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ON THE DRAZIN INVERSE FOR UPPER TRIANGULAR
OPERATOR MATRICES

HASSANE ZGUITTI

Abstract. In this paper we investigate the stability of Drazin spectrum σD(.)
for upper triangular operator matrices MC = [ A C

0 B ] using tools from local

spectral theory. We show that σD(MC) ∪ [S(A∗) ∩ S(B)] = σD(A) ∪ σD(B)

where S(.) is the set where an operator fails to have the SVEP. As application
we explore how the generalized Weyl’s theorem survives for MC .

1. Introduction

Let X and Y be Banach spaces and let L(X, Y ) denote the space of all bounded
linear operators from X to Y . For Y = X we write L(X, Y ) = L(X). For T ∈
L(X), let N(T ), R(T ), σ(T ), σp(T ), σap(T ) and σs(T ), denote the null space, the
range, the spectrum, the point spectrum, the approximate point spectrum and the
surjectivity spectrum of T , respectively.

A bounded linear operator T is called an upper semi-Fredholm (resp. lower
semi-Fredholm) if R(T ) is closed and α(T ) := dim N(T ) < ∞ (resp. β(T ) :=
codim R(T ) < ∞). If T is either upper or lower semi-Fredholm then T is called
a semi-Fredholm operator. The index of a semi-Fredholm operator T is defined
by ind(T ) = α(T ) − β(T ). If both α(T ) and β(T ) are finite then T is a Fredholm
operator. The essential spectrum σe(T ) of T is defined as the set of all λ in C for
which T − λ is not a Fredholm operator. An operator T is called a Weyl operator
if it is a Fredholm operator of index zero. We denote by σW (T ) the Weyl spectrum
of T defined as the set of all λ in C for which T − λ is not a Weyl operator.

For each nonnegative integer n define T[n] to be the restriction of T to R(Tn)
viewed as a map from R(Tn) into R(Tn) (in particular T[0] = T ). If for some n,
R(Tn) is closed and T[n] is an upper (resp. lower) semi-Fredholm operator then
T is called an upper (resp. lower) semi-B-Fredholm operator. A semi-B-Fredholm
operator is an upper or lower semi-B-Fredholm operator. If moreover, T[n] is a
Fredholm operator then T is called a B-Fredholm operator. From [6, Proposition
2.1] if T[n] is a semi-Fredholm operator then T[m] is also a semi-Fredholm operator
for each m ≥ n, and ind(T[m]) = ind(T[n]). Then the index of a semi-B-Fredholm
operator is defined as the index of the semi-Fredholm operator T[n] (see [5, 6]).
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T ∈ L(X) is said to be a B-Weyl operator if it is a B-Fredholm operator of index
zero. The B-Weyl spectrum σBW (T ) of T is defined by

σBW (T ) = {λ ∈ C : T − λ is not a B-Weyl operator}.

From [2, Lemma 4.1], T is a B-Weyl operator if and only if T = F ⊕N , where F
is a Fredholm operator of index zero and N is a nilpotent operator.

Recall that the ascent, a(T ), of an operator T is the smallest non-negative integer
p such that N(T p) = N(T p+1). If such integer does not exist we put a(T ) = ∞.
Analogously, the descent, d(T ), of an operator T is the smallest non-negative integer
q such that R(T q) = R(T q+1), and if such integer does not exist we put d(T ) = ∞.
It is well-known that if a(T ) and d(T ) are both finite then they are equal, see [17,
Corollary 20.5].

An operator T ∈ L(X) is said to be a Drazin invertible if there exists a positive
integer k and an operator S ∈ L(X) such that

T kST = T k, STS = S and TS = ST.

The Drazin spectrum is defined by

σD(T ) = {λ ∈ C : T − λI is not Drazin invertible}.

It is well known that T is Drazin invertible if and only if T is of finite ascent and
descent, which is also equivalent to the fact that T = R ⊕N where R is invertible
and N nilpotent (see [16, Corollary 2.2]). Clearly, T is Drazin invertible if and only
if T ∗ is Drazin invertible.

A bounded linear operator T ∈ L(X) is said to have the single-valued extension
property (SVEP, for short) at λ ∈ C if for every open neighborhood Uλ of λ, the
constant function f ≡ 0 is the only analytic solution of the equation

(T − µ)f(µ) = 0 ∀µ ∈ Uλ.

We use S(T ) to denote the open set where T fails to have the SVEP and we say
that T has the SVEP if S(T ) is the empty set, [12]. It is easy to see that T has the
SVEP at every point λ ∈ iso σ(T ), where iso σ(T ) denotes the set of all isolated
points of σ(T ). Note that (see [12])

S(T ) ⊆ σp(T ) and σ(T ) = S(T ) ∪ σs(T ). (1.1)

Also it follows from [15] if T is of finite ascent and descent then T and T ∗ have the
SVEP. Hence

S(T ) ∪ S(T ∗) ⊆ σD(T ). (1.2)

For A ∈ L(X), B ∈ L(Y ) and C ∈ L(Y,X) we denote by MC the operator
defined on X ⊕ Y by

MC =
[
A C
0 B

]
.

In [11] it is proved that

σ(MC) ∪ [S(A∗) ∩ S(B)] = σ(A) ∪ σ(B).

Numerus mathematicians were interested by the defect set [σ∗(A) ∪ σ∗(B)] \
σ∗(MC) where σ∗ ∈ {σ, σe, σw, . . .}. See for instance [11, 13, 14] for the spectrum
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and the essential spectrum, [19] for the Weyl spectrum, [10] for the Browder spec-
trum and [9, 10] for the essential approximate point spectrum and the Browder
essential approximate point spectrum. See also the references therein.

For the Drazin spectrum, Campbell and Meyer [7] were the first studied the
Drazin invertibility of 2 × 2 upper triangular operator matrices MC where A, B
and C are n× n complex matrices. They proved that

σD(MC) ⊆ σD(A) ∪ σD(B). (1.3)

D. S. Djordjević and P. S. Stanimirović generalized the inclusion (1.3) to arbitrary
Banach spaces [8].

Inclusion (1.3) may be strict. Indeed, let A be the unilateral shift operator
defined on l2 by A(x0, x1, · · · ) = (0, x0, x1, · · · ). For B = A∗ and C = I −AA∗, we
have MC is unitary and then σD(MC) ⊆ {λ ∈ C : |λ| = 1} but σD(A) ∪ σD(B) =
{λ ∈ C : |λ| ≤ 1}.

So it is naturally to ask the following question: what is exactly the defect set
[σD(A) ∪ σD(B)] \ σD(MC) ?

Recently, Zhang et al. [21] proved that

σD(MC) ∪W = σD(A) ∪ σD(B)

where W is the union of certain holes in σD(MC) which happen to be subsets of
σD(A) ∩ σD(B). But without any explicit description of the set W.

The main objective of this paper is to give an explicit description ofW using tools
from local spectral theory. We also obtain the main results of [21]. As application we
give sufficient conditions under which σ∗(MC) = σ∗(A)∪σ∗(B) for σ∗ ∈ {σD, σBW }
and we explore how the generalized Weyl’s theorem survives for MC .

2. Main results

Our main result is the following.

Theorem 2.1. For A ∈ L(X), B ∈ L(Y ) and C ∈ L(Y, X) we have

σD(MC) ∪ [S(A∗) ∩ S(B)] = σD(A) ∪ σD(B). (2.1)

Proof. Since the inclusion σD(MC) ∪ (S(A∗) ∩ S(B)) ⊆ σD(A) ∪ σD(B) always
holds, it suffices to prove the reverse inclusion. Let λ ∈ (σD(A)∪σD(B))\σD(MC).
Without loss of generality, we can assume that λ = 0. Then MC is of finite ascent
and descent. Hence from [9, Lemma 2.1] we have A is of finite ascent and B is of
finite descent. Also by duality A∗ is of finite descent and B∗ is of finite ascent. For
the sake of contradiction assume that 0 /∈ S(A∗) ∩ S(B).

Case 1. 0 /∈ S(A∗) : Since MC is Drazin invertible, then there exists ε > 0 such
that for every λ, 0 < |λ| < ε, MC − λ is invertible. Hence A− λ is right invertible.
Thus 0 /∈ acc σap(A) = acc σs(A∗). If 0 /∈ σ(A∗) then A∗ is Drazin invertible and
so A is. Now if 0 ∈ σ(A∗), since σ(A∗) = S(A∗) ∪ σs(A∗) (see (1.1)) then 0 is
an isolated point of σ(A∗). Now A∗ is of finite descent and 0 ∈ iso σ(A∗) hence
it follows from [18, Theorem 10.5] that A∗ is Drazin invertible. Thus A is Drazin
invertible. Since MC is Drazin invertible it follows from [21, Lemma 2.7] that B is
also Drazin invertible which contradicts our assumption.

Case 2. If 0 /∈ S(B), the proof goes similarly. �
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Corollary 2.2. If A∗ or B has the SVEP, then for every C ∈ L(Y, X),

σD(MC) = σD(A) ∪ σD(B). (2.2)

Since S(T ) is a subset of σp(T ) we have the following

Corollary 2.3. If σp(A∗) or σp(B) has no interior point, in particular if A or B
is a compact operator, then equality (2.2) holds for every C ∈ L(Y, X).

Corollary 2.4. If S(A∗)∩S(B) ⊆ σ(MC) then S(A∗)∩S(B) ⊆ σD(MC). In other
words, if σ(MC) = σ(A) ∪ σ(B) then σD(MC) = σD(A) ∪ σD(B).

Proof. Assume that S(A∗) ∩ S(B) 6= ∅. Let λ ∈ S(A∗) ∩ S(B) then there exists
ε > 0 such that for every µ ∈ C, 0 < |λ − µ| < ε, MC − µ is not invertible. Thus
MC − λ is not Drazin invertible. Therefore S(A∗) ∩ S(B) ⊆ σD(MC). �

Let ρD(T ) = C \ σD(T ) be the Drazin resolvent set of T . Now we retrieve the
main result of [21].

Corollary 2.5. [21, Theorem 3.1] Let A ∈ L(X) and B ∈ L(Y ). Then

a)
⋂

C∈L(Y,X)

σD(MC) ⊆ (
⋂

C∈L(Y,X)

σ(MC)) \ [ρD(A) ∩ ρD(B)].

b) In particular, if one of the following conditions holds:
i) σ(A) ∩ σ(B) = ∅. ii) int σp(B) = ∅ iii) int σp(A∗) = ∅
iv) σs(B) = σ(B) v) σap(A) = σ(A)

then we have ⋂
C∈L(Y,X)

σD(MC) = (
⋂

C∈L(Y,X)

σ(MC)) \ [ρD(A) ∩ ρD(B)].

Proof. a) Follows directly from (1.3).
b) From i) we have σ(MC) = σ(A) ∪ σ(B), see [13, Corollary 4]. Then σD(MC) =
σD(A)∪σD(B) for every C by Corollary 2.4. Also from ii) or iii) we get σD(MC) =
σD(A) ∪ σD(B) for every C by Corollary 2.3. Thus if λ /∈

⋂
C∈L(Y,X)

σD(MC) =

σD(A) ∪ σD(B) then λ ∈ ρD(A) ∩ ρD(B).
Now assume iv). Let λ /∈

⋂
C∈L(Y,X)

σD(MC). Then there exists C0 such that

MC0 − λ is Drazin invertible. Thus for ε > 0 small enough, we have for all µ,
0 < |µ| < ε, MC0 − λ− µ is invertible. Hence it follows form [13, Theorem 2] that
B − λ− µ is right invertible. Thus λ /∈ acc σs(B) = acc σ(B). Therefore λ /∈ S(B).
Now from Theorem 2.1 we get λ ∈ ρD(A) ∩ ρD(B).

For v) the proof goes by duality. �

Recall that if T is Drazin invertible then T = R ⊕N where R is invertible and
N is nilpotent, in particular R is Fredholm of index zero. Hence it follows from [2,
Lemma 4.1] that T is a B-Weyl operator. Therefore the inclusion σBW (T ) ⊆ σD(T )
always holds. In [4, Theorem 3.3] it is shown that the reverse inclusion holds under
the assumption that T has the SVEP.

The defect set σD(T ) \ σBW (T ) is characterized in the following.

Theorem 2.6. Let T ∈ L(X). Then

σBW (T ) ∪ [S(T ) ∩ S(T ∗)] = σD(T ). (2.3)
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Proof. Since σBW (T )∪(S(T )∩S(T ∗)) ⊆ σD(T ) always holds, then let λ /∈ σBW (T )∪
(S(T ) ∩ S(T ∗)). Without loss of generality we assume that λ = 0. Then T is a B-
Fredholm operator of index zero.

Case 1. If 0 /∈ S(T ) : Since T is a B-Fredholm operator of index zero, then it
follows from [2, Lemma 4.1] that there exists a Fredholm operator F of index zero
and a nilpotent operator N such that T = F ⊕N . If 0 /∈ σ(F ), then F is invertible
and hence T is Drazin invertible. Now assume that 0 ∈ σ(F ). Since T has the
SVEP at 0, then F has also the SVEP at 0. Hence it follows from [1, Theorem
3.16] that a(F ) is finite. F is a Fredholm operator of index zero, then it follows
from [1, Theorem 3.4] that d(F ) is also finite. Then a(F ) = d(F ) < ∞ which
implies that 0 is a pole of F and hence an isolated point of σ(F ). N is nilpotent,
then 0 is isolated point of σ(T ). From [2, Theorem 4.2] we get 0 /∈ σD(T ).

Case 2. If 0 /∈ S(T ∗), then proof goes similarly. �

In [14, Proposition 3.1] it is proved that if A and B have the SVEP then for
every C ∈ L(Y,X), MC has the SVEP. Now the following result is an immediate
consequence of Corollary 2.2 and Theorem 2.6.

Corollary 2.7. If A and B (or A∗ and B∗) have the SVEP, then for every C ∈
L(Y, X),

σBW (MC) = σBW (A) ∪ σBW (B). (2.4)

In [19] and under the same conditions of Corollary 2.7 we proved equality (2.4)
for the Weyl spectrum.

3. Applications

Berkani [2, Theorem 4.5] has shown that every normal operator T acting on
Hilbert space H satisfies

σ(T ) \ σBW (T ) = E(T ), (3.1)

where E(T ) is the set of all isolated eigenvalues of T . We say that generalized
Weyl’s theorem holds for T if equality (3.1) holds. This gives a generalization of
the classical Weyl’s theorem. Recall that T ∈ L(X) obeys Weyl’s theorem if

σ(T ) \ σW (T ) = E0(T ), (3.2)

where E0(T ) denotes the set of all the isolated points of σ(T ) which are eigenvalues
of finite multiplicity. From [5, Theorem 3.9] generalized Weyl’s theorem implies
Weyl’s theorem and generally the reverse is not true.

In general the fact that generalized Weyl’s theorem holds for A and B does not
imply that generalized Weyl’s theorem holds for M0 = [ A 0

0 B ]. Indeed, let I1 and I2

be the identity operators on C and l2, respectively. Let S1 and S2 be defined on l2
by

S1(x1, x2, . . .) = (0,
1
3
x1,

1
3
x2, . . .) and S2(x1, x2, . . .) = (0,

1
2
x1,

1
3
x2, . . .).

Let T1 = I1 ⊕ S1 and T2 = S2 − I2. Let A = T 2
1 and B = T 2

2 , then from [20,
Example 1] we have A and B obey generalized Weyl’s theorem but M0 does not
obey it.

It also may happen that MC obeys generalized Weyl’s theorem while M0 does
not obey it. If we take A, B and C as in the example given in the introduction,
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we have MC is unitary without eigenvalues. Then MC satisfies generalized Weyl’s
theorem (see [3, Remark 3.5]). But σW (M0) = {λ : |λ| = 1} and σ(M0)\E0(M0) =
{λ : |λ| ≤ 1}. Then M0 does not satisfy Weyl’s theorem and so by [5, Theorem
3.9] it does not satisfy generalized Weyls theorem either.

A bounded linear operator T is said to be an isoloid if every isolated point of
σ(T ) is an eigenvalue of T .

Theorem 3.1. Let A be an isoloid. Assume that A and B (or A∗ and B∗) have the
SVEP. If A and M0 = [ A 0

0 B ] satisfy generalized Weyl’s theorem then MC satisfies
generalized Weyl’s theorem for every C ∈ L(Y, X).

Proof. Let λ ∈ σ(MC)\σBW (MC). From [14, Theorem 2.1] σ(MC) = σ(M0). Then
by Corollary 2.7, σ(MC) \ σBW (MC) = σ(M0) \ σBW (M0) which equals to E(M0)
since M0 satisfies generalized Weyl’s theorem. Thus λ ∈ iso σ(M0) = iso σ(Mc).
If λ ∈ iso σ(A), since A is isoloid then λ ∈ σp(A). Hence λ ∈ σp(MC). Then
λ ∈ E(MC). Now assume that λ ∈ iso σ(B) \ iso σ(A). If λ /∈ σ(A) then it is not
difficult to see that λ ∈ σp(MC). Also if λ ∈ σp(A) then λ ∈ σp(MC), so assume
that λ ∈ σp(B) \ σp(A). Then λ /∈ E(A). Since A satisfies generalized Weyl’s
theorem, then λ ∈ σBW (A). This is impossible. Therefore λ ∈ E(MC).

Conversely assume that λ ∈ E(MC). Then λ ∈ iso σ(MC) = iso σ(M0). On
the other hand, λ ∈ σp(MC) ⊆ σp(A) ∪ σp(B). Hence λ ∈ σp(M0). Thus λ ∈
E(M0) = σ(M0) \ σBW (M0) which equals to σ(MC) \ σBW (MC). Therefore λ ∈
σ(MC) \ σBW (MC). �
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[9] S. V. Djordjević and H. Zguitti, Essential point spectra of operator matrices through local

spectral theory, J. Math. Anal. Appl. 338 (2008), 285–291.
[10] B. P. Duggal, Upper triangular operator matrices, SVEP and Browder, Weyl theorems, In-

tegr. equ. oper. theory 63 (2009), 17–28.
[11] H. Elbjaoui and E. H. Zerouali, Local spectral theory for 2×2 operator matrices, Int. J. Math

and Mathematical Sciences 42 (2003), 2667–2672.

[12] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58
(1975), 61–69.



ON THE DRAZIN INVERSE FOR UPPER TRIANGULAR OPERATOR MATRICES 33

[13] J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2×2 upper triangular operator

matrices, Proc. Amer. Math. Soc. 128 (2000), 119–123.

[14] M. Houimdi and H. Zguitti, Propriétés spectrales locales d’une matrice carrée des opérateurs,
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