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GENERALIZED HYERS-ULAM STABILITY OF A 2-VARIABLE

RECIPROCAL FUNCTIONAL EQUATION

K. RAVI, J.M. RASSIAS AND B.V. SENTHIL KUMAR

Abstract. In this paper, we obtain the general solution and generalized

Hyers-Ulam stability of 2-variable reciprocal functional equation

F (x+ u, y + v) =
F (x, y)F (u, v)

F (x, y) + F (u, v)
.

1. Introduction

In 1940, S.M. Ulam [8], while he was giving a talk before the Mathematics
Club of Wisconsin, he listed a number of important unsolved problems. One of the
problem is the stability of functional equation. Over the last four or five decades, the
above problem was tackled by numerous authors and its solutions via various forms
of functional equation like additive, quadratic, cubic, quartic functional equations
were discussed. To know more about the various forms of functional equations and
its solutions, one can refer to the interesting monographs ([1] ,[2]).

Recently, K. Ravi and B.V. Senthil Kumar [4] investigated the generalized
Hyers-Ulam stability for a new 2-dimensional reciprocal functional mapping f :
X → Y satisfying the Rassias reciprocal functional equation

f(x+ y) =
f(x)f(y)

f(x) + f(y)
. (1.1)

where X and Y are the spaces of non-zero real numbers. The reciprocal function
f(x) = c

x is the solution of the functional equation (1.1).

Definition 1.1. A mapping f : X → Y is called reciprocal if f satisfies the
functional equation (1.1).

Later, K. Ravi, J.M. Rassias and B.V. Senthil Kumar [5] introduced the Recip-
rocal Difference Functional equation (RDF equation)

f

(
x+ y

2

)
− f(x+ y) =

f(x)f(y)

f(x) + f(y)
(1.2)
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and the Reciprocal Adjoint Functional equation (RAF equation)

f

(
x+ y

2

)
+ f(x+ y) =

3f(x)f(y)

f(x) + f(y)
(1.3)

and investigated the Hyers-Ulam stability, Generalized Ulam stability and the ex-
tended Ulam stability for the above two functional equations (1.2) and (1.3).

S.M. Jung [3] applied fixed point method and investigated its Hyers-Ulam sta-
bility for the reciprocal functional equation (1.1).

Very recently, K. Ravi, J.M. Rassias and B.V. Senthil Kumar [6] discussed the
Hyers-Ulam stability, Generalized Hyers-Ulam stability, the Extended Ulam stabil-
ity and Refined Ulam stability for the generalized reciprocal functional equation
(or GRF equation)

f

(
m∑
i=1

�ixi

)
=

∏m
i=1 f(xi)∑m

i=1

[
�i

(∏m
j=1,j ∕=i f(xi)

)] (1.4)

for arbitrary but fixed real numbers (�1, �2, . . . , �m) ∕= (0, 0, . . . , 0), so that 0 <
� = �1 + �2 + ⋅ ⋅ ⋅+ �m =

∑m
i=1 �i ∕= 1 and f : X → Y with X and Y are the sets

of non-zero real numbers.
The stability of new reciprocal functional equations

f [(k1 − k2)x+ (k1 − k2)y] =
f(k1x− k2y)f(k1y − k2x)

f(k1x− k2y) + f(k1y − k2x)
(1.5)

where k1 and k2 are any integers with k1 ∕= k2 and

f [(k1 + k2)x+ (k1 + k2)y] =
f(k1x+ k2y)f(k1y + k2x)

f(k1x+ k2y) + f(k1y + k2x)
(1.6)

where k1 and k2 are any integers with k1 ∕= −k2 was discussed by K. Ravi, J.M.
Rassias and B.V. Senthil Kumar in [7].

In this paper, the authors discuss the general solution and generalized Hyers-
Ulam stability for a new 2-variable reciprocal functional equation of the form

F (x+ u, y + v) =
F (x, y)F (u, v)

F (x, y) + F (u, v)
. (1.7)

Definition 1.2. A mapping F : X × X → Y is called a 2-variable reciprocal
mapping if there exist a(∕= 0), b( ∕= 0) ∈ ℝ such that

F (x, y) =
ab

bx+ ay
.

Throughout this paper, we assume that X and Y are the sets of non-zero
real numbers. In Section 2 of this paper, we show the relationship between the
reciprocal functional equation (1.1) and (1.7). In Section 3, we establish that the
function F (x, y) = ab

bx+ay is the general solution of the 2-variable reciprocal func-

tional equation (1.7). In Section 4, we obtain the generalized Hyers-Ulam stability
for the functional equation (1.7). In Section 5, we compare the stability results
obtained for the 2-variable reciprocal functional equation (1.7) with the stability
results obtained for the 1-variable reciprocal functional equation (1.1) in [4].
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2. RELATION BETWEEN (1.1) AND (1.7)

The 2-variable reciprocal functional equation (1.7) induces the reciprocal func-
tional equation (1.1).

Theorem 2.1. Let F : X×X → Y be a mapping satisfying (1.7) and let r : x→ Y
be a mapping given by

r(x) = F (x, x) (2.1)

for all x ∈ X, then r satisfies (1.1).

Proof. From (1.7) and (2.1), we get

r(x+ y) = F (x+ y, x+ y)

=
F (x, x)F (y, y)

F (x, x) + F (y, y)

=
r(x)r(y)

r(x) + r(y)

for all x, y ∈ X. □

Theorem 2.2. Let a(∕= 0), b(∕= 0) ∈ ℝ and r : X → Y be a mapping satisfying
(1.1). If F : X ×X → Y is a mapping given by

F (x, y) =
abr(x)r(y)

ar(x) + br(y)
(2.2)

for all x, y ∈ X, then F satisfies (1.7).

Proof. From (1.1) and (2.2), we have

F (x+ u, y + v) =
abr(x+ u)r(y + v)

ar(x+ u) + br(y + v)

=
ab r(x)r(u)

r(x)+r(u)
r(y)r(v)
r(y)+r(v)

a r(x)r(u)
r(x)+r(u) + b r(y)r(v)

r(y)+r(v)

=
abr(x)r(u)r(y)r(v)

ar(x)r(u)[r(y) + r(v)] + br(y)r(v)[r(x) + r(u)]

=
abr(x)r(u)r(y)r(v)

r(x)r(y)[ar(u) + br(v)] + r(u)r(v)[ar(x) + br(y)]

=

abr(x)r(y)
ar(x)+br(y)

abr(u)r(v)
ar(u)+br(v)

abr(x)r(y)
ar(x)+br(y) + abr(u)r(v)

ar(u)+br(v)

=
F (x, y)F (u, v)

F (x, y) + F (u, v)

for all x, u, y, v ∈ X. □

3. GENERAL SOLUTION OF EQUATION (1.7)

Theorem 3.1. A mapping F : X ×X → Y satisfies (1.7) if and only if there exist
two reciprocal mappings r1, r2 : X → Y such that

F (x, y) =
r1(x)r2(y)

r1(x) + r2(y)

for all x, y ∈ X.
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Proof. Assume that F is a solution of (1.7). Define F1(x) = F (x, 0), F2(y) =
F (0, y), for all x, y ∈ X. It is easy to verify that F1, F2 are reciprocal functions.
Let F1(x) = r1(x) and F2(x) = r2(x), for all x ∈ X. Hence

r1(x)r2(y)

r1(x) + r2(y)
=

a
x
b
y

a
x + b

y

=
ab

bx+ ay

= F (x, y), for all x, y ∈ X.

Conversely, assume that there exist two reciprocal mappings r1, r2 : X → Y such

that F (x, y) = r1(x)r2(y)
r1(x)+r2(y)

, for all x, y ∈ X. Hence,

F (x+ u, y + v) =
r1(x+ u)r2(y + v)

r1(x+ u) + r2(y + v)

=

r1(x)r1(u)
r1(x)+r1(u)

r2(y)r2(v)
r2(y)+r2(v)

r1(x)r1(u)
r1(x)+r1(u)

+ r2(y)r2(v)
r2(y)+r2(v)

=
r1(x)r1(u)r2(y)r2(v)

r1(x)r1(u)[r2(y) + r2(v)] + r2(y)r2(v)[r1(x) + r1(u)]

=
r1(x)r1(u)r2(y)r2(v)

r1(x)r2(y)[r1(u) + r2(v)] + r1(u)r2(v)[r1(x) + r2(y)]

=

r1(x)r2(y)
r1(x)+r2(y)

r1(u)r2(v)
r1(u)+r2(v)

r1(x)r2(y)
r1(x)+r2(y)

+ r1(u)r2(v)
r1(u)+r2(v)

=
F (x, y)F (u, v)

F (x, y) + F (u, v)

for all x, u, y, v ∈ X. □

4. GENERALIZED HYERS-ULAM STABILITY OF EQUATION (1.7)

Theorem 4.1. Let F : X2 → Y be a mapping for which there exists a function
� : X4 → Y with the condition

lim
n→∞2−n�(2−nx, 2−nx, 2−ny, 2−ny) = 0 (4.1)

such that the functional inequality∣∣∣F (x+ u, y + v)− F (x, y)F (u, v)

F (x, y) + F (u, v)

∣∣∣ ≤ 1

2
�(x, u, y, v) (4.2)

holds for all x, u, y, v ∈ X. Then there exists a unique 2-variable reciprocal mapping
R : X2 → Y satisfying the functional equation (1.7) and

∣F (x, y)−R(x, y)∣ ≤
∞∑
i=0

2−i−1�(2−i−1x, 2−i−1x, 2−i−1y, 2−i−1y) (4.3)

for all x, y ∈ X. The mapping R(x, y) is defined by

R(x, y) =lim
n→∞ 2−nF (2−nx, 2−ny)

for all x, y ∈ X.
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Proof. Replacing (x, u, y, v) by (x2 ,
x
2 ,

y
2 ,

y
2 ) in (4.2), we obtain∣∣∣F (x, y)− 1

2
F
(x

2
,
y

2

)∣∣∣ ≤ 1

2
�
(x

2
,
x

2
,
y

2
,
y

2

)
. (4.4)

Now, replacing (x, y) by (x2 ,
y
2 ) in (4.4), dividing by 2 and adding the resulting

inequality with (4.4), we arrive∣∣∣F (x, y)− 1

22
F
( x

22
,
y

22

)∣∣∣ ≤ 1∑
i=0

1

2i+1
�
( x

2i+1
,
x

2i+1
,
y

2i+1
,
y

2i+1

)
.

Proceeding further and using induction on a positive integer n, we get

∣F (x, y)− 2−nF (2−nx, 2−ny)∣ ≤
n−1∑
i=0

2−i−1�(2−i−1x, 2−i−1x, 2−i−1y, 2−i−1y)

≤
∞∑
i=0

2−i−1�(2−i−1x, 2−i−1x, 2−i−1y, 2−i−1y)

(4.5)

for all x, y ∈ X. In order to prove the convergence of the sequence {2−nF (2−nx, 2−ny)},
replacing (x, y) by (2−px, 2−py) in (4.5) and multiplying by 2−p, we find that for
n > p > 0

∣2−n−pF (2−n−px, 2−n−py)− 2−pF (2−px, 2−py)∣
= 2−p∣2−nF (2−n−px, 2−n−py)− F (2−px, 2−py)∣

≤
∞∑
i=0

2−p−i�(2−p−ix, 2−p−ix, 2−p−iy, 2−p−iy)

→ 0 as p→∞.

This shows that the sequence {2−nF (2−nx, 2−ny)} is a Cauchy sequence. Allow
n→∞ in (4.5), we arrive (4.3). To show that R satisfies (1.4), replacing (x, u, y, v)
by (2−nx, 2−nu, 2−ny, 2−nv) in (4.2) and multiplying by 2−n, we obtain

2−n
∣∣∣F (2−n(x+ u), 2−n(y + v))− F (2−nx, 2−ny)F (2−nu, 2−nv)

F (2−nx, 2−ny) + F (2−nu, 2−nv)

∣∣∣
≤ 2−n�(2−nx, 2−nu, 2−ny, 2−nv). (4.6)

Allow n → ∞ in (4.6), we see that R satisfies (1.7) for all (x, u, y, v) ∈ X4. To
prove R is unique 2-variable reciprocal function satisfying (1.7), let S : X2 → Y be
another 2-variable reciprocal function which satisfies (1.7) and the inequality (4.3).
Clearly S and R satisfy (1.7) and using (4.3), we arrive

∣S(x, y)−R(x, y)∣
= 2−n∣S(2−nx, 2−ny)−R(2−nx, 2−ny)∣

≤ 2−n
(
∣S(2−nx, 2−ny)− F (2−nx, 2−ny)∣+ ∣F (2−nx, 2−ny)−R(2−nx, 2−ny)∣

)
≤ 2

∞∑
i=0

2−n−i−1�(2−n−i−1x, 2−n−i−1x, 2−n−i−1y, 2−n−i−1y) (4.7)

for all (x, y) ∈ X2. Allow n→∞ in (4.7) and using (4.1), we find that R is unique
which completes the proof of Theorem 4.1. □
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Corollary 4.2. Let F : X×X → Y be a mapping for which there exists a constant
c (independent of x,y)≥ 0 such that the functional inequality∣∣∣F (x+ u, y + v)− F (x, y)F (u, v)

F (x, y) + F (u, v)

∣∣∣ ≤ c

2
(4.8)

holds for all x, u, y, v ∈ X. Then there exists a unique mapping R : X2 → Y
satisfying the functional equation (1.7) and

∣F (x, y)−R(x, y)∣ ≤ c (4.9)

for all x, y ∈ X.

Proof. Taking �(x, u, y, v) = c, for all x, u, y, v ∈ X in Theorem 4.1, the proof of
Corollary 4.2 follows immediately by similar arguments. □

Corollary 4.3. For any fixed � ≥ 0 and p > −1, if F : X2 → Y satisfies∣∣∣F (x+ u, y + v)− F (x, y)F (u, v)

F (x, y) + F (u, v)

∣∣∣ ≤ 1

2
�
(
∣x∣p + ∣u∣p + ∣y∣p + ∣v∣p

)
(4.10)

for all x, u, y, v ∈ X, then there exists a 2-variable reciprocal function R : X2 → Y
such that

∣F (x, y)−R(x, y)∣ ≤ 2�

2p+1 − 1

(
∣x∣p + ∣y∣p

)
(4.11)

for all x, y ∈ X.

Proof. Letting �(x, u, y, v) = �
(
∣x∣p + ∣u∣p + ∣y∣p + ∣v∣p

)
, for all x, u, y, v ∈ X in

Theorem 4.1, we obtain �(x, x, y, y) = 2�
(
∣x∣p + ∣y∣p

)
. From (4.3), we get

∣F (x, y)−R(x, y)∣ ≤
∞∑
i=0

1

2i+1
2�
( ∣∣∣ x

2i+1

∣∣∣p +
∣∣∣ y

2i+1

∣∣∣p )
≤ �

2p

(
1− 1

2p+1

)−1(
∣x∣p + ∣y∣p

)
≤ 2�

2p+1 − 1

(
∣x∣p + ∣y∣p

)
for all x, y ∈ X. □

Corollary 4.4. Let F : X2 → Y be a mapping and there exist real numbers
a, b : � = a+ b > −1. If there exists c1 such that∣∣∣F (x+ u, y + v)− F (x, y)F (u, v)

F (x, y) + F (u, v)

∣∣∣ ≤ c1∣x∣ a2 ∣u∣ b2 ∣y∣ a2 ∣v∣ b2 (4.12)

for all x, u, y, v ∈ X, then there exists a unique 2-variable reciprocal function R :
X2 → Y satisfying the functional equation (1.7) and

∣F (x, y)−R(x, y)∣ ≤ 2c1
2�+1 − 1

(
∣x∣

�
2 ∣y∣

�
2

)
(4.13)

for all x, y ∈ X.
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Proof. Considering �(x, u, y, v) = 2c1∣x∣
a
2 ∣u∣ b2 ∣y∣ a2 ∣v∣ b2 , for all x, u, y, v ∈ X in The-

orem 4.1, we have �(x, x, y, y) = 2c1∣x∣
�
2 ∣y∣

�
2 . From (4.3), we obtain

∣F (x, y)−R(x, y)∣ ≤ 2c1

∞∑
i=0

1

2i+1

∣∣∣ x

2i+1

∣∣∣ �2 ∣∣∣ y

2i+1

∣∣∣ �2
≤ c1

2�

(
1− 1

2�+1

)−1
∣x∣

�
2 ∣y∣

�
2

≤ 2c1
2�+1 − 1

(
∣x∣

�
2 ∣y∣

�
2

)
for all x, y ∈ X. □

Corollary 4.5. Let k > 0 and � > − 1
2 be real numbers, and F : X2 → Y be a

mapping satisfying the functional inequality∣∣∣F (x+ u, y + v)− F (x, y)F (u, v)

F (x, y) + F (u, v)

∣∣∣
≤ k

(
∣x∣�2 ∣u∣�2 ∣y∣�2 ∣v∣�2 +

1

2

(
∣x∣2� + ∣u∣2� + ∣y∣2� + ∣v∣2�

))
(4.14)

for all x, u, y, v ∈ X. Then there exists a unique 2-variable reciprocal mapping
R : X2 → Y satisfying the functional equation (1.7) and

∣F (x, y)−R(x, y)∣ ≤ 2k

22�+1 − 1

(
∣x∣�∣y∣� +

(
∣x∣2� + ∣y∣2�

))
(4.15)

for all x, y ∈ X.

Proof. Choosing �(x, u, y, v) = 2k
(
∣x∣�2 ∣u∣�2 ∣y∣�2 ∣v∣�2 + 1

2

(
∣x∣2� + ∣u∣2� + ∣y∣2� +

∣v∣2�
))

, for all x, u, y, v ∈ X in Theorem 4.1, we have �(x, x, y, y) = 2k
(
∣x∣�∣y∣� +(

∣x∣2� + ∣y∣2�
))

. From (4.3), we get

∣F (x, y)−R(x, y)∣ ≤ 2k

∞∑
i=0

1

2i+1

(∣∣∣ x

2i+1

∣∣∣�∣∣∣ y

2i+1

∣∣∣� +
(∣∣∣ x

2i+1

∣∣∣2� +
∣∣∣ y

2i+1

∣∣∣2�))
≤ k

22�

(
1− 1

22�+1

)−1(
∣x∣�∣y∣� +

(
∣x∣2� + ∣y∣2�

))
≤ 2k

22�+1 − 1

(
∣x∣�∣y∣� +

(
∣x∣2� + ∣y∣2�

))
for all x, y ∈ X. □

5. COMPARISON OF RECIPROCAL FUNCTIONAL EQUATIONS (1.1)
AND (1.7)

In this section, we compare the stability results obtained in Corollaries 4.2,
4.3, 4.4 and 4.5 for the 2-variable reciprocal functional equation (1.7) with the 1-
variable reciprocal functional equation (1.1).

Result 5.1. The stability result obtained in Corollary 4.2 for 2-variable reciprocal
functional equation (1.7) coincides with the stability result obtained in Theorem 2.1



GENERALIZED HYERS-ULAM STABILITY OF A 2-VARIABLE RECIPROCAL FUNCTIONAL EQUATION91

[4] for 1-variable reciprocal functional equation (1.1).
Proof. Replacing (y, v) by (x, u) in (4.8), we arrive∣∣∣F (x+ u, x+ u)− F (x, x)F (u, u)

F (x, x) + F (u, u)

∣∣∣ ≤ c

2
. (5.1)

Now, replacing u by y in (5.1), we obtain∣∣∣F (x+ y, x+ y)− F (x, x)F (y, y)

F (x, x) + F (y, y)

∣∣∣ ≤ c

2
. (5.2)

Taking f(x) = F (x, x) (where f is a reciprocal function) in the equation (5.2), we
arrive the inequality (2.1) in [4]. Now, replacing y by x in equation (4.9), we obtain

∣F (x, x)−R(x, x)∣ ≤ c.

Taking r(x) = R(x, x) (where r is a reciprocal function) in the above inequality, we
get

∣f(x)− r(x)∣ ≤ c
which satisfies the result (2.3) in paper [4].

Result 5.2. The stability result obtained in Corollary 4.3 for 2-variable reciprocal
functional equation (1.7) coincides with the stability result obtained in Theorem 3.4
[4] for 1-variable reciprocal functional equation (1.1).
Proof. Replacing (y, v) by (x, u) in (4.10), we obtain∣∣∣F (x+ u, x+ u)− F (x, x)F (u, u)

F (x, x) + F (u, u)

∣∣∣ ≤ �(∣x∣p + ∣u∣p
)
. (5.3)

Now, substituting u bu y in (5.3), we get∣∣∣F (x+ y, x+ y)− F (x, x)F (y, y)

F (x, x) + F (y, y)

∣∣∣ ≤ �(∣x∣p + ∣y∣p
)
. (5.4)

Next, replacing y by x in (4.11), we arrive

∣F (x, x)−R(x, x)∣ ≤ 4�

2p+1 − 1
∣x∣p. (5.5)

Taking F (x, x) = f(x), R(x, x) = r(x) (where f and r are reciprocal functions) in
(5.4) and (5.5), we obtain the inequalities (3.40) and (3.41) respectively in [4].

Result 5.3. The stability result obtained in Corollary 4.4 for 2-variable reciprocal
functional equation (1.7) coincides with the stability result obtained in Theorem 3.1
[4] for 1-variable reciprocal functional equation (1.1).
Proof. Replacing (y, v) by (x, u) in (4.12), we arrive∣∣∣F (x+ u, x+ u)− F (x, x)F (u, u)

F (x, x) + F (u, u)

∣∣∣ ≤ c1∣x∣a∣u∣b. (5.6)

Now, replacing u by y in (5.6), we obtain∣∣∣F (x+ y, x+ y)− F (x, x)F (y, y)

F (x, x) + F (y, y)

∣∣∣ ≤ c1∣x∣a∣y∣b. (5.7)

Replacing y by x in (4.13), we have

∣F (x, x)−R(x, x)∣ ≤ 2c1
2�+1 − 1

∣x∣�. (5.8)
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Taking F (x, x) = f(x), R(x, x) = r(x) (where f and r are reciprocal functions) in
(5.7) and (5.8), we obtain the inequalities (3.1) and (3.2) respectively in [4].

Result 5.4. The stability result obtained in Corollary 4.5 for 2-variable reciprocal
functional equation (1.7) coincides with the stability result obtained in Theorem 4.1
[4] for 1-variable reciprocal functional equation (1.1).
Proof. Replacing (y, v) by (x, u) in (4.14), we arrive∣∣∣F (x+ u, x+ u)− F (x, x)F (u, u)

F (x, x) + F (u, u)

∣∣∣ ≤ k(∣x∣�∣u∣� +
(
∣x∣2� + ∣u∣2�

))
. (5.9)

Substituting u by y in (5.9) to get∣∣∣F (x+ y, x+ y)− F (x, x)F (y, y)

F (x, x) + F (y, y)

∣∣∣ ≤ k(∣x∣�∣y∣� +
(
∣x∣2� + ∣y∣2�

))
. (5.10)

Next, replacing y by x in (4.15), we obtain

∣F (x, x)−R(x, x)∣ ≤ 6k

22�+1 − 1
∣x∣2�. (5.11)

Taking F (x, x) = f(x), R(x, x) = r(x) (where f and r are reciprocal functions) in
(5.10) and (5.11), we obtain the inequalities (4.1) and (4.2) respectively in [4].
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