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INVESTIGATING n-QUASI-(m, q)-ISOMETRIES IN THE

CONTEXT OF METRIC SPACES

ASMA AL RWAILY

Abstract. In this study, we introduce a new class of transformations on met-

ric spaces by defining the concept of an n-quasi-(m, q)-isometric mapping. For
a positive integers n,m and q ∈ (0,∞), a map U : (E, d) −→ (E, d) is said to

be an n-quasi-(m, q)-isometric mapping if U satisfies∑
0≤k≤m

(−1)m−k
(m
k

)
d
(
Un+kω,Un+kψ

)q
= 0, ∀ ω, ψ ∈ E.

We give some of their properties, studying the products and the power of such

operators and we discuss their impact on the structure of metric spaces, paving
the way for further mathematical applications in this field.

1. INTRODUCTION AND TERMINOLOGIES

The class of m-isometric operators on Hilbert spaces was introduced by
Agler ([1]) and subsequently studied by Alger and Stankus ([2, 3, 4]). An operator
U acting on a Hilbert space K is called an m-isometry if∑

0≤k≤m

(−1)m−k
(
m

k

)
U∗kUk = 0, (1.1)

or equivalently ∑
0≤k≤m

(−1)m−k
(
m

k

)
‖Ukψ‖2 = 0, ψ ∈ K. (1.2)

Sid Ahmed [18] and Botelho [13] employed equation (1.2) to introduce the concept
of m-isometries on a Banach space. Bayart [5] replaced the exponent 2 in equation
(1.2) with q ∈ [1,∞) and introduced the following definition: a bounded linear
operator U :acting on a Banach space X is an (m, q)-isometry if∑

0≤k≤m

(−1)m−k
(
m

k

)
‖Ukψ‖q = 0 (ψ ∈ X ). (1.3)

Hoffmann and Mackey [17] explored the above definition for p > 0.
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In the paper [9], T. Bermdez et al., introduced and studied the concept of (m, q)-
isometric maps on metric spaces. Let E be a metric space and m ≥ 1 be integer
and q > 0. A map U : E → E is called an (m, q)-isometry if for all ω, ψ ∈ E∑

0≤k≤m

(−1)m−k
(
m

k

)
d
(
Ukω,Ukψ

)q
= 0. (1.4)

Several authors have worked on the extension ofm-isometries to n-quasi-m-isometries
in the broader context of Hilbert and Banach spaces. An operator U acting on a
Hilbert space K is refereed as n-quasi-m-isometric operator ([21])if it satisfies

U∗n
( ∑

0≤k≤m

(−1)m−k
(
m

k

)
U∗kUk

)
Un = 0, (1.5)

or ∑
0≤k≤m

(−1)m−k
(
m

k

)
‖Un+kψ‖2 = 0, ∀ ψ ∈ K. (1.6)

In the context of Banach spaces, research on the extension of m-isometries to n-
quasi-m-isometries is complex, particularly because Banach spaces do not have
as rich a structure as Hilbert spaces. This implies that certain notions, such as
isometries or quasi-isometries, require a more general definition and sometimes a
relaxation of conditions. This leads the authors in [15] to propose the following
definition. spaces. An operator U acting on a Banach space X is refereed as n-
quasi-(m, q)-isometric operator if it satisfies∑

0≤k≤m

(−1)m−k
(
m

k

)
‖Un+kψ‖q = 0, ∀ ψ ∈ K. (1.7)

These operators have been the subject of extensive research by numerous authors,
as detailed in references [6, 7, 8, 10, 11, 12, 14, 16, 19, 20, 22].

Following the works concerning the extensions of m-isometries in Hilbert and Ba-
nach spaces to n-quasi-m-isometries, this paper introduces a novel concept of map-
pings in metric spaces, which builds upon and generalizes the notion of m-isometries
on metric spaces. Specifically, we extend the class of m-isometries to a more general-
ized framework of mappings, which we term n-quasi-(m, q)-isometries in context of
metric spaces. A mapping U : (E , d) −→ (E , d) is called an n-quasi-(m, q)-isometric
mapping if U satisfies∑

0≤k≤m

(−1)m−k
(
m

k

)
d
(
Un+kω,Un+kψ

)q
= 0, ∀ ω, ψ ∈ E . (1.8)

We examine several key properties of n-quasi-(m, q)-isometries, focusing on their
behavior under products and powers.

2. BASIC PROPERTIES OF n-QUASI-(m, q)-ISOMETRIES ON
METRIC SPACES

In this section we introduce and study the of n-quasi (m, q)-isometries on
metric spaces and prove results that generalizes the existing ones corresponding to
n-quasi (m, q)-isometries on Banach spaces.

Proposition 2.1. Let U : E → E be an n-quasi (m, q)-isometry if and only if is an

(m, q)-isometry on R(Un).
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Proof. Let U : E → E is an n-quasi (m, q)-isometry on E , if and only if, for all
ω, ψ ∈ E we have

0 =
∑

0≤k≤m

(−1)m−k
(
m

k

)
d
(
Un+kω,Un+kψ

)q
=

∑
0≤k≤m

(−1)m−k
(
m

k

)
d
(
Uk(Unω),Uk(Unψ)

)q
=

∑
0≤k≤m

(−1)m−k
(
m

k

)
d
(
Ukω,Ukψ

)q ∀ω, ψ ∈ R(Un).

Equivalently, U is an (m, q)-isometry on R(Un). �

Remark. (1) When m = 1, Equation (1.8) is equivalent to

d
(
Un+1ω,Un+1ψ

)q
= d
(
Unω,Unψ

)q
, ∀ ω, ψ ∈ E ;

(2) When m = 2, Equation (1.8) is equivalent to

d
(
Unω,Unψ

)q − 2d
(
Un+1ω,Un+1ψ

)q
+ d
(
Un+2ω,Un+2ψ

)q
= 0, ∀ ω, ψ ∈ E ;

(3) When m = 3, Equation (1.8) is equivalent to

d
(
Unω,Unψ

)q−3d
(
Un+1ω,Un+1ψ

)q
+3d

(
Un+2ω,Un+2ψ

)q−d(Un+3ω,Un+3ψ
)q

= 0,

∀ ω, ψ ∈ E .

Remark. In the previous proposition, we have shown that U is a n-quasi-(m, q)-

isometry on E if and only if U is an (m, q)-isometry on R(Un). In particular, if
R(Un) is dense in E, then U is an n-quasi-(m, q)-isometry on E if and only if U
is an (m, q)-isometry on E. For this reason, we will assume throughout this paper
that R(Un) is not dense on E.

Proposition 2.2. Let U : E → E be an n-quasi (m, q)-isometry, then U is an
n1-quasi (m, q)-isometry for all n1 ≥ n.

Proof. Assume that U is an n-quasi (m, q)-isometry on E . Referring to Proposition

2.1 we get that U is an (m, q)-isometry on R(Un). On the other hand, it is easily
seen that

R(Un) ⊃ R(Un1) ∀n1 ≥ n.
This implies that U is an (m, q)-isometry on R(Un1). Therefore, U is an n1-quasi

(m, q)-isometry for all n1 ≥ n. �

Example 2.3. Consider the metric space (E , d), where E = R2 and

d
(
(ω, ψ), (u, v)

)
= |ω − u|+ |ψ − v|.

Define U : R2 → R2 as follows U(ω, ψ) = (ω+ψ−12 , ω+ψ+1
2 ).

We see that ∑
0≤k≤2

(−1)2−k
(

2

k

)
d
(
U2+kω,U2+kψ

)q
= d

(
U2ω,U2ψ

)q − 2d
(
U3ω,U3ψ

)q
+ d
(
U4ω,U4ψ

)q
= 0 .



4 ASMA AL RWAILY

A simple computation shows that

∑
0≤k≤2

(−1)2−k
(

2

k

)
d
(
Ukω,Ukψ

)q
= d

(
ω, ψ

)q − 2d
(
Uω,Uψ

)q
+ d
(
U2ω,U2ψ

)q
6= 0.

It follows from that U is a 2-quasi (2, q)-isometry but is not a (2, q)-isometry.

Theorem 2.4. Let U : E → E be an n-quasi (m, q)-isometry.If R(Up) = R(Up+1),
then U is an p-quasi (m, q)-isometry for all 1 ≤ p ≤ n− 1.

Proof. Under the assumption that R(Up) = R(Up+1), we have R(Up) = R(Un),

Indeed, we know that R(Up+1) ⊃ R(Up+2). Let z ∈ R(Up+1), then there exist
ω ∈ E such that

z = Up+1ω = U(Upω)

this implies that there exist v ∈ R(Up) = R(Up+1) such that z = Uv. So, we get
the existence of ψ ∈ E such that

z = U(Up+1ψ) = Up+2(ψ).

By applying the same procedure (n − p) times, we obtain that R(Up) = R(Un),

It results that R(Up) = R(Un). Else, we have U is an n-quasi (m, q)-isometry on

E then U is an n-quasi (m, q)-isometry on R(Un) = R(Up). Hence, U is a n-quasi
(m, q)-isometry on E for some 1 ≤ p ≤ n− 1. �

Theorem 2.5. Let U : E → E be an n-quasi (m, q)-isometry, then U is an n-quasi
(l, q)-isometry for all l ≥ m.

Proof. It is enough to prove the result for l = m+ 1. So for all ω ∈ E , we have

∑
0≤k≤l

(−1)l−k
(
l

k

)
d
(
Un+kω,Un+kψ

)q
=

∑
0≤k≤m+1

(−1)m+1−k
(
m+ 1

k

)
d
(
Un+kω,Un+kψ

)q
=

∑
1≤k≤m

(−1)m−k
(
m+ 1

k

)
d
(
Un+kω,Un+kψ

)q
+ (−1)m+1d

(
Unω,Unψ

)q
+ d
(
Un+m+1ω,Un+m+1ψ

)q
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=
∑

1≤k≤m

(−1)m−k
((m

k

)
+

(
m

k − 1

))
d
(
Un+kω,Un+kψ

)q
+ (−1)m+1d

(
Unω,Unψ

)q
+ d
(
Un+m+1ω,Un+m+1ψ

)q
=

∑
1≤k≤m−1

(−1)m−(k+1)

(
m

k

)
d
(
Un+kω,Un+kψ

)q
+

∑
1≤k≤m

(−1)m−(k+1)

(
m

k − 1

)
d
(
Un+kω,Un+kψ

)q
+ d

(
Un+m+1ω,Un+m+1ψ

)q
+ (−1)m+1d

(
Unω,Unψ

)q
=

∑
0≤k≤m

(−1)m−k
(
m

k

)
d
(
Un+kω,Un+kψ

)q
+

∑
0≤k≤m

(−1)m−k
(
m

k

)
d
(
Un+1+kω,Un+1+kψ

)q
.

Since U is an n-quasi (m, q)-isometry, then∑
0≤k≤m

(−1)m−k
(
m

k

)
d
(
Un+kω,Un+kψ

)q
= 0

and by using Theorem 2.4 and put n−1 = p we get U is an p-quasi (m, q)-isometry,
then ∑

0≤k≤m

(−1)m−k
(
m

k

)
d
(
Up+kω,Up+kψ

)q
= 0.

So U is an n-quasi (l, q)-isometry for all l ≥ m. �

Example 2.6. For q ≥ 1, Consider lqN(R) = {(ωn)k≥0 /
∑
k≥1

|ωk|q <∞} and define

dq : lqN(R)× lqN(R) −→ R by

dq(ω, ψ) = dq((ωk)k, (ψk)k) =

(∑
k≥1

|ωk − ψk|q
) 1

q

.

Let U :
(
lqN(R), dq

)
→ (lqN(R), dq) given by U((ωk)k) =

(
0, ω1, ω2, · · · , ωk, · · ·

)
.

Direct computation shows that∑
0≤l≤2

(−1)m−l
(
m

l

)
dq
(
Un+lω,Um+lψ

)q
=

∑
0≤l≤2

(−1)m−l
(
m

l

)(∑
k≥1

|ωk − ψk|q
)

= 0.

So, U is an n-quasi-(m, q)-isometry for all positive integers m and n.

Example 2.7. Consider R3 the metric space with its Euclidean metric and define
the map U0 : R3 −→ R3 given by U(ω, ψ, ϕ) = (ϕ, 0, 0). A Direct calculation shows
that U0 is 2-quasi-(2, q)-isometry but U0 is not a quasi-(2, q)-isometry.

In the following result, we obtain some properties of the approximate spectral of
an n-quasi (m, q)-isometry.
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Proposition 2.8. Let E be normed space and U : E → E be an n-quasi (m, q)-
isometry. Then a nonzero approximate eigenvalue of U lies in the unit circle.

Proof. Let λ 6= 0 be an approximate eigenvalue of U . Then, there exist (xj) ⊂ E
with ‖xj‖ = 1 and (U − λ)xj −→ 0, so for all integer k ≥ 1, we get (Un+k −
λn+k)xj −→ 0. Since U is an n-quasi (m, q)-isometry, we have

0 =
∑

0≤k≤m

(−1)m−k
(
m

k

)
‖Un+kxj‖q

=
∑

0≤k≤m

(−1)m−k
(
m

k

)
|λ|q(n+k)

= |λ|qn(|λ|q − 1)m.

Since λ 6= 0, we get |λ| = 1 Hence the desired claim follows from that �

3. POWER AND PRODUCT OF n-QUASI-(m, q)-ISOMETRIES ON
METRIC SPACES

In this section we introduce and study the stability of n-quasi (m, q)- isometry
under products and ,particularity, under power.

Theorem 3.1. Let U : E −→ E be an n-quasi (m, q)- isometry, then Ur is an
n-quasi (m, q)- isometry for all positive integer r.

Proof. Let U be an n-quasi (m, q)- isometry, then U is a (m, q)- isometry on R(Un),

then we obtain Ur is an (m, q)- isometry for all positive integer r on R(Un). Since

nr > n for all r ≥ 1, we get on R(Unr) ⊂ R(Un). This implies thatUr is an n-quasi

(m, q)- isometry on R(Un). Hence, Ur is an n-quasi (m, q)- isometry for all positive
integer r. �

Proposition 3.2. Let U : E −→ E be a map and n1, n2, r, s,m, l be positive integers.
If Ur is an n1-quasi (m, q)-isometry and Us is an n2-quasi (l, q)-isometry, then U t
is an n0-quasi (p, q)-isometry, where t is the greatest common divisor of r and s,
n0 = max(n1r

t ,
n2s
t ) and p = min(m, l).

Proof. Since Ur is an n1-quasi (m, q)-isometry and Us is an n2-quasi (l, q)- isometry,

we deduce that Ur is an (m, q)- isometry on R(Un1r) and Us is an (l, q)-isometry

on R(Un2r). On the other hand, if we define t as the greatest common divisor of r
and s, then

R(Un1r) = R((U t)n1
r
t ) and R(Un2s) = R((U t)n2

s
t ).

. Let n0 = max(n1r
t ,

n2s
t ), then R(Un0t) ⊂ R(Un1r) and R(Un0t) ⊂ R(Un2s). It

follows from that Ur is an (m, q)- isometry and Us is an (l, q)-isometry on R(Un0t)

we can easily show that U t is an (p, q)- isometry on onR(Un0t) where p = min(m, l)
and t as the greatest common divisor of r and s. According to Proposition 2.1, we
get that U t is an n0-quasi (p, q)-isometry on E . �

As an immediate consequence of Proposition 3.2, we have the following result.

Corollary 3.3. Let U : E −→ E be a map and n1, n2, r, s,m, l be positive integers.
Then, the following properties hold
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(1) If U is an n-quasi (m, q)-isometry such that Us is an n-quasi (l, q)-isometry
then U is an n-quasi (l, q)-isometry,

(2) If U and Ur+1 are n-quasi (m, q)-isometries, then U is a n(r + 1)-quasi
(m, q)-isometry,

(3) If Ur is an n-quasi (m, q)-isometry and Ur+1 is an n-quasi (l, q)-isometry
with m < l, then U is a n(r + 1)-quasi (m, q)-isometry.

T. Bermúdez, A. Martinón and J. A. Noda [11] have proved that if U is an (m, q)-
isometry and V is an (l, q)-isometry with UV = VU , then UV is an (m + l − 1, q)-
isometry. In following theorem we will generalize this result for the class of an
n-quasi (l, q)-isometry operators.

Theorem 3.4. Let U ,V : E −→ E such that UV = VU . If U is an n1-quasi (m, q)-
isometry and V is an n2-quasi (l, q)-isometry, then UV is an n-quasi (m+ l− 1, q)-
isometry, where n = max{n1, n2}.

Proof. For all ω, ψ ∈ E we have∑
0≤k≤m+l−1

(−1)m+l−1−k
(
m+ l − 1

k

)
d
(
(UV)

n+k
ω, (UV)

n+k
ψ
)q

=
∑

0≤k≤m+l−1

(−1)m+l−1−k
(
m+ l − 1

k

)
d
(
(UV)

k
(UV)

n
ω, (UV)

k
(UV)

n
ψ
)q

=
∑

0≤k≤m+l−1

(−1)m+l−1−k
(
m+ l − 1

k

)
d
(
(UV)

k
ω, (UV)

k
ψ
)q
.∀ω, ψ ∈ R((UV)

n
)

= 0.

Equivalently, UV is an (m, q)-isometry by referring to [9, Theorem 2.16], Proposition
2.1 and Proposition 2.2 we get that UV is an n-quasi (m+ l− 1, q)-isometry, where
n = max{n1, n2}. �

Corollary 3.5. Let U ,V : E −→ E be commuting operators. If U is an n1-quasi
(m, q)-isometry and V is an n2-quasi (l, q)-isometry, then U tVs is an n-quasi (m+
l − 1, q)-isometry, where n = max{n1, n2} and for all positive integers t, s.

Proof. Since U is an n1-quasi (m, q)-isometry and V is an n2-quasi (l, q)-isometry,
it follows from Corollary 3.3 that U t is an n1-quasi (m, q)-isometry and Vs is an
n2-quasi (l, q)-isometry for all positive integers t, s. Moreover, since UV = VU we
deduce that U tVs = VsU t. Referring to Theorem 3.4, it holds that U tVs is an
n-quasi (m+ l − 1, q)-isometry, where n = max{n1, n2}. �

4. DISTANCES ASSOCIATED TO n-QUASI-(m, q)-ISOMETRIES ON
METRIC SPACES

In this section we introduce some distances related to n-quasi (m, q)-isometry.
Let U : E −→ E be an n-quasi (m, q)-isometry, we set

ρU (ω, ψ) := (m− 1)!
1
q lim
r→∞

d(Un+rω,Un+rψ)

r
m−1

q

forω, ψ ∈ E .



8 ASMA AL RWAILY

Proposition 4.1. Let U be an n-quasi (m, q)-isometry, then

ρU (ω, ψ) = (m− 1)!
1
q lim
r→∞

d(Un+rω,Un+rψ)

r
m−1

q

for ω, ψ ∈ E

is a semi-distance on E.

Proof. SetQm,q,n(ω, ψ) :=
∑

0≤k≤m

(−1)m−k
(
m

k

)
d(Un+kω,Un+kψ)q. Under the con-

dition that U is an n-quasi (m, q)-isometry it follows that

Qm−1,q,n(ω, ψ) = lim
r−→∞

1(
r

m−1
)d(Un+rω,Un+rψ)q

= (m− 1)! lim
r−→∞

1

rm−1
d(Un+rω,Un+rψ)q.

From which , we deduce that ρU (ω, ψ) =
(
Qm−1,q,n(ω, ψ)

) 1
q .

To show that ρU (ω, ψ) is a semi-metric, firstly, we observe that ρU (ω, ψ) ≥ 0,
clearly ρU (ω, ω) = 0 and ρU (ω, ψ) = ρU (ψ, ω) for all ω, ψ ∈ E . Next to prove the
triangle inequality, we have for ω, ψ, ψ ∈ E we have

ρU (ω, ψ) = (m− 1)!
1
q lim
r→∞

d(Un+rω,Un+rψ)

r
m−1

q

≤ (m− 1)!
1
q lim
r→∞

d(Un+rω,Un+rϕ)

r
m−1

q

+(m− 1)!
1
q lim
r→∞

d(Un+rϕ,Un+rψ)

r
m−1

q

= ρU (ω, ψ) + ρU (ψ,ψ).

�

Remark. If U be an n-quasi (m, q)-isometry, it follows that

Qm−1,q,n(ω, ψ) = Qm−1,q,n(Uω,Uψ).

Hence, ρU (ω, ψ) = ρU (Uω,Uψ), and therefore, U : (E , ρU )→ (E , ρU ) is an isometry.
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[7] T. Bermúdez, A. Mertinon and E. Negrin, Weighted shift operators which are m- isometries
. Intergral Equ. Oper. Theory; 2010 ,86: 301- 312.
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