.4) satisfies

|x(t;ϕ, u)| ≤ 0.8 as ϕ ∈ D([−2, 0], (0, 1015]) and ||u||30 ≤ 0.49 for t ≥ 30.

To see this, we show the first 50-terms of x(t;ϕ, u) for ϕ(−2) = 0.82, ϕ(−1) = 0.95
and ϕ(0) = 1 as follows:

0 5 10 15 20 25 30 35 40 45 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

β=0.8
For u(t)∈[0.47, 0.49] for t≥ 30For u(t)∈[0.44, 0.64] for t < 30

3. Controllable Periodicity

This section is concerned with the periodicity of (1.1). We first note that the
character of the function F ′(ω) for F (ω) = ωer2−ω (see assumption (H2)):

Then, it is easy to see that when δ ∈ (0, 1) with δ+eδ−2 ≤ 1, |F ′(ω)| ≤ (1−δ)er2−δ

for ω ∈ [δ,∞).
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Lemma 3.1. Suppose that δ ∈ (0, 1) with δ + eδ−2 ≤ 1, and ||u|| < (1−γ2)e
δ−r2

1−δ
.

Then, any two solutions x(t) and y(t) of (1), with x(t) ≥ δ and y(t) ≥ δ for all
t ≥ −τ , satisfy that

lim
t→∞

|x(t) − y(t)| = 0. (3.1)

Proof. We proceed in two steps.

(i) Assertion 1: each solution x(t;ϕ, u) of (1.1) is bounded.
To see this, we note that for a given ϕ ∈ D([−τ, 0], (0,∞)) and a positive control

u ∈ l∞, there exists a λ ≥ 1 such that

||ϕ|| ≤ λ
||u||er2−1

1− γ2
. (3.2)

Then, from (1.2) it follows that

|x(t;ϕ, u)| ≤ γt
2|ϕ(0)|+ ||u||

t−1∑

k=0

[
t−2∏

s=k

γ(s+ 1)

]
|f(k, x(k − τ))|

≤ γt
2||ϕ||+ ||u||

t−1∑

k=0

γt−k−1
2 |F (x(k − τ))|, t ∈ Z0. (3.3)

Likewise, by |F (ω)| ≤ er2−1 for ω ≥ 0, it follows from (3.2)–(3.3) that

|x(t;ϕ, u)| ≤ γt
2 · λ

||u||er2−1

1− γ2
+ ||u||

1− γt
2

1− γ2
er2−1 ≤ λ

||u||er2−1

1− γ2
,

and this shows the solution x(t;ϕ, u) of (1.1) is bounded.

(ii) Assertion 2: under the hypotheses in Lemma 3.1, the conclusion (3.1) is true.
Indeed, by assertion 1, we can assume that

lim sup
t→∞

|x(t) − y(t)| = w.

In other words, for any ε > 0, there exists an integer N > 0 such that

|x(t) − y(t)| ≤ w + ε for t ≥ N. (3.4)

Now, from (1.2) we have

|x(t)− y(t)| ≤ γt−N
2 |x(N)− y(N)|+ ||u||

t−1∑

k=N

γt−1−k
2 |x(k)er(k)−x(k) − y(k)er(k)−y(k)|

= γt−N
2 |x(N)− y(N)|+ ||u||

t−1∑

k=N

γt−1−k
2 |(1− ξ(k))er(k)−ξ(k)(x(k)− y(k))|

≤ γt−N
2 |x(N)− y(N)|+ ||u||

t−1∑

k=N

γt−1−k
2 |F ′(ξ(k))(x(k) − y(k))|, t ≥ N,

(3.5)

where ξ(k) is between x(k) and y(k). Consequently, |F ′(ξ(k))| ≤ (1− δ)er2−δ (see
the diagram F ′(ω) above). Therefore, in the light of (3.4)–(3.5), it holds that

|x(t)− y(t)| ≤ γt−N
2 |x(N)− y(N)|+ ||u||

1− γt−N
2

1− γ2
(1− δ)er2−δ(w + ε), t ≥ N,
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which results in

w ≤
||u||(1− δ)er2−δ

1− γ2
(w + ε),

and this, coupled with the hypothesis ||u|| < (1−γ2)e
δ−r2

1−δ
, yields w = 0. The proof

is complete. �

Lemma 3.2. [6, Krasnoselskii’s Fixed Point Theorem] Let S be a closed, convex,
and bounded subset of a Banach space X and T, U : S → X be two operators such
that
(i) T is a contraction;
(ii) U is completely continuous, and
(iii) Tx+ Uy ∈ S for all x, y ∈ S.
Then T + U has a fixed point in S.

Theorem 3.3. Suppose that γ(t) and r(t) are periodic with a common σ-period.
Suppose further that η > 0 is an integer with σ|η (η divides exactly by σ), and

β1e
r1−β1 ≤ β2e

r1−β2 for 0 < β1 < β2 with β1 ∈ (0, 1) and β1 + eβ1−2 ≤ 1,

Then, the following is true:

(i) (1.1) is controllably periodic with respect to {η, [β1, β2]; l
∞
η [µ1, µ2]}, here

µ1 = (1− γ1)e
β1−r1 ≤ µ2 < min

{
β2(1− γ2)e

1−r2 ,
(1− γ2)e

β1−r2

1− β1

}
; (3.6)

(ii) for each u ∈ l∞η [µ1, µ2], (1.1) has a unique η-periodic solution p(t) satisfying

β1 ≤ p(t) ≤ β2 for all t ≥ −τ.

Proof. We proceed in several steps.

(i) Assertion 1: for each u ∈ l∞η [µ1, µ2], (1.1) admits an asymptotically η-periodic
solution.

To see this, we take

l∞ap(η) = {{x(t)}t≥−τ ⊂ R : x is asymptotically η-periodic}.

Then, l∞ap(η) is a Banach space with the norm ||x|| = sup−τ≤t<∞ |x|. Let

Sap =
{
{x(t)}t≥−τ ∈ l∞ap(η) : β1 ≤ x(t) ≤ β2 for all t ≥ −τ

}
.

Then, Sap is bounded, convex and closed.
Now, for a fixed u ∈ l∞η [µ1, µ2], we define two operators T, U : Sap → l∞ap(η) as

follows:

(Tx)(t) =

{
0, t = −τ, −τ + 1, . . . , 0,
γ(t− 1)x(t− 1) + f(t− 1, x(t− 1− τ))u(t− 1), t ≥ 1

and

(Ux)(t) =

{
x(t), t = −τ, −τ + 1, . . . , 0,
0, t ≥ 1,

where f(t − 1, ω) = ωer(t−1)−ω as in the assumption (H2). Then, by the straight-
forward verification, we have for any x, y ∈ Sap,

β1 ≤ (Tx)(t) + (Uy)(t) ≤ β2 for t ≥ 1,

and consequently,
Tx+ Uy ∈ Sap for all x, y ∈ Sap.
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Furthermore, since USap is bounded and USap ⊂ R
τ+1, it becomes a relatively

compact set. Hence, U is completely continuous.
To invoke Lemma 3.2, we show that T is contractive. Indeed, by (3.6) we can

choose an ε0 ∈ (0, 1) such that

µ2(1− β1)e
r2−β1 ≤ 1− γ2 − ε0. (3.7)

Then, for any x, y ∈ Sap, it follows that

(Tx)(t)− (Ty)(t) = γ(t− 1)(x(t− 1)− y(t− 1)) +

u(t− 1)(f(t− 1, x(t− 1− τ)) − f(t− 1, y(t− 1− τ))), t ≥ 1,

which, with the help of

|f(t− 1, x(t− 1− τ)) − f(t− 1, y(t− 1− τ))|

≤ |F ′(ξ((t − 1− τ)))| · |x(t − 1− τ)− y(t− 1− τ)|

≤ (1− β1)e
r2−β1 |x(t− 1− τ)− y(t− 1− τ)|,

amounts to

|(Tx)(t)− (Ty)(t)| = γ2||x− y||+ ||u||(1− β1)e
r2−β1 |x(t − 1− τ)− y(t− 1− τ)|

≤ γ2||x− y||+ µ2(1− β1)e
r2−β1 ||x− y||

≤ (1 − ε0)||x− y||, t ≥ 1,

where we have imposed ||u|| ≤ µ2 for the second step, and (3.7) for the last step.
Now we see that T verifies the contractive condition. Thus, Lemma 3.2 implies

that there exists x̃ ∈ Sap such that

x̃(t) = (T x̃)(t) + (Ux̃)(t), t ≥ −τ,

and this yields

x̃(t+ 1) = γ(t)x̃(t) + u(t)x̃(t)er(t)−x̃(t) for t ≥ 0. (3.8)

That is, (1.1) has an asymptotically η-periodic solution.

(ii) Assertion 2: for each u ∈ l∞η [µ1, µ2], the solution x(t;ϕ, u) of (1.1) is asymp-
totically η-periodic for any ϕ ∈ D([−τ, 0], [β1, β2]).

In reality, for each u ∈ l∞η [µ1, µ2], by assertion 1 we can set x̃(t) is an asymptot-
ically η-periodic solution of (1.1) and let

x̃(t) = p(t) + q(t), (3.9)

where p(t) is η-periodic and limt→∞ q(t) = 0. In addition, by Theorem 2.1 we have
β1 ≤ x(t;ϕ, u) ≤ β2 for any ϕ ∈ D([−τ, 0], [β1, β2]). Now by Lemma 3.1 we have

lim
t→∞

|x(t;ϕ, u) − x̃(t)| = 0,

which means that
x(t;ϕ, u) = p(t) + c(t),

where limt→∞ c(t) = 0. Hence, x(t;ϕ, u) is asymptotically η-periodic.
As thus, we have shown that (1.1) is controllably periodic with respect to

{η, [β1, β2]; l
∞
η [µ1, µ2]}.

(iii) Assertion 3: for each u ∈ l∞η [µ1, µ2], the function p(t) as in (3.9) is a unique
η-periodic solution of (1.1), and satisfies that β1 ≤ p(t) ≤ β2 for all t ≥ −τ .

As a matter of fact, from (3.8)–(3.9) it follows that

p(t+ 1) → γ(t)p(t) + u(t)p(t− τ)er(t)−p(t−τ) as t → ∞.
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Since γ(t)p(t)+u(t)p(t−τ)er(t)−p(t−τ) is η-periodic, the relation above implies that

p(t+ 1) = γ(t)p(t) + u(t)p(t− τ)er(t)−p(t−τ) for t ≥ 0.

That is, p(t) is an η-periodic solution of (1.1).

Besides, by (3.9) we have

β1 ≤ p(t) + q(t) ≤ β2 for t ≥ −τ. (3.10)

Since p(t) is periodic and q(t) → 0 as t → ∞, by (3.10) it follows that

β1 ≤ p(t) ≤ β2 for t ≥ −τ.

The uniqueness of p(t) is due to Lemma 3.1. The proof is complete. �

We finally remark that, under hypotheses of Theorem 3.3, (1.1) is globally
asymptotically η-periodic, since we can choose β1 → 0 and β2 → ∞ such that

β1e
r1−β1 ≤ β2e

r1−β2 for 0 < β1 < β2.

Example 2. Let

γ(t) = 0.225 + 0.025 sin
πt

2
, r(t) = 1.1 + 0.1 sin

πt

2
.

Then, both γ(t) and r(t) are 4-periodic, and

γ1 = 0.2, γ2 = 0.25, r1 = 1 and r2 = 1.2.

Consider

x(t+ 1) = γ(t)x(t) + u(t)x(t− 2)er(t)−x(t−2), t ∈ Z0 (3.11)

and take β1 = 0.4 and β2 = 2. Then,

min

{
β2(1 − γ2)e

1−r2 ,
(1− γ2)e

β1−r2

1− β1

}
= 0.5616.

Now, for any positive integer η with 4|η, Theorem 3.3 implies that (3.11) is con-
trollably periodic with respect to {η, [0.4, 2]; l∞η [0.44, 0.56]}. Furthermore, (3.11) has
a unique η-periodic solution for each u ∈ l∞η [0.44, 0.56]. To confirm our belief, we

choose an 8-periodic control function u(t) = 0.5 + 0.06 cos πt
4 ∈ l∞8 [0.44, 0.56] and

show the first 50 terms of two solutions x(t;ϕ, u) of (3.11) as follows:
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The first 50 terms of two solutions of (17) for u(t)=0.5+0.06 cos(πt/4)
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4. An Open Problem

In this paper, we employ the general analysis methods to study the stability for a
class of population models. It is worth mentioning that there are other methods for
the stability analysis, see, for example, [2, 3, 13, 14]. To be specific, Burton et al.
contributed their pioneering works[2, 3] in where the authors used the fixed point
theorems to analyze the stability for differential equations, while Cheng, Wang
and the present author [13, 14] studied the similar problems by making use of the
frequency analysis. A problem now emerges that whether we can invoke the method
of fixed point theorems (or frequency analysis) to consider the present model. This
is an interesting direction, and we leave it for our future endeavor.

Acknowledgments. The authors are very thankful to the reviewers for their valu-
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