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GALERKIN APPROXIMATION FOR ONE-DIMENSIONAL WAVE

EQUATION BY QUADRATIC B-SPLINES

NOURIA ARAR

Abstract. This work is devoted to the development of a Galerkin-type ap-
proximation of the solution of a wave equation, using quadratic B-Spline func-
tions and a 2-centred finite difference scheme. Two examples are used to val-
idate the proposed approximation. The numerical results obtained show the
effectiveness of the procedure for very small times. This makes it attractive
for the approximation of PDEs with not known explicit solution.

1. Introduction

Many physical phenomena can be described using the properties of wave prop-
agation. We can cite the waves propagating on the surface of the water following
the fall of an object, the waves moving on the surface of the sea, the seismic waves
moving on the ground and the sound waves, they are called acoustic waves. An-
other type of waves are electromagnetic waves such as light and radio waves. In this
article, we are mainly interested in the acoustic wave equation [8, 10, 11, 15, 17, 20],
which is the simplest model (scalar model) but which is already very rich because it
allows to address the main concepts common to all these models. This is one of the
best known equations of mathematical physics, owing to Jean Le Rond d’Alembert
(1747). It is of the form

∂2u

∂t2
− α2 ∂

2u

∂x2
= f(t, x).

Much work has already been devoted to the development of effective numerical
methods to solve this type of problem. In the 1930s, finite differences, were the
first methods for discretizing wave equations [19]. Despite their great simplicity in
terms of writing and low calculation cost, these remain limited to simple geometries
and the Courant, Friedrichs and Lewy (CFL) stability condition was proved to be
necessary for convergence. Another difficulty with finite difference methods lies in
the implementation of the boundary condition with the same numerical precision
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as inside the domain. We also mention the method of the finite volumes, which can
treat complex geometries and deal well with the boundary conditions of Neumann
type. However, few theoretical results of convergence can be established. On the
other hand, the finite elements method is worth to mention since many theoreti-
cal convergence results are possible. Nevertheless, in the classical finite elements
method, the approximate solution is the only continuous function. Now, in many
applications, as in computer graphics, it is preferable to use functions having at
least one continuous derivative. This property will be satisfied in the finite ele-
ments method by B-Splines [6, 7, 14, 16, 18].
Bases consisting of B-splines are well-conditioned, at least for orders less than 20.
These are functions with compact support; in the sense that at every point only a
fixed number (equal to the order) of B-Splines is nonzero. They are defined piece-
wise by a polynomial on each interval between nodes and having at least the first
derivative continuous to the right and to the left in each node.
Several works have been established using B-Splines. These include, for example,
data fitting, function approximation, numerical quadrature, and the numerical so-
lution of operator equations such as those associated with ordinary and partial
differential equations as in [1, 2, 3, 13].
When used alone, any numerical method has its own problems and limitations.
However, it is more beneficial to combine two methods and profit from their advan-
tages while minimising their respective disadvantages. An example is a combination
of finite differences and finite elements methods using B-Splines.
In this paper, a homogeneous one-dimensional wave equation with initial and
boundary conditions is transformed into a set of linear ordinary differential equa-
tions with deduced boundary conditions, by applying a 2-centred finite difference
scheme. Then, the numerical solution of every one of the ODEs is built up with a
Galerkin approximation using a quadratic B-spline basis by virtue of their simplic-
ity of calculation and implementation. The performance of the displayed method
has been tested on two problems with known analytic solutions.

2. The model problem

Consider the problem of a wave equation given by











































∂2u

∂t2
− α2 ∂

2u

∂x2
= 0, (x, t) ∈ [a, b]× [0, T ]

u(a, t) = u(b, t) = 0, 0 < t < T
u(x, 0) = g(x), a < x < b

∂u

∂t
(x, 0) = h(x), a < x < b

(2.1)

where α is a positive parameter. The solution is given by the d’Alembert formula
in [17]

u(x, t) =
1

2
(g(x+ αt) + g(x− αt)) +

1

2α

∫ x+αt

x−αt

h(ξ) dξ, (2.2)

if g ∈ C
2(R) and h ∈ C

1(R).
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3. Construction of numerical model

3.1. Time discretization of (2.1). First, let us start with time discretization
where the interval [0, T ] is subdivided into p subintervals Ij = [tj−1, tj ], of the same
lenght ∆t = tj − tj−1 for j = 1, p and t0 = 0.

Considering a scheme with the centred difference of order 2 to approach ∂2u
∂t2

, the

method of discretization in time consists in finding successively for j = 1, p the
functions Uj = Uj(x) which are solutions of the problems



















1

∆t2
Uj+1 =

2

∆t2
Uj −

1

∆t2
Uj−1 + α2 d

2Uj+1

dx2
, x ∈ [a, b]

U0(x) = g(x), a < x < b
U1(x) = g(x) + ∆t · h(x), a < x < b

(3.1)

where U0 is the initial condition whereas U1 is obtained using an implicit sheme for
approximating the initial condition

∂u

∂t
(x, 0) = h(x), a < x < b

Note that U1 can be obtained by using Taylor expansion at time ∆t :

u(x,∆t) = u(x, 0) + ∆t
∂u

∂t
(x, 0) +

∆t2

2

∂2u

∂t2
(x, 0)

and from

∂2u

∂t2
= α2 ∂

2u

∂x2
and

∂u

∂t
(x, 0) = h(x), a < x < b

we have

U1(x) = g(x) + ∆t · h(x) +
∆t2

2
α2g′′(x). (3.2)

3.2. Spatial discretization of (3.1). This is accomplished on two steps

Step 1: Solution of the problem (3.1) starts with the construction of a weak for-
mulation needed in Galerkin approximation.
Let v be a test function. The weak formulation of (3.1) is given by

∫ b

a

v(x)

(

1

∆t2
Uj+1 −

2

∆t2
Uj +

1

∆t2
Uj−1 − α2 d

2Uj+1

dx2

)

dx = 0

which can be written, after integration by parts, for all j = 1, p

1

∆t2

∫ b

a

v(x)Uj+1(x)dx + α2

∫ b

a

v′(x)U ′

j+1(x)dx

=

2

∆t2

∫ b

a

v(x)Uj(x)dx −
1

∆t2

∫ b

a

v(x)Uj−1(x)dx + α2
[

v(x)U ′

j+1(x)
]b

a
.

(3.3)
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Step 2: Next, let us subdivide the interval [a, b] into N subintervals of length
h = b−a

N
by the nodes xi given by xi = a + ih, (i = 0, 1, . . . , N). Then as a basis

approximation space take the set of quadratic B-splines {B−1, B0, · · · , BN} defined
by

Bm(x) =
1

h2















(xm+2 − x)2 − 3(xm+1 − x)2 + 3(xm − x)2 [xm−1, xm]
(xm+2 − x)2 − 3(xm+1 − x)2 [xm, xm+1]
(xm+2 − x)2 [xm+1, xm+2]
0 otherwise

where h = xm+1 − xm; m = −1, N , (for more details see [9, 12]).
Note that each quadratic spline Bm(x) and its first derivative vanish outside the
interval [xm−1, xm+2]. The values of Bm(x) and B′

m(x) at the nodes are given in
the following table

x xm−1 xm xm+1 xm+2

Bm(x) 0 1 1 0
B′

m(x) 0 2/h −2/h 0

The approximation of the solution Uj+1(x) can be expressed in the basis {Bm} by

UN
j+1(x) =

N
∑

n=−1

cj+1
n Bn(x) (3.4)

where cj+1
n are (unique) coefficients to be determined.

As each spline covers three intervals xm−1 ≤ xm+2 so that three Bm−1, Bm, and
Bm+1 cover each finite element [xm, xm+1], all other splines are zero in this region.
Then from the equation (3.4), the values Uj+1,m of the solution and the values
U ′

j+1,m of the derivative at the nodes xm are given by

Uj+1,m = Uj+1(xm)

= cj+1
m−1 + cj+1

m

(3.5)

and
U ′

j+1,m = U ′

j+1(xm)

=
2

h
(cj+1

m − cj+1
m−1).

(3.6)

From boundary conditions, we get

cj+1
−1 = −cj+1

0 and cj+1
N = −cj+1

N−1.

Hence, approximation (3.4) takes the following form

UN
j+1(x) =

N−1
∑

n=0

cj+1
n Qn(x) (3.7)

where, (as defined in [4])

Q0(x) = B0(x)−B−1(x)
Qm(x) = Bm(x); m = 1, N − 2

QN−1(x) = BN−1(x) −BN (x).

Thus, there remains N unknowns cj+1
m (m = 0, N − 1) to be determined.

Galerkin’s approximation starts of replacing in the weak formulation (3.3) v(x) by
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Qm(x) (m = 0, N − 1). Then, substituting (3.5), (3.6) and (3.7) in the obtained
equation yields

1

∆t2

N−1
∑

n=0

cj+1
n

∫ b

a

v(x)Qn(x)dx + α2

N−1
∑

n=0

cj+1
n

∫ b

a

v′(x)Q′

n(x)dx

=

2

∆t2

∫ b

a

v(x)Uj(x)dx −
1

∆t2

∫ b

a

v(x)Uj−1(x)dx + α2
[

v(x)U ′

j+1(x)
]b

a
.

But, Qm(x0) = Qm(xN ) = 0 for all m = 0, N − 1. So, for v(x) = Qm(x), we have
[

v(x)U ′

j+1(x)
]b

a
= 0.

The latter equation becomes for all m = 0, N − 1 and j = 1, p

1

∆t2

N−1
∑

n=0

(

∫ b

a

Qm(x)Qn(x)dx

)

cj+1
n + α2

N−1
∑

n=0

(

∫ b

a

Q′

m(x)Q′

n(x)dx

)

cj+1
n

=

2

∆t2

∫ b

a

Qm(x)Uj(x)dx −
1

∆t2

∫ b

a

Qm(x)Uj−1(x)dx.

(3.8)
which can be written in the matrix form:

(

1

∆t2
A+ α2B

)

cj+1 =
1

∆t2
(2Dj − Ej−1) (3.9)

where

cj+1 = (cj+1
0 , cj+1

1 , cj+1
2 , · · · , cj+1

N−1)
T ; j = 1, p

Dj = (Dj
0, D

j
1, · · · , D

j
N−1)

T

with Dj
m =

∫ b

a

Qm(x)Uj(x)dx; m = 0, . . . , N − 1.

and
Ej−1 = (Ej−1

0 , Ej−1
1 , · · · , Ej−1

N−1)
T

with Ej−1
m =

∫ b

a

Qm(x)Uj−1(x)dx; m = 0, . . . , N − 1.

The matrices A, B are N ×N penta-diagonal matrices defined by

Amn =

∫ b

a

Qm(x)Qn(x)dx, and Bmn =

∫ b

a

Q′

m(x)Q′

n(x)dx.

Solving the system (3.9) is done in three steps

Step 1: j = 1: A starting vector c2 must first be determined from the initial
conditions in (2.1) by solving the following system

(

1

∆t2
A+ α2B

)

c2 =
1

∆t2
(2D1 − E0) (3.10)

where

c2 = (c20, c
2
1, c

2
2, · · · , c

2
N−1)

T ; j = 1, p

E0 = (E0
0 , E

0
1 , · · · , E

0
N−1)

T

with E0
m =

∫ xm+2

xm−1

Qm(x)g(x)dx; m = 0, . . . , N − 1.
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and

D1 = (D1
0, D

1
1 , · · · , D

1
N−1)

T

with D1
m =

∫ xm+2

xm−1

Qm(x)(g(x) + ∆t · h(x))dx; m = 0, . . . , N − 1

or D1
m =

∫ xm+2

xm−1

Qm(x)

(

g(x) + ∆t · h(x) +
∆t2

2
α2g′′(x)

)

dx.

Step 2: j = 2: The vector c3 is determined from the initial condition con-
cerning the derivative and the vector c2 calculated in the first step, by
solving the following system

(

1

∆t2
A+ α2B

)

c3 =
1

∆t2
(2D2 − E1) (3.11)

where

E1 = (E1
0 , E

1
1 , · · · , E

1
N−1)

T

with E1
m =

∫ xm+2

xm−1

Qm(x)U1(x)dx = D1
m; m = 0, . . . , N − 1.

Then
E1 = D1 and then Ej = Dj , ∀j ≥ 1.

On the other hand

D2 = (D2
0, D

2
1 , · · · , D

2
N−1)

T

with D2
m =

∫ xm+2

xm−1

Qm(x)U2(x)dx; m = 0, . . . , N − 1.

or

UN
2 (x) =

N−1
∑

n=0

c2nQn(x)

then

D2
m =

N−1
∑

n=0

(

∫ xm+2

xm−1

Qm(x)Qn(x)dx

)

c2n; m = 0, . . . , N − 1.

So
D2 = Ac2 and then Dj = Acj , ∀j ≥ 2.

Step 3: j ≥ 3: After having calculated c2 and c3, we solve system (3.9) by
using a recurrence on the following system, for all j ≥ 3

(

1

∆t2
A+ α2B

)

cj+1 =
1

∆t2
A(2cj − cj−1) (3.12)

4. Numerical tests

In this section, we present the numerical solutions in the following two examples
whose respective analytic solution is known. The results obtained from the B-spline
approximation method will be compared with those of the 2-centred finite difference
scheme. The precision of the method will be measured at each moment with the
L∞ error norm defined by

ME = ‖Exact sol.− UN‖∞ ≃ max
j

|Exact solj − UN
j |

and compared with the similar error obtained with the second order centred finite
difference method.
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All computations were done using the PC with an hp Pavilion, Intel(R) Core(TM)
i3-3217U CPU@ 1.80GHz. All the programming is implemented in MATLAB 9.0.
The rate of convergence is computed approximately by the following formula

Order =
ln
(∣

∣

∣
Exact sol.− UN

hj

∣

∣

∣

/

∣

∣

∣
Exact sol.− UN

hj+1

∣

∣

∣

)

ln (hj/hj+1)
, (4.1)

where hj is the spatial discretization step Note that for the approximation of U1

we used the formula in (3.1) instead of (3.2).
Example 1. Set α = 0.5 in (2.2) and taking the following boundary conditions:

u(−3π, t) = u(3π, t) = 0; ∀ t ∈ [0, 10]

and the initial conditions

u(x, 0) = cos(x/2),
∂u

∂t
(x, 0) = 0, ∀ x ∈ [−3π, 3π].

The exact solution of (2.1) is easily shown to be as follows

u(x, t) = cos(x/2) cos(t/4).

The results presented in Table 1 through Table 6 are obtained with time discretiza-
tion steps ∆t = 0.1, 0.05 and 0.01 at times t = 4 and t = 7 respectively. The
behavior of the maximal error committed is observed by increasing the number of
nodes for the method of quadratic B-splines (BS-M), whereas the error becomes
very large with the second order centred finite difference method (FD-M) from
N ≥ 512 for ∆t = 0.1, N ≥ 1024 for ∆t = 0.05, and N ≥ 4096 for ∆t = 0.01.
Moreover, the error obtained for the approximation by the quadratic B-splines is
of the order of 10−3 for ∆t = 0.05 and is of 10−4 for ∆t = 0.01 whatever the
number of points considered. This implies that the approximation produced by the
quadratic B-splines method, for a small number of nodes and in a short time may
be sufficient to conjecture it as being the desired solution.

Table 1. Maximal error for Example 1 with ∆t = 0.1 and t = 4.

N FD-M BS-M

128 1.068364× 10−2 6.536689× 10−3

256 1.054402× 10−2 6.536612× 10−3

512 5.990567× 1011 6.536607× 10−3

Table 2. Maximal error for Example 1 with ∆t = 0.1 et t = 7.

N FD-M BS-M

128 1.264294× 10−2 4.206455× 10−3

256 1.235262× 10−2 4.206468× 10−3

512 1.191619× 1033 4.206468× 10−3

Figure 1 and Figure 2 show the effectiveness of the proposed approximation for
only N = 256 and in a short time since the ∆t = 0.1 as mentioned above. Figure 3
and Figure 4 illustrate the maximal error obtained for Example 1 when ∆t = 0.1,
N = 256 at t = 4 by BS-approximation method and FD-method respectively. It is
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Table 3. Maximal error for Example 1 with ∆t = 0.05 et t = 4.

N FD-M BS-M

128 5.441953× 10−3 3.322631× 10−3

256 5.300873× 10−3 3.322553× 10−3

512 5.265599× 10−3 3.322548× 10−3

1024 1.948620× 1040 3.322548× 10−3

Table 4. Maximal error for Example 1 with ∆t = 0.05 et t = 7.

N FD-M BS-M

128 6.526843× 10−3 2.027483× 10−3

256 6.235820× 10−3 2.027495× 10−3

512 6.163062× 10−3 2.027496× 10−3

1024 1.104524× 1083 2.027496× 10−3

Table 5. Maximal error for Example 1 with ∆t = 0.01 et t = 4.

N FD-M BS-M

128 1.241290× 10−3 6.732863× 10−4

256 1.099043× 10−3 6.732082× 10−4

512 1.063477× 10−3 6.732033× 10−4

1024 1.054585× 10−3 6.732032× 10−4

2048 1.052362× 10−3 6.732032× 10−4

4096 4.330312× 10126 6.732055× 10−4

Table 6. Maximal error for Example 1 with ∆t = 0.01 et t = 7.

N FD-M BS-M

128 1.618322× 10−3 3.930522× 10−4

256 1.326734× 10−3 3.930646× 10−4

512 1.253835× 10−3 3.930654× 10−4

1024 1.235610× 10−3 3.930655× 10−4

2048 1.231054× 10−3 3.930656× 10−4

4096 1.494652× 1023 3.930641× 10−4

very clear that the BS-approximation is much better than the FD-approximation.
In Figure 5 and Figure 6, we display comparison of the exact solution with BS-
approximation, and the exact solution with FD-approximation respectively.
The converge rates computed, for example 1, by the present method for values of
space size hj and a fixed value of the time step ∆t are recorded in Table 8. It is
clearly seen that the scheme provides reductions in convergence rates for the smaller
space sizes.
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Table 7. Order of convergence at t = 10, ∆t = 0.001

N hj ME Order

16 3π/8 5.303660× 10−4 −

32 3π/16 2.676937× 10−4 9.864051× 10−1

64 3π/32 2.514317× 10−4 9.041663× 10−2

128 3π/64 2.504165× 10−4 5.836928× 10−3

256 3π/128 2.503538× 10−4 3.612713× 10−4

512 3π/256 2.503503× 10−4 2.016933× 10−5

1024 3π/512 2.503490× 10−4 7.491537× 10−6

Table 8. Order of convergence as a function of ∆t and N , at t = 10.

N ∆tj ME Order

256 1/10 2.494313× 10−2 −

256 1/20 1.249634× 10−2 0.997137

256 1/40 6.253762× 10−3 0.998709

256 1/80 3.128203× 10−3 0.999390

256 1/160 1.564424× 10−3 0.999703

256 1/320 7.822930× 10−4 0.999851

256 1/640 3.911678× 10−4 0.999921
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Figure 1. BS-approximation of Example 1 for ∆t = 0.1 and N = 256.
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Figure 2. Exact solution of Example 1 for ∆t = 0.1 and N = 256
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N = 256 by FD-M



GALERKIN APPROXIMATION FOR WAVE EQUATION BY B-SPLINES 41

-8 -6 -4 -2 0 2 4 6 8

x

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Solution

Approximation

Figure 5. Comparison of the exact solution and its BS-M approxima-

tion for ∆t = 0.1, N = 256 at t = 7.
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Figure 6. Comparison of the exact solution and its FD-M approxi-

mation for ∆t = 0.1, N = 256 at t = 7.

Example 2. Set α = 1 in (2.2) and taking the following boundary conditions:

u(0, t) = u(2, t) = 0; ∀ t ∈ [0, 2]

and the initial conditions

u(x, 0) = 0,
∂u

∂t
(x, 0) = sin(

3π

2
x), ∀ x ∈ [0, 2].

The exact solution of (2.1) is shown to be as follows

u(x, t) =
2

3π
sin(

3π

2
x) sin(

3π

2
t), ∀(x, t) ∈ [0, 2]× [0, 2].

The results presented in Table 9 through Table 14 are obtained with time discretiza-
tion steps ∆t = 0.1, 0.05 and 0.01 at times t = 0.6 and t = 1.4 respectively. The
behavior of the maximal error committed is observed by increasing the number of
nodes for the method of approximation by the quadratic B-splines, whereas the
error becomes very large when calculating the approximation by the second order
centred finite difference method from N ≥ 128. In this example again we find the
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stability and convergence of the quadratic B-spline method for a small number of
nodes and in a short time in comparison with the finite-centred difference method
which seems unstable.
Figure 7 and Figure 8 show the effectiveness of the proposed approximation for
N = 1024 and ∆t = 0.001.

Table 9. Maximal error for Example 2 with ∆t = 0.1 et t = 0.6.

N FD-M BS-M

128 3.546268× 10−3 5.800394× 10−2

256 4.748272× 10−3 5.800097× 10−2

512 2.794580 5.800060× 10−2

1024 5.627875× 103 5.800055× 10−2

Table 10. Maximal error for Example 2 with ∆t = 0.1 et t = 1.4.

N FD-M BS-M

128 8.173375× 1011 4.731669× 10−2

256 4.961335× 1019 4.731405× 10−2

512 3.976005× 1027 4.731371× 10−2

Table 11. Maximal error for Example 2 with ∆t = 0.05 et t = 0.6.

N FD-M BS-M

128 2.585296 4.460768× 10−2

256 1.348315× 107 4.460607× 10−2

512 7.199611× 1013 4.460587× 10−2

Table 12. Maximal error for Example 2 with ∆t = 0.05 et t = 1.4.

N FD-M BS-M

128 3.364519× 1025 2.316473× 10−2

256 2.320939× 1042 2.316302× 10−2

512 5.006166× 1058 2.316280× 10−2

Table 13. Maximal error for Example 2 with ∆t = 0.01 et t = 0.6.

N FD-M BS-M

128 1.091746× 10−4 1.271944× 10−2

256 2.292106× 1019 1.271943× 10−2

512 2.317129× 1063 1.271942× 10−2
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Table 14. Maximal error for Example 2 with ∆t = 0.01 et t = 1.4.

N FD-M BS-M

128 1.447045× 10−4 2.118835× 10−3

256 9.157291× 1069 2.118836× 10−3

512 7.554487× 10173 2.118835× 10−3

Figure 7. BS-approximation of Example 2 for ∆t = 0.001 and
N = 1024.

Figure 8. Exact solution of Example 2 for ∆t = 0.001 and N = 1024

Conclusion. The use of quadratic B-spline for the approximation of the wave
equation leads to a convergent method in a rather small and especially stable time.
This fact is lost when using a finite difference scheme in some cases. Performance
of method has been shown in terms of maximal error between exact solution and
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BS-approximation in the Tables by studying two test problems. We conclude that it
may be preferable to use a quadratic B-spline approximation to obtain the numerical
solutions of the differential equations at short times particularly for the EDP whose
explicit solution is not known.
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périodiques 36 (1981), 305–314. https://doi.org/10.1007/BF03000609

[9] M. Gheorghe and M. Sanda, Handbook of Splines, Kluwer Academic Publishers, London,
1999. https://doi.org/10.1007/978-94-011-5338-6
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