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ON BOUNDS OF TOEPLITZ DETERMINANTS FOR A
SUBCLASS OF ANALYTIC FUNCTIONS

MUHAMMET KAMALI, ALINA RISKULOVA

ABSTRACT. In the present article, our aim is to investigate the problem of
obtaining upper bounds for |T>(2)|, |72(3)], |753(2)| and |T3(1)|, which are
special cases of the symmetric Toeplitz determinant for functions belonging to
the M (A, n) subclass.

1. INTRODUCTION

Let A denote the family of normalized analytic functions in the open unit disk
A ={ze C:|z| <1} of the form:

f2)=2+) anz", (z€4) (1.1)

and S be the subclass of A consisting of all univalent functions in A.
Let f be analytic in A and be given by (1.1)). Then a function f is starlike and
convex, if and only if

21 (2) 21" (2)
Re >0, Req 14+ —; > 0.
{ ) } { e
We denote the class of starlike functions by S* and convex functions by C, respec-
tively.
For fe A,neN={0,1,2,,3,...}, the operator D" f is defined by D" : A — A
[13]

Df(2) = f (=)
D™ f(z) =2 [D"f (2)] ) (z€A).
Iffed, f(z)=2+ p0yarz®, then

D"f(z)=2z+ Zk"akzk, (z € A).
k=2
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Let n € N=1{0,1,2,,3,...} and A > 0. We let D} denote the operator defined
by [10]
DY :A— A,
D3f(2)=f(2),
Dif(2) = (1= DSf (=) + Az (DRS () = (1=A) f(2) +A=f (2),
DY f(2) = (1= X) DX f (2) + Az (DY f (2)) -
We observe that DY is a linear operator and for

f(z)=z+ Zakzk,
k=2
we have [14]
) =2+ SO AG - D] a2t (1.2)
k=2

Hankel determinants play important role in several branches of mathematics
such as quantum mechanics,image processing, statistics and probability, queueing
networks, signal processing and time series analysis to mention a few [18].

The Hankel determinant of f for ¢ > 1 and n > 1 was defined by Pommerenke
(2 3]) as

Ay an+1 e (LnJrq,l
Ap+1 Ap+2 - .. An+4q
Uptg—1 GOpiyq - Oni2¢-—2

and define the symmetric Toeplitz determinant T, (n) as follows:

(7% Ap+1 cee Op4qg—1
An41 Qn coo Qnig-2
T, (n) = : (1.4)
Un+q—1 Opyg—2 " 29
In particular,
a a a a o dz a3
1 2 2 3
H2 (1) = 5 HQ (2) = N Hg (1) = | a a3 Q4
a2 as az a4
az a4 as
and
ag ag az a4
T2 (2) = ) T2 (3) = ‘ p
az az as ag
1 as a3 az az G4
T3 (1) = ag 1 as |, T3 (2) = az a2 as
az as 1 as as Gs

We note that H (1) is the well-known Fekete-Szego functional [T1].

In recent years a lot of papers has been devoted to the estimation of determinants
built with using coefficients of functions in the class A or its subclasses ([0} [7, 9
17, 19, 23, 24]). In the univalent function theory, an extensive focus has been given
to estimate the bounds of Hankel matrices. Hankel determinants play a vital role
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in different branches and have many applications. The closer relation from the
Hankel determinants are the Toeplitz determinants. A Toeplitz determinant can
be thought of as an 'upside-down’ Hankel determinant, in that Hankel determinant
have constant entries along the reverse diagonal, whereas Toeplitz matrices have
constant entries along the diagonal. A good summary of the applications of Toeplitz
determinant to a wide range of areas of pure and applied mathematics can also be
found in [I8].

In 2017, Ramachandran et al. [5] studied the problem of obtaining upper bounds
for some special types of Toeplitz determinants obtained from the coefficients of
functions belonging to a subclass of analytic functions denoted by M,. In 2018,
Radhika et al. [25] studied the Toeplitz matrices whose elements are the coefficients
of Bazilevic functions and obtained upper bounds for the first four determinants
of these Toeplitz matrices. In 2019,Arif et al. [20] studied the Hankel determinant
of order three for familier subsets of analytic functions related with sine function.
In 2021, Ayinla et al. [22] defined the new subclass of analytic functions denote
by R, (a, ) and obtained upper bounds of T5 (2), T» (3), T3 (2), T5 (1) Toeplitz
determinants for functions belonging to this class.

In this study, we will consider the subclass of analytic functions defined as follows:

Definition 1.1. Let A > 0 and suppose that f (z) is defined by if
2 (Dyf ()
Red —=2—2 3 >0, (z€A).

{ Dyf (2) Fed)
We let the class of these functions be defined by M (A, n) .

2. A SET OF LEMMAS

Let P denote the family of all functions p which are analytic in A with Rep (z) >

0 and has the following series representation

p(2) =14 p1z+paz® + p32® + ... =1+ anz" (€ A). (2.1)
n=1

Here p (z) is called the Caratheodory function [I].
Lemma 2.1. Let p(z) € P. Then |p,| <2, n=1,2,... [2]]
Lemma 2.2. ([I5, 16, 20]) The power series for p(z) =1+ .2 p,2™. Let the
function p(z) € P be given by , then
2p; = pi +z (4 - pi) (2:2)

for some x, |z| < 1,and

tps=pl 42 (A=) o —p (4-pd) 2 +2(4-p2) (1= o) n(23)  (23)
for some complex value n, |n| < 1.

Lemma 2.3. ([20,22]) Let p (z) € P and has the form (2.1), then

P% |I>1|2
_P gL 2.4
’PQ 5| = D) ( )
|Pntar — wpnpi| < 2(1+2p) forp €R, (2.5)

|Pntk — n0npr| <2, for0 <n <1, (2.6)



ON BOUNDS OF TOEPLITZ DETERMINANTS 39

|pmpn _pkpl| <4 form +n=k+1, (27)

and for complex number \, we have
[p2 = Apf| <max{2,2|A - 1[}. (2.8)
For the results in (2.4)-(2.7) see [], see [12] for the inequality (2.8).
Lemma 2.4. [20] Let p(z) € Pand has the form (2.]), then
|Jp} — Kpipa + Lps| < 2|J| +2|K —2J|+2[J — K + L|. (2.9)
Proof. Consider the left hand side of and rearranging the terms, we have
|J (P} — 2p1p2 + p3) — (K —2J) (p1p2 — ps) + (J — K + L) ps|

[J1 P} — 2p1p2 + ps| + |K — 2J||p1p2 — ps| + |ps| |J — K + L|
2|0 +2|K —2J|+2|J — K + L|

where we have used Lemma 1' and the result }p‘;’ — 2p1p2 + pg’ < 2 due to
[16]. O

| Jp} — Kpips + Lps|

VAN VAN VAN

3. MAIN RESULTS
Theorem 3.1. If the function f(z) € M (X\,n) and of the form (I.1]), then

2 3 4
< —— < ——5 < ———.

Proof. Let f € M (A, n). Then, there exists a p € P such that

’

z(DYf(2) = (DXf(2)p(2).
From this last equation ,we write
24214+ N "a92® +3(14+20)"az2® +4 (1 + 3\ " azz* + ...
= z4+[p1+(1+XN)"a2] 2% + [p2 + (1 +A)" agpr + (1 +20)" as] 2°
+ps + (14 N)" azpz + (1+20)" aspy + (1 +30)" aq] 2* + ...

Thus,we obtain

n n D1
2(1+ A = 1+ A =02 = ——5 3.1
(I+AN)"a2=p1+(1+N)"a2= as TSR (3.1)
3(1+20)"as = p2 + (1+ A" agpr + (1 +2))" a3 = as = _mApi (3.2)
2(1+20)"
and
4(1+3N)"as=p3+ (1+N)"agpa + (1 +2X)"azp1 + (1 + 3\)" ag =
2p3 + 3p1p2 + Pl
= D 3.3
“T T (1 + 30 (3:3)
Applying relation [p;| < 2 in (3.1)), we obtain
2
jag) = —2L_ < . (3.4)
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Applying relation (2.4]) in (3.2]), we obtain

las] = o pe B = e p2 — o 4 o2
1 1, 13, 1 1,\ 3,
< =z g ] | QU L S ) S 2
= 2(1+2/\)"{p2 2p1+‘2p1}—2(1+2)\)"{< 2p1)+2p1
1
= 7n{2+p%}.

2(1+2))

Let @ (p1) = W {2+ p%} with p; € [0,2]. A simple computation leads to

O (p1) = s 201} = = p1 =0.

2(1+ 2)\) 1+ 2>\)

with a simple calculation.
® (p1) has a maximum value attained at p; = 2,also which is

1 oy 3
_2(1+2)\"{ 2 =y

Applying relation (2.9)) in , we obtain

|as|

1 3
S S 2
a sy |p? + 3p1p2 + 2ps|

1
< — {21 +2]-3-2]+2]1 2
< sagayr Q22T 2es )
4
(1+3N)"
O

Theorem 3.2. Let A > 0, and if the function f(z) be of the form belongs to
the classM (A, n), then we have the sharp bound

4
IT> (2)] = "13 - a2| 1+ 2)\) (1 n )\)Qn . (3.6)

Proof. In view of (3.1) and (3.2)), a simple computation leads to

2 2 4 2
a% . a% _ P3 —+ b2pi —+ b1 — b1 . (3.7)
4(1+2X) 2(142)) 4(1+2N) I+ M)
Note that, by Lemma we may write 2ps = p? + x (4 - p2) where without loss

of generality we let 0 < p; = p < 2. Substituting this into the above equation, we
obtain the following quadratic equation in terms of x :

az — Qg

4—p2)? 3p% (4 — p? 414+ 02" —16p2 (1 +2)0)2"
2 2:( r’) x2+p( p)ergp(Jr) 6p~ (1+2))

16 (14 20)>" 8(1+2))%" 16 (14 20)"" (1+ A"
Applying the triangle inequality, we obtain
4—p?)? 32 (4—p)  9pt (14N +16p% (1 + 20"
a2 — a2 < (4-»%) er( p)+p( ) P ( ) — U (p)

T16(1420)7" 8(1 420" 16 (14 20" (1 + A)*"
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Differentiating ¥ (p) with respect to p, we write

p (p2 1+ 0" +2(1+ N> +2(1+ 2)\)2")
(1420 (1 + N

Y (p) =

4 2n 2n
Setting U (p) = 0 yields either p = 0 or p? = 72[(1+/\21++A§i:2>\) ]

Since ¥' (p) > 0 on 0 < p < 2 and so ¥ (p) < ¢ (2). For p = 2 we have
ag = ﬁ and az = ﬁ which yields

|a27a2|< ) — 4 .
PO 420 A+

Remark. Forn = 0, as a special case of Theorem [3.4 we get the sharp bound
as [Ty (2)| = |a3 — a3| < 5. This result agree with bound obtained for the class of
starlike function S* by Thomas and Halim [8].

Theorem 3.3. Leth > 0, and if the function f (z) be of the form belongs to
the classM (A, n), then

Proof. In view of (3.3) and (3.2) and applying Lemma denoting F' = 4 — p?
and G = (1 - \x|2) 7, where 0 < p; <2 and |n| < 1, we get

1
(142X0)>"

16 9

(1430 (1+20)™"

T5 (3)] = |aj — a3] < max{

2 2
a2 — (ZpsEdppat P\ ([ _p2+p
4o 6(1+3\)" 2(1+2\)"
_ 9w i 3piaF bpieF piatF

16 (1420)%" 41430 81420  12(1+30)""  12(1+3)0)*"

_ 22 F? 25p2 2 2 B Sp2ad F? p2artF? pIFG
16 (1+20)°" 144 (1430 72(1+430)°" 1441430 6(1+ 30"

5praF2G plszQG F2G?

2n 2n + 2n "
36 (1 + 3)) 36 (1 + 3)) 36 (1 + 3))
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As in the proof of Theorem [3.2] without loss of generality, we can write lettingp; =
p, where 0 < p; < 2. Then an application of triangle inequality gives,

= ap+4) (4=p)" o (G —100) (4=1)"
144 (1 +3))*" 72(1 430"
(12p* — 24p%) (4 = p°) (1 + 20"
+ 94+ 25 (14 207" p +4 (120" p = 8 (1+20)™"] (4 - )
144 (1 + 30)2" (1 + 20)™"
2 (14307 (4= p2) p? +30 (1 +20)™" (4 = p2) p* + 10 (1 + 20)*" (4 — p?)*p ]
72 (14 30)%" (1 +2)0)*"

o — a3

2

+ |z

2
+(47p2) + 6p* (4 — p?) N p0 B op*
36 (14 3))*" 414302 16 (1+ 20"
= ¢(p 7).

Now to find the maximum value of ¢ over the region D, differentiatingp with respect
to |x|, we get

o o) E-p) s (1) () o (12p —2429 Y (4-p%)
|| 36 (1 +3))%" 24 (1 + 31)*" )\)2"
[9(1+3A)2"+25(1+2/\)2" P2+ 4(1+20)%" p—8(1+2)0)*"
+ ||

72 (1+ 30" (1+ 20"

+27(1+3)\)2n(4—p2)p2+30(1+2)\)2n(4 p?) p* +10 (1 + 2X)*" (4 - p2)2p
72 (14 30)%" (1 +2X)*"

We need to find the maximum value of ¢ (p, |z|) on[0, 2] x [0, 1]. First, assume that
there is a maximum at an interior point ¢ (po, |zo|) of [0, 2] x [0, 1]. Differentiating
¥ (p, |z|) with respect to |z| and equating it to zero implies that p = pg = 2, which
is a contradiction. Thus for the maximum of ¢ (p, |z|), we need only to consider
the end points of [0,2] x [0, 1].For p = 0 we have

4 L o3 =81 +20)™ 4

YO lz)) = ————= = + o o 1T+

9(1+3X\) 9 (14 30" (1+2)) 9(1+3\)

< T

(1+2))"

For p = 2 we obtain
16 9
(1+3X\) (1+2X)

For |z| = 0 we have

¥ (p,0) = (4=07)" +6p° (4 - p?) A s
’ 36 (1+30)>" 414307 16(1+2)0)>"
which has the maximum value (1+§f\)2n — (1+29/\)2n on [0, 2].
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For |z| = 1we obtain
(> —dp+4) (4—p2)°  (5p2 —10p) (4—p2)°  (12p* — 24p®) (4 — p?)
144 (1 4 3)0)*" H— (1+3))%" 144 (1 4 30)*"
[9 (14302 +25(1+ 202 p? +4(1+ 20> p—8(1+ 2/\)2”} (4 - p?)
144 (14 30)%" (1 + 2X0)*"
L2 (14307 (4 — p2) p2 +30 (1 +20)>" (4 — p?) p* + 10 (1 + 20" (4 — p?)°p
144 (14 30)°" (1 + 20"

p° 9p

A(1+30% 16(1+20)>"

Y(p,1) =

2

+

(=) 6P (1) 4

36 (14 3))%"

which has the maximum value for

for p = 2 and

16 9 1
(14+3))2" (1+20)2" (14+20)2"

p=0.
Remark. For n = 0,as a special case of Theorem we get the sharp bound

as |Ty (3)| = |a3 — a3| < 7. This result agree with bound obtained for the class of
starlike function S* by Thomas and Halim [§].

Theorem 3.4. LetA > 0, and if the function f (z) be of the form belongs to
the classM (A, n), then

T35 (2)] < 61.02,
where

2
01 = max 5
{(1 +2))

1) ma, 72 L/1+A)"
= X —
2 (IT+N)"13\143x)

4 18 8

+ n n
(T4+ X" (@420 1+AN)" (143X
T+2\"
1-2 .
(i) [}
as a3z a4

T5(2)| =] as ay a3 | =|(a2 — a4) (a3 — 203 + azas)|
ay, asz a2

Now, let’s first calculation to expression |az — aq|. In view of (3.1]) and (3.3)), we
obtain

and

Proof. With a simple calculation, we can write

P1 P3 Pip2 sz

T+ X" 31+30" 2(1+30)" 6(1+3\N)"
Using Lemma [2.2] to express ps and ps in terms ofp;,we obtain ,with F' = 4 — p?
andG = (1 —|#*) 5, we have

2 1 {p? SpreF pra’F FG}

Az — a4 =

PTUE AN T 1" L2 12 12 6
In this last expression, if 0 < p; = p < 2 is taken and the triangle inequality is
used, we write
p 7
1+XN"  2(1+3)N)"

(4—p*)p
2(1+3))

5p(4 — p?)
12(1+3\)"

(4= (1- =)

2
w el T

a2a4|S‘ =

2]+



44 M. KAMALI, A. RISKULOVA

(p—2)4—p*) 2 5pd-p? 4-p? p p’
_ < = -7 -
ol < Ty P iy T i ey Tar T sa ey
= ®(p,lz|).

Differentiating ® (p, |x|) with respect to |z|,we get

00 Sp(4—p?)  plel(4=p*) (4-p%) 2]

Ol 12(1+3N)" © 6(1+3N)"  3(1+3\N)"
We need to find the maximum value of ® (p, |x|) on[0, 2] x [0, 1]. First, assume that
there is a maximum at an interior point ® (po, |xo|) of [0, 2] x [0, 1]. Differentiating
® (p, |z|) with respect to |z| and equating it to zero implies thatp = py = 2, which
is a contradiction. Thus for the maximum of ® (p, |z|), we need only to consider
the end points of [0,2] x [0, 1]. For p = 0 we obtain

2 ) 2 2
() P — <
(0,]z1) 3113\ =1 + 3(1+30" ~3(1+3\)"
For p = 2 we have
P 4 P 1+ A\"
d(2,|z)) = - = 1-2 .
)=\ ~asay| - G <1+3>\>

For |z| = Owe obtain

p P

T+ X" 2(1+3)\)"

1+ A\"
1-2
=

4 — p?
(143X

‘I’(p,0)=6 n+‘

which has maximum value

2 1
®(p,0) = 1+ 0" (113N

attained at the point p = 2..
For |z| = 1 we obtain

(p—2)4-p)  5p(d-p? 4-p? ‘ PP
12(1+30)" 12(14+30)"  6(1+3N)"  |[1+XN)"  2(1+3N)"

L 1+2\"
143\
1+2\"
1-2

(1+3/\) }:s
1/1 " 1 "
lag — a4] < max 2 {( +>\> 71—2(1:—3);) }

(1+X)" 13 \1+3\
2 2 2 3
+p D1 2p3 + 3p1p2 +p
2_9,2 _ P1 ) P2 1 1)
Gz 2aytazta = {3y 242" ) T\ T+ 6(1+3\)"

2
ITESVE

3

®(p,1)=

Which has maximum value ® (p,1) =0 at p = 0, and

2 4
(I)(p’l):‘(l+>\)"_(1+3>\)"

2 1
(1+N)"

at p = 2. Hence

2 2
3L+ A+ N

lag — aq] < max{

In view of (3.1)), (3.2) and (3.3), we write
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Using Lemma to express py and p3 in terms of p;, we obtain ,with F' = 4 — p?
2
andG = (1 — |z|”) n, we have

2 4 2 F 2F2 4
(l% - 20‘3 + a2a4 = P on i on ne on ’ on = 2n
(14 X) 8(1+2X) 4(14+2)) 8(1+2)) 2(1+2))
__pel  p P N pizF
2(1+20)%"  2(1+20)%" 121+ X0)"(1+30)"  6(1+XN)"(1+3))"
B piFz? nFG N pi
6(L+N)" (1+30"  6(1+N"(1+30)"  4(1+N)"(1+3\)"
N piaF N pi
41+ 0" (14+30"  6(1+N"(1+3N)"

Choosing p; = p € [0, 2], applying triangle inequality and simplifying, we obtain

1-p?)° (p* —2p) (4 -p?)
2 2 2 < ( 2
|a2 as + a2a4| = 8 (1 + 2A)2n 192 (1 + )\>n (1 n 3)\)77. | |
5 3 2 2 p(4—p2)
+ n n 4 - + mn n
[12(1+/\) (14 3X)) 4(1+2/\)2"]p (1=p7) o 6(1+N\)"(1+3))
oo 9w p*
T+ 8(1+20)"  2(1+X1)"(1+3))"
= T(p,|z])

We need to find the maximum value of T (p, |z|) on[0, 2] x [0, 1]. First, assume that
there is a maximum at an interior point I' (po, |zo|) of [0,2] x [0, 1]. Differentiating
T (p,|z|) with respect to |z| and equating it to zero implies that p = pg = 2, which
is a contradiction. Thus for the maximum of I" (p, |x|), we need only to consider

the end points of [0, 2] x [0, 1].For p = 0 we obtain
2 ) 2
L0, f2]) = ———3 2" < ————3

(1+2X)

For p = 2 we have

4 18 8

b2 Jzl) = L+ 0% (1+20)™ TN

For |z| = 0 we obtain

p(4—-p?)
6(1+N)"(1+3)N)"

p? 9p* p*

Fp0)= 1T+ X2 8(1+20)*" EETESVATEEE

which has maximum

4 18 8

L0 = 0 (T2 A (13"

on [0, 2].
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For |z| = 1we obtain
_ | (=P (P2p)(a0?) 5 3
I'(p,1) = 8(1+2))2" + 2(14+N)" (130" + [12(1+>\)“(1+3A)“ - 4(1+2>\)2ﬂ} p2 (4 - p2)

P(4—P2) 9gp? 4
+6(1+)\)n(1+3)\)n + ’ (1_:))\)271, - 8(1-‘1-2)\)2" + 2(1+)\)7€(1+3)\)n

2

which has maximum value T (p,1) = W forp=0andT (p,1) = ‘ (H—i)z" — (1+;§)2n + (1+A)”'?1+3A)"
for p = 2.

Thus, we have
|a272a2+aa|<max 2 4 — 18 + 8

2o T = A+207 @+ @20 @+ @+3N"| [

If expressed as

’a2 —2a% + a2a4| < max 2 4 — 18 + 8 =0
2 - 207 [+ 1+20)7 @+N)"(1+3N"

and
2 L/1+2)\" 1+2\"
- < — - I —= 1-2 —— =4
a2 a4_maX(1+>\)"{3<1+3)\) ’ <1+3)\> } 2
we obtain
T3 (2)| = |(a2 —ay) (a% —2a§ —|—a2a4)| = |ag — a4l ‘a% - 2a§ +a2a4| < 61.02.

O

Remark. Forn =0, we get the sharp bound as
|T5(2)] = |(a2 —ay) (a% — 2a§ + a2a4)| < 12.

Theorem 3.5. LetA > 0, and if the function f (z) be of the form belongs to
the classM (A, n), then

-
(1+2)0)"

24 (1420 —9(14+ 1) —8(1 +20)™"
(14 X" (1 +2))"

|T3(1)|§max{1+ 1+

Proof. With a simple calculation, we can write

1 ag asg
Ts(1)=|ax 1 ay |=1—a3+aza3—a3+azas—a3=1—2a3(az—1)—a3.
asz a2 1

Expanding the determinant by using equations (3.1]) and (3.2) and applying Lemma
with F =4 — p? | we write

p1 T potp? p 17 \’

T5(1) = 1+2a2(a3—1)—a2=1+2 L - ==L
o = 1o -d = () 58 1] - ()
24(1420" 901+ , 2 o A(420)" =31+ 1",

16(1+)\)2n (1+2A)2n 1 (1+A)27’L 1 8(1+)\)2n (1+2>\)27L 1

22 F?

16 (1 4 2)0)*"
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Without loss of generality, we let 0 < p; = p < 2. Now substituting this into
the above equation and applying the triangle inequality, we obtain the following
quadratic equation in terms of x.

(4—p2)° AL 4+20)" +3(1+ N (4—p?) p?
16 (14 20)>" 8(1+ A" (142X
[24 (1+20"+9(1+ A)ﬂ p?+32(1+20)7"
16 (1 4+ A)%" (1 +2)0)" P

T3 (1))

+ |1+

= O(p,A)
Differentiating © (p, A) with respect to p we obtain
96 P [p2 ((1 N A1+ 2>\)") F2(1 4N 41 +20)" +4(1+2)0)*"
ap 1+ 02" (1 420"

Equating to 0 we have %—2 =0=p=0and

s 204N 420" 41+ 20"
T+ A" +4(1+20)"
Since ©' (p) > 0on 0 < p; =p < 2 and so © (p) < O (2). For p; = 0 we have

24 (14 20)%" =9 (1+A)*" —8(1 + 2))*"
(14N (142"

Ts (D] < |1+

O

Remark. Forn =0, we get the sharp bound as |T5 (1)] = |1+ 2a3 (a5 — 1) — a3| <
8.
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