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ON THE DRAZIN INVERSE FOR UPPER TRIANGULAR
OPERATOR MATRICES

HASSANE ZGUITTI

ABSTRACT. In this paper we investigate the stability of Drazin spectrum op(.)
for upper triangular operator matrices Mg = [‘8 g] using tools from local
spectral theory. We show that op(M¢c) U [S(A*) NS(B)] = op(A) Uop(B)
where S(.) is the set where an operator fails to have the SVEP. As application
we explore how the generalized Weyl’s theorem survives for M.

1. INTRODUCTION

Let X and Y be Banach spaces and let £(X,Y") denote the space of all bounded
linear operators from X to Y. For Y = X we write £L(X,Y) = L(X). For T €
L(X), let N(T), R(T), o(T), 0,(T), 0ap(T) and o4(T), denote the null space, the
range, the spectrum, the point spectrum, the approximate point spectrum and the
surjectivity spectrum of 7', respectively.

A bounded linear operator T is called an upper semi-Fredholm (resp. lower
semi-Fredholm) if R(T) is closed and a(T) := dim N(T) < oo (resp. B(T) :=
codim R(T) < oo). If T is either upper or lower semi-Fredholm then T is called
a semi-Fredholm operator. The inder of a semi-Fredholm operator T is defined
by ind(T) = o(T) — B(T). If both a(T') and S(T) are finite then T is a Fredholm
operator. The essential spectrum o.(T) of T is defined as the set of all A in C for
which T'— X is not a Fredholm operator. An operator T is called a Weyl operator
if it is a Fredholm operator of index zero. We denote by oy (T') the Weyl spectrum
of T' defined as the set of all A in C for which T"— X is not a Weyl operator.

For each nonnegative integer n define T}, to be the restriction of 7' to R(7™)
viewed as a map from R(7™) into R(T™) (in particular Tjg) = 7T'). If for some n,
R(T™) is closed and Tj,) is an upper (resp. lower) semi-Fredholm operator then
T is called an upper (resp. lower) semi-B-Fredholm operator. A semi-B-Fredholm
operator is an upper or lower semi-B-Fredholm operator. If moreover, Tj, is a
Fredholm operator then T is called a B-Fredholm operator. From [0, Proposition
2.1] if Tj,,) is a semi-Fredholm operator then T}, is also a semi-Fredholm operator
for each m > n, and ind(T},,)) = ind(T}y)). Then the index of a semi-B-Fredholm
operator is defined as the index of the semi-Fredholm operator Tj,; (see [5, [6]).
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T € L(X) is said to be a B-Weyl operator if it is a B-Fredholm operator of index
zero. The B-Weyl spectrum opgw (T') of T is defined by

opw(T)={A € C : T — X is not a B-Weyl operator}.

From [2| Lemma 4.1], T is a B-Weyl operator if and only if T'= F & N, where F
is a Fredholm operator of index zero and N is a nilpotent operator.

Recall that the ascent, a(T'), of an operator T is the smallest non-negative integer
p such that N(T?) = N(TPT1). If such integer does not exist we put a(T) = oo.
Analogously, the descent, d(T), of an operator T is the smallest non-negative integer
g such that R(TY) = R(T?"), and if such integer does not exist we put d(T') = co.
It is well-known that if a(T") and d(T") are both finite then they are equal, see [I7,
Corollary 20.5].

An operator T' € £(X) is said to be a Drazin invertible if there exists a positive
integer k£ and an operator S € £(X) such that

TFST =T%, STS =S and TS = ST.
The Drazin spectrum is defined by
op(T)={X € C : T — A is not Drazin invertible}.

It is well known that T is Drazin invertible if and only if T is of finite ascent and
descent, which is also equivalent to the fact that 7= R @ N where R is invertible
and N nilpotent (see [16, Corollary 2.2]). Clearly, T' is Drazin invertible if and only
if T* is Drazin invertible.

A bounded linear operator T' € L(X) is said to have the single-valued extension
property (SVEP, for short) at A € C if for every open neighborhood Uy of A, the
constant function f = 0 is the only analytic solution of the equation

(T = p)f(u) =0 VueU,.

We use S(T') to denote the open set where T fails to have the SVEP and we say
that T has the SVEP if S(T') is the empty set, [I2]. It is easy to see that T has the
SVEP at every point A € isoo(T'), where isoc(T) denotes the set of all isolated
points of o(7T'). Note that (see [12])

S(T) Cop(T) and o(T) = S(T) U o (T). (1.1)
Also it follows from [I5] if T is of finite ascent and descent then T' and T* have the

SVEP. Hence
S(TYUS(T*) Cop(T). (1.2)

For A € L(X),B € L(Y) and C € L(Y,X) we denote by M¢ the operator
defined on X &Y by
A C
)

In [IT] it is proved that
o(Mc)U[S(A")NS(B)] =0(A)Uo(B).

Numerus mathematicians were interested by the defect set [0.(A) U 0.(B)] \
0+(Mc¢) where o, € {0,0¢,04,...}. See for instance [I1], 13| [14] for the spectrum
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and the essential spectrum, [19] for the Weyl spectrum, [I0] for the Browder spec-
trum and [9, [T0] for the essential approximate point spectrum and the Browder
essential approximate point spectrum. See also the references therein.

For the Drazin spectrum, Campbell and Meyer [7] were the first studied the
Drazin invertibility of 2 x 2 upper triangular operator matrices Mc where A, B
and C are n X n complex matrices. They proved that

G’D(Mc) QUD(A)UO'D(B). (13)

D. S. Djordjevi¢ and P. S. Stanimirovi¢ generalized the inclusion (1.3]) to arbitrary
Banach spaces [§].

Inclusion may be strict. Indeed, let A be the unilateral shift operator
defined on Iy by A(zo, 21, ) = (0,z0,21,-+-). For B=A* and C =1 — AA*, we
have M¢ is unitary and then op(M¢g) C{A € C : |A| =1} but op(A) Uop(B) =
{AeC: |\ <1}

So it is naturally to ask the following question: what is exactly the defect set
[U’D(A) @] UD(B)] \ O’D(Mc) ?

Recently, Zhang et al. [2I] proved that

op(Mc)UW =op(A)Uop(B)

where W is the union of certain holes in op(M¢) which happen to be subsets of
op(A)Nop(B). But without any explicit description of the set W.

The main objective of this paper is to give an explicit description of W using tools
from local spectral theory. We also obtain the main results of [2I]. As application we
give sufficient conditions under which o.(M¢) = 0.(A)Uo«(B) for o, € {op, 08w}
and we explore how the generalized Weyl’s theorem survives for M¢.

2. MAIN RESULTS
Our main result is the following.
Theorem 2.1. For A€ L(X), Be€ L(Y) and C € L(Y, X) we have
op(Mc)U[S(A*)NS(B)] =0p(A)Uop(B). (2.1)

Proof. Since the inclusion op(M¢c) U (S(A*) N S(B)) C op(A) U op(B) always
holds, it suffices to prove the reverse inclusion. Let A € (op(A)Uop(B))\op(Mc).
Without loss of generality, we can assume that A = 0. Then M¢ is of finite ascent
and descent. Hence from [9, Lemma 2.1] we have A is of finite ascent and B is of
finite descent. Also by duality A* is of finite descent and B* is of finite ascent. For
the sake of contradiction assume that 0 ¢ S(A*) N S(B).

Case 1. 0 ¢ S(A*) : Since M is Drazin invertible, then there exists £ > 0 such
that for every A\, 0 < |A| < &, M¢c — A is invertible. Hence A — X is right invertible.
Thus 0 ¢ accogp(A) = accos(A*). If 0 ¢ o(A*) then A* is Drazin invertible and
so A is. Now if 0 € o(A4*), since o(A*) = S(A*) U os(A*) (see (L)) then 0 is
an isolated point of o(A*). Now A* is of finite descent and 0 € isoo(A*) hence
it follows from [I8, Theorem 10.5] that A* is Drazin invertible. Thus A is Drazin
invertible. Since M is Drazin invertible it follows from [21I, Lemma 2.7] that B is
also Drazin invertible which contradicts our assumption.

Case 2. If 0 ¢ S(B), the proof goes similarly. O
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Corollary 2.2. If A* or B has the SVEP, then for every C € L(Y, X),
op(M¢) =op(A)Uop(B). (2.2)
Since S(T') is a subset of 0,(T) we have the following

Corollary 2.3. If 0,(A*) or o,(B) has no interior point, in particular if A or B
is a compact operator, then equality holds for every C € L(Y, X).

Corollary 2.4. If S(A*)NS(B) C o(Mc¢) then S(A*)NS(B) C op(M¢). In other
words, if o(M¢) = 0(A) Uo(B) then op(M¢c) = op(A)Uop(B).
Proof. Assume that S(A*) NS(B) # 0. Let A € S(A*) N S(B) then there exists

¢ > 0 such that for every u € C, 0 < |A — u| < &, M¢c — p is not invertible. Thus
Me — X is not Drazin invertible. Therefore S(A*) NS(B) C op(M¢). O

Let pp(T) = C\ op(T) be the Drazin resolvent set of T. Now we retrieve the
main result of [21].

Corollary 2.5. [2I, Theorem 3.1] Let A € L(X) and B € L(Y). Then
a) () opMe)S( () o(Me)\[pp(A)Npp(B)):
CeL(Y,X) CeL(Y,X)
b) In particular, if one of the following conditions holds:
i) o(A)No(B)=0. i) intoy,(B)=0 i) int 0,(A*) =0
w) o4(B) =0(B) v) 0ap(A) = o(A)
then we have

(1 oo(Mc)=( () o(Mc)\lpp(4)Npp(B)].

CeL(Y,X) CeL(Y,X)
Proof. a) Follows directly from .
b) From i) we have o(M¢) = o(A) Uo(B), see [13, Corollary 4]. Then op(M¢) =
op(A)Uop(B) for every C by Corollary 2.4 Also from ii) or i) we get op(Mc) =
op(A) Uop(B) for every C by Corollary Thus if A ¢ ﬂ op(Mce)
CeL(y,X)

O‘D<A) U O’D(B) then \ € pD(A) N pD(B).

Now assume iv). Let \ ¢ ﬂ op(M¢). Then there exists Cy such that

CeL(Y,X)

Me, — A is Drazin invertible. Thus for ¢ > 0 small enough, we have for all p,
0 < |u| <&, Mg, — A — p is invertible. Hence it follows form [I3, Theorem 2] that
B — X — p is right invertible. Thus A ¢ accos(B) = acco(B). Therefore A ¢ S(B).
Now from Theorem 2.1 we get A € pp(A) N pp(B).

For v) the proof goes by duality. ([

Recall that if T is Drazin invertible then 7= R & N where R is invertible and
N is nilpotent, in particular R is Fredholm of index zero. Hence it follows from [2]
Lemma 4.1] that T is a B-Weyl operator. Therefore the inclusion opw (T') C op(T)
always holds. In [4, Theorem 3.3] it is shown that the reverse inclusion holds under
the assumption that 7" has the SVEP.

The defect set op(T) \ opw (T') is characterized in the following.
Theorem 2.6. Let T € L(X). Then
opw(T)U[S(T)NS(T*)] =op(T). (2.3)
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Proof. Since opw (T)J(S(T)NS(T™*)) C op(T) always holds, thenlet A ¢ opw (1)U
(S(T)NS(T*)). Without loss of generality we assume that A = 0. Then T is a B-
Fredholm operator of index zero.

Case 1. If 0 ¢ S(T) : Since T is a B-Fredholm operator of index zero, then it
follows from [2, Lemma 4.1] that there exists a Fredholm operator F' of index zero
and a nilpotent operator N such that 7= F@® N. If 0 ¢ o(F), then F is invertible
and hence T is Drazin invertible. Now assume that 0 € o(F). Since T has the
SVEP at 0, then F has also the SVEP at 0. Hence it follows from [I, Theorem
3.16] that a(F") is finite. F' is a Fredholm operator of index zero, then it follows
from [I, Theorem 3.4] that d(F) is also finite. Then a(F) = d(F) < oo which
implies that 0 is a pole of F' and hence an isolated point of o(F). N is nilpotent,
then 0 is isolated point of ¢(T"). From [2], Theorem 4.2] we get 0 ¢ op(T).

Case 2. If 0 ¢ S(T™), then proof goes similarly. O

In [I4] Proposition 3.1] it is proved that if A and B have the SVEP then for
every C € L(Y, X), Mc has the SVEP. Now the following result is an immediate
consequence of Corollary [2.2] and Theorem

Corollary 2.7. If A and B (or A* and B*) have the SVEP, then for every C €
L(Y, X),
Ugw(Mc) :UBw(A)UO'Bw/(B). (24)

In [I9] and under the same conditions of Corollary [2.7| we proved equality (2.4)
for the Weyl spectrum.

3. APPLICATIONS

Berkani [2] Theorem 4.5] has shown that every normal operator T' acting on
Hilbert space H satisfies

o(T)\ opw(T) = E(T), (3.1)

where E(T) is the set of all isolated eigenvalues of T. We say that generalized
Weyl’s theorem holds for T' if equality holds. This gives a generalization of
the classical Weyl’s theorem. Recall that T' € L£(X) obeys Weyl’s theorem if

o(T)\ow(T) = Eo(T), (3.2)
where Ey(T') denotes the set of all the isolated points of o(T") which are eigenvalues
of finite multiplicity. From [5, Theorem 3.9] generalized Weyl’s theorem implies
Weyl’s theorem and generally the reverse is not true.

In general the fact that generalized Weyl’s theorem holds for A and B does not
imply that generalized Weyl’s theorem holds for My = [ $]. Indeed, let I; and I,
be the identity operators on C and o, respectively. Let S; and Sy be defined on [y
by

1 1 1
Sy (x1,x2,...) = (0, 3% 3%2 - .) and Sy(x1,xe,...) = (0, 3% 3
Let Th = I, ®S; and Ty = Sy — I,. Let A = T? and B = T%, then from [20,
Example 1] we have A and B obey generalized Weyl’s theorem but M does not
obey it.

T2y )

It also may happen that M¢ obeys generalized Weyl’s theorem while M, does
not obey it. If we take A, B and C as in the example given in the introduction,
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we have M¢ is unitary without eigenvalues. Then M satisfies generalized Weyl’s
theorem (see [3, Remark 3.5]). But ow (M) = {\ : |A| =1} and o(My)\ Eo(My) =
{A : |A| < 1}. Then M, does not satisfy Weyl’s theorem and so by [5, Theorem
3.9] it does not satisfy generalized Weyls theorem either.

A bounded linear operator T is said to be an isoloid if every isolated point of
o(T) is an eigenvalue of T'.

Theorem 3.1. Let A be an isoloid. Assume that A and B (or A* and B*) have the
SVEP. If A and My = [4 §] satisfy generalized Weyl’s theorem then Mc satisfies
generalized Weyl’s theorem for every C € L(Y, X).

Proof. Let A € o(Mc)\opw (M¢). From [14, Theorem 2.1] 0(M¢) = o(My). Then
by Corollary 2.7} o(Mc) \ opw (Mc) = o(My) \ opw (M) which equals to E(My)
since My satisfies generalized Weyl’s theorem. Thus A € isoo(My) = isoo(M.).
If X € isoo(A), since A is isoloid then A € 0,(A). Hence A € 0,(M¢c). Then
A € E(Mc¢). Now assume that A € isoo(B) \ isoo(A). If A ¢ o(A) then it is not
difficult to see that A\ € 0,(M¢). Also if A € 0,(A) then A € 0,(M¢), so assume
that A € o,(B) \ 0p(A). Then A ¢ E(A). Since A satisfies generalized Weyl’s
theorem, then A\ € opw (A). This is impossible. Therefore A € E(M¢).

Conversely assume that A € E(M¢). Then X € isoo(M¢) = isoo(My). On
the other hand, A € o,(M¢) C 0,(A) Uop(B). Hence A € o,(Mp). Thus X €
E(My) = o(My) \ opw (Mp) which equals to o(M¢) \ opw (Mc). Therefore A €
J(Mc) \Ugw(Mc). O
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