
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 2 Issue 2(2010), Pages 34-41.

EXCHANGE FORMULA FOR GENERALIZED LAMBERT
TRANSFORM AND ITS EXTENSION TO BOEHMIANS

R. ROOPKUMAR, E. R. NEGRIN

Abstract. We derive the exchange formula for the generalized Lambert trans-
form, by defining a suitable product in the range of generalized Lambert

transform on E ′((0,∞)). We prove that the generalized Lambert transform

from E ′((0,∞)) into E ((0,∞)) is continuous. Applying the exchange for-
mula and continuity of generalized Lambert transform, we construct a new

Boehmian space which will be the range of generalized Lambert transform on
B(E ′((0,∞)), D((0,∞)), ∗, ∆+). We establish that the generalized Lambert

transform on Boehmians is consistent with that on E ′((0,∞)), linear, one-to-

one, onto and continuous with respect to δ-convergence and ∆-convergence.
We also obtain the exchange formula for generalized Lambert transform in the

context of Boehmians.

1. Introduction

We denote the set of all natural numbers and non-negative integers, respectively
by N and N0. Let E ((0,∞)) be the space of all infinitely differentiable complex
valued functions on (0,∞) equipped with the Fréchet space topology given by the
family of semi-norms [23, p. 36],

γK,k(φ) = sup
x∈K

|φ(k)(x)|, where K ⊂ (0,∞) is compact and k ∈ N0. (1.1)

The dual space E ′((0,∞)) of E ((0,∞)) is called the space of compactly supported
distributions on (0,∞). Throughout this paper, we use strong convergence in the
space E ′((0,∞)) which is defined as follows: (fn) converges to f in E ′((0,∞)), if
for each bounded subset B of E ((0,∞)),

sup
φ∈B

|〈fn − f, φ〉| → 0 as n→∞.

We recall the usual convolution defined on E ′((0,∞)) by

〈f ∗ g, φ〉 = 〈f(t), 〈g(s), φ(s+ t)〉〉, ∀φ ∈ E ((0,∞)). (1.2)

By D((0,∞)) and D ′((0,∞)), as usual we mean the Schwartz testing function
space of all smooth functions with compact support and the space of Schwartz
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distributions respectively. It is well known that D((0,∞)) is a subset of E ′((0,∞))
by the canonical identification.

Now we recall the theory of Lambert transform from the literature. Widder [22]
introduced the Lambert transform of a suitable function by

F (x) =
∫ ∞

0

f(t)
1

ext − 1
dt, x > 0, (1.3)

and R. R. Goldberg [3] generalized the Lambert transform by

F (x) =
∫ ∞

0

f(t)
∞∑

k=1

ake
−kxt dt, x > 0, (1.4)

where {ak} is a sequence of class Cr, for r > 0. That is, A = {ak} satisfies the
following conditions.

(1) ak ≥ 0, k = 1, 2, . . ..
(2) ak = O(kr−1), k →∞.
(3) a1 > 0.

(4) bm = O(mr−1),m→∞ where
∑
d/p

adbp/d =

{
1, p = 1
0, p = 2, 3, . . . .

Observe that for ak = 1, for all k = 1, 2, ..., the generalized Lambert transform
(1.4) agrees with the Lambert transform (1.3).

Negrin [11] extended the Lambert transform to the space E ′((0,∞)) of compactly
supported distributions on (0,∞) by

F (x) =
〈
f(t),

1
ext − 1

〉
, x > 0. (1.5)

N. Hayek, B. J. González and E. R. Negrin [4] extended the generalized Lambert
transform to the context of compactly supported distributions on (0,∞) by

F (x) =

〈
f(t),

∞∑
k=1

ake
−kxt

〉
, x > 0. (1.6)

It is proved that F is infinitely differentiable and the inversion formula is obtained
as follows.

〈f, φ〉 = lim
n→∞

〈
(−1)n

n!
·
(n
t

)n+1

·
∞∑

m=1

bmm
n ·DnF

(mn
t

)
, φ(t)

〉
, (1.7)

for every φ ∈ D((0,∞)).
For our convenience, we denote the generalized Lambert transform of f and the

Laplace transform of f , respectively by LAf , f̂ , where Laplace transform of f is
defined by

f̂(s) =
〈
f(t), e−st

〉
, s > 0. (1.8)

By equation (1.7), if LAf = LAg then f = g as members of D ′((0,∞)). Since
D((0,∞)) is dense in E ((0,∞)), the equality holds in E ′((0,∞)). In other words

LA : E ′((0,∞)) → E ((0,∞)) is one-to-one. (1.9)
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2. Exchange formula and continuity

Now we define a new product ⊗ for F ∈ LA(E ′((0,∞))) and G ∈ LA(E ′((0,∞)))
by

(F ⊗G)(x) =
∞∑

k=1

akf̂(kx) · ĝ(kx), (2.1)

where f, g ∈ E ′((0,∞)) such that LAf = F and LAg = G.
We note that the above definition is well defined. Indeed, by using (1.9), we can
find unique f, g ∈ E ′((0,∞)) such that F = LAf and G = LAg. Therefore supp
f ⊂ [a, b], supp g ⊂ [c, d], for some a, b, c, d ∈ (0,∞). As E ′((0,∞)) is a subset of
Laplace-transformable generalized functions we can apply Theorem 3.10-2 of [23]
and we get

|f̂(kx)| ≤ e−kxaP1(kx), and |ĝ(kx)| ≤ e−kxcP2(kx), (2.2)

for some polynomials P1 and P2.
Since {ak} is of class Cr from the relation (2.2) the series in equation (2.1)

converges.
Before discussing the exchange formula for the generalized Lambert transform,

it is necessary to show that f ∗ g ∈ E ′((0,∞)) whenever f, g ∈ E ′((0,∞)). We note
that every f ∈ E ′((0,∞)) can be viewed as Schwartz distribution on (0,∞) with
compact support. We also note that if f, g ∈ E ′((0,∞)) with supp f ⊂ [a, b] and
supp g ⊂ [c, d], for some a, b, c, d ∈ (0,∞), with a < b and c < d then the Schwartz
distribution f ∗ g has compact support, in fact, supp f ∗ g ⊂ supp f + supp g ⊂
[a+ b, c+ d]. Hence f ∗ g ∈ E ′((0,∞)).

Theorem 2.1 ( Exchange formula).
If f, g ∈ E ′((0,∞)) then LA(f ∗ g) = LAf ⊗ LAg.

Proof. First we observe from Proposition 2.2 of [4] that (LAf)(x) =
∞∑

k=1

akf̂(kx).

Now let x ∈ (0,∞) be arbitrary. Since
∞∑

k=1

ake
−kxs converges in E ((0,∞)) and

{e−kxt}, {ĝ(kx)} are bounded, we have the series
∞∑

k=1

ake
−kxte−kxs of functions of

s and the series
∞∑

k=1

akĝ(kx)e−kxt of functions of t converge in E ((0,∞)). Therefore

(LA(f ∗ g))(x) =
〈
f(t),

〈
g(s),

∞∑
k=1

ake
−kx(s+t)

〉〉
=

〈
f(t),

〈
g(s),

∞∑
k=1

ake
−kxse−kxt

〉〉
=

〈
f(t),

∞∑
k=1

ak

〈
g(s), e−kxs

〉
e−kxt

〉
=

〈
f(t),

∞∑
k=1

akĝ(kx)e−kxt

〉
=

∞∑
k=1

ak

〈
f(t), ĝ(kx)e−kxt

〉
=

∞∑
k=1

akf̂(kx) · ĝ(kx)

= (LAf ⊗ LAg)(x).
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Hence the theorem follows. �

Theorem 2.2. The generalized Lambert transform LA : E ′((0,∞)) → E ((0,∞))
is continuous .

Proof. Since E ((0,∞)) is metrizable and the generalized Lambert transform is lin-
ear, it is enough to prove that LAfn → 0 as n → ∞, whenever fn → 0 as n → ∞
in E ′((0,∞)). We observe that the functions ψx(t) =

∞∑
k=1

ake
−kxt, ∀t ∈ (0,∞)

constitute a bounded subset of E ((0,∞)) if x ranges over a compact subset of R.
For given k ∈ N0 and K ⊂ R compact, we put B = {ψ(k)

x : x ∈ K}. Therefore from
the equality

sup
x∈K

∣∣∣(LAfn)(k)(x)
∣∣∣ = sup

φ∈B
|〈fn, φ〉|

and by the assumption fn → 0 as n→∞ in E ′((0,∞)), we conclude that LAfn → 0
as n→∞ in E ((0,∞)). �

3. Boehmian space

J. Mikusiński and P. Mikusiński [7] introduced Boehmians as a generalization of
distributions. An abstract construction of Boehmian space was given in [8] with
two notions of convergence. Thereafter various Boehmian spaces have been defined
and also various integral transforms have been extended on them, see [1, 2, 6, 9,
10, 12, 13, 14, 15, 16, 17, 21].

First we recall the construction of an abstract Boehmian space from [8].
To consider the Boehmian space we need G,S, ? and ∆ where G is a topological

vector space, S ⊂ G and ? : G× S → G satisfying the following conditions.
Let α, β ∈ G and ζ, ξ ∈ S be arbitrary.
1. ζ ? ξ = ξ ? ζ ∈ S; 2. (α ? ζ) ? ξ = α ? (ζ ? ξ); 3. (α+ β) ? ζ = α ? ζ + β ? ζ; 4.
If αn → α as n→∞ in G and ξ ∈ S then αn ? ξ → α ? ξ as n→∞,

and ∆ is a collection of sequences from S satisfying
(a) If (ξn), (ζn) ∈ ∆ then (ξn ? ζn) ∈ ∆.
(b) If α ∈ G and (ξn) ∈ ∆ then α ? ξn → α in G as n→∞.

Let A denote the collection of all pairs of sequences ((αn), (ξn)) where αn ∈ G,
∀n ∈ N and (ξn) ∈ ∆ satisfying the property

αn ? ξm = αm ? ξn, ∀ m,n ∈ N. (3.1)

Each element of A is called a quotient and it is denoted by αn/ξn. Define a relation
∼ on A by

αn/ξn ∼ βn/ζn if αn ? ζm = βm ? ξn, ∀ m,n ∈ N. (3.2)

It is easy to verify that ∼ is an equivalence relation on A and hence it decomposes
A into disjoint equivalence classes. Each equivalence class is called a Boehmian
and is denoted by [αn/ξn]. The collection of all Boehmians is denoted by B =
B(G,S, ?,∆). Every element α of G is identified uniquely as a member of B by
[(α ? ξn)/ξn] where (ξn) ∈ ∆ is arbitrary.

B is a vector space with addition and scalar multiplication defined as follows.
• [αn/ξn] + [βn/ζn] = [(αn ? ζn + βn ? ξn)/(ξn ? ζn)].
• c [αn/ξn] = [(cαn)/ξn].

The operation ? can be extended to B × S by the following definition.
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Definition 3.1. If x = [αn/ξn] ∈ B, and ζ ∈ S then x ? ζ = [(αn ? ζ)/ξn] .

Now we recall the δ-convergence on B.

Definition 3.2 (δ-Convergence). We say that Xn
δ→ X as n → ∞ in B if there

exists a delta sequence (ξn) such that Xn ? ξk ∈ G, ∀n, k ∈ N, X ? ξk ∈ G,∀k ∈ N
and for each k ∈ N,

Xn ? ξk → X ? ξk as n→∞ in G.

The following lemma states an equivalent statement for δ-convergence.

Lemma 3.1. Xn
δ→ X as n→∞ in B if and only if there exist αn,k, αk ∈ G and

(ξk) ∈ ∆ such that Xn = [αn,k/ξk], X = [αk/ξk] and for each k ∈ N,

αn,k → αk as n→∞ in G.

Definition 3.3 (∆-convergence). We say that Xn
∆→ X as n → ∞ in B if there

exists (ξk) ∈ ∆ such that (Xn −X) ? ξn ∈ G for all n ∈ N and (Xn −X) ? ξn → 0
as n→∞ in G.

We construct a Boehmian space B1 = B(E ′((0,∞)),D((0,∞)), ∗,∆+) where ∗
is the usual convolution defined in (1.2) and ∆+ is the collection of all sequences
(δn) from D((0,∞)) satisfying the following properties.

(1)
∞∫
0

δn(t) dt = 1, ∀n ∈ N.

(2)
∞∫
0

|δn(t)| dt ≤M, ∀n ∈ N for some M > 0.

(3) If s(δn) = sup{t ∈ (0,∞) : δn(t) 6= 0} then s(δn) → 0 as n→∞.
It is well known that E ′((0,∞)) is contained in B1 and one can prove that B1 is
properly larger than E ′(R), by modifying the example given in [8].

Another Boehmian space is given by

B2 = B(LA(E ′((0,∞))),LA(E ′((0,∞))),⊗,LA(∆+))

where LA(∆+) = {(LA(δn)) : (δn) ∈ ∆+}.

4. Extended Lambert transform

Definition 4.1. The extended Lambert transform LA : B1 → B2 is defined by

LA ([fn/δn]) = [LAfn/LAδn] . (4.1)

It is necessary to verify that [LAfn/LAδn] ∈ B2 and this definition is indepen-
dent of the representatives. Indeed, using [fn/δn] ∈ B1, we get

fn ∗ δm = fm ∗ δn, ∀m,n ∈ N. (4.2)

Since fn ∗ δm ∈ E ′((0,∞)), we can apply the generalized Lambert transform on
both sides and we get, in light of Theorem 2.1

LAfn ⊗ LAδm = LAfm ⊗ LAδn, ∀m,n ∈ N. (4.3)

Hence LAfn/LAδn is a quotient and hence [LAfn/LAδn] ∈ B2. Moreover, if
[fn/δn] = [gn/εn] then

fn ∗ εm = gm ∗ δn, ∀m,n ∈ N. (4.4)
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Again by the same reason, we get

LAfn ⊗ LAεm = LAgm ⊗ LAδn, ∀m,n ∈ N, (4.5)

and hence [LAfn/LAδn] = [LAgn/LAεn].

Lemma 4.1. The extended Lambert transform on B1 is consistent with the gen-
eralized Lambert transform on E ′((0,∞)).

Proof. Let f ∈ E ′((0,∞)) be arbitrary. For any (δn) ∈ ∆+, f is represented by
[(f ∗ δn)/δn] ∈ B1. Now

LA [(f ∗ δn)/δn] = [LA(f ∗ δn)/LAδn] = [(LAf ⊗ LAδn)/LAδn]

which represents LAf in B2. Thus we have proved the lemma. �

Lemma 4.2. The extended Lambert transform LA : B1 → B2 is a linear map.

Proof. Let [fn/δn] , [gn/εn] ∈ B1 and α, β ∈ C. By using the linearity of LA :
E ′((0,∞)) → E ((0,∞)) and by Theorem 2.1, we get

LA (α [fn/δn] + β [gn/εn])

= LA [((αfn) ∗ εn + (βgn) ∗ δn)/(δn ∗ εn)]
= LA [(α(fn ∗ εn) + β(gn ∗ δn))/(δn ∗ εn)]
= [LA(α(fn ∗ εn) + β(gn ∗ δn))/LA(δn ∗ εn)]
= [(αLA(fn ∗ εn) + βLA(gn ∗ δn))/LA(δn ∗ εn)]
= [(α(LAfn)⊗ (LAεn) + β(LAgn)⊗ (LAδn))/(LAδn)⊗ (LAεn)]
= [α(LAfn)/LAδn] + [β(LAgn)/LAεn]
= α [LAfn/LAδn] + β [LAgn/LAεn]
= αLA [fn/δn] + βLA [gn/εn]

Hence the lemma follows. �

Lemma 4.3. The extended Lambert transform LA : B1 → B2 is one-to-one.

Proof. Let X = [fn/δn] , Y = [gn/εn] ∈ B1. If LAX = LAY then we have

LAfn ⊗ LAεm = LAgm ⊗ LAδn, ∀m,n ∈ N. (4.6)

Theorem 2.1 enables us to obtain

LA(fn ∗ εm) = LA(gm ∗ δn), ∀m,n ∈ N. (4.7)

By virtue of (1.9) it follows that

fn ∗ εm = gm ∗ δn, as members of E ′((0,∞))∀m,n ∈ N. (4.8)

Thus we get X = Y . �

Lemma 4.4. The extended Lambert transform LA : B1 → B2 is onto.

The proof is straightforward.

Theorem 4.5. The extended Lambert transform LA : B1 → B2 is continuous with
respect to the δ-convergence.

Proof. Let Xn
δ→ X as n→∞ in B1. Then by Lemma 3.1, there exists fn,k, fk ∈

E ′((0,∞)), ∀n, k ∈ N and (δk) ∈ ∆+ such that Xn = [fn,k/δk], X = [fk/δk] and
for each k ∈ N,

fn,k → fk as n→∞ in E ′((0,∞)). (4.9)



40 R. ROOPKUMAR, E. R. NEGRIN

Applying Theorem 2.2, we get that for each k ∈ N,

LAfn,k → LAfk as n→∞ in E ((0,∞)). (4.10)

Being for each n ∈ N, LAXn = [LAfn,k/LAδk] and LAX = [LAfk/LAδk], again by
Lemma 3.1, it follows that LAXn → LAX as n→∞ in B2. �

It is interesting to note that the operations ∗ and ⊗ can be extended as binary
operations on B1 and B2 by

[fn/δn] ∗ [gn/εn] = [(fn ∗ gn)/δn ∗ εn] ,
[Fn/LAδn]⊗ [Gn/LAεn] = [(Fn ⊗Gn)/(LAδn ⊗ LAεn)] .

As a consequence of Theorem 2.1, the exchange formula of generalized Lambert
transform holds in the context of Boehmians as follows.

Theorem 4.6. If X,Y ∈ B1 and f ∈ D((0,∞)) then (1) LA(X∗Y ) = LAX⊗LAY ;
(2) LA(X ∗ f) = LAX ⊗ LAf .

Theorem 4.7. The extended Lambert transform LA : B1 → B2 is continuous with
respect to the ∆-convergence.

Proof. Let Xn
∆→ X as n → ∞ in B1. Then there exist (δn) ∈ ∆+ and fn ∈

E ′((0,∞)) such that (Xn − X) ∗ δn = [(fn ∗ δk)/δk] , ∀n ∈ N and fn → 0 as
n → ∞ in E ′((0,∞)). Using the continuity of the generalized Lambert transform
on E ′((0,∞)), we get LAfn → 0 as n→∞ in E ((0,∞)). Using Theorems 2.1, 4.2,
4.6, for each n ∈ N we obtain

(LAXn − LAX)⊗ LAδn = LA((Xn −X) ∗ δn)
= [LA(fn ∗ δk)/LAδk]
= [(LAfn ⊗ LAδk)/δk] ,

and hence LAXn
∆→ LAX as n→∞ in B2. �
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[21] Ah. I. Zayed and P. Mikusiński, On the extension of the Zak transform, Methods Appl.

Anal. 2 (2) (1995) 160 – 172.
[22] D. V. Widder, An inversion of the Lambert transform, Math. Mag. 23 (1950) 171 – 182.

[23] A. H. Zemanian Generalized Integral Transformations, John Wiley & Sons Inc., New York,

1968.

R. Roopkumar

Department of Mathematics, Alagappa University, Karaikudi - 630 003, India.

E-mail address: roopkumarr@rediffmail.com

E. R. Negrin
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