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RIESZ PROJECTION AND WEYL’S THEOREM FOR

HEREDITARILY ABSOLUTE-(p,r)-PARANORMAL OPERATORS

D.SENTHILKUMAR AND PRASAD.T

Abstract. A bounded linear operator T ∈ B(H), H a Hilbert space is hered-

itarily absolute-(p,r)-paranormal (HAP ) , if when ever M ⊆ H is a closed

invariant subspace of T , the restriction T ∣M of T to M is absolute-(p,r)-

paranormal. We study the necessary and sufficient condition for the self-

adjoinness of Riesz Projection P� associated with � ∈ �(T ), T is hereditarily

absolute-(p,r)-paranormal and show that Weyl’s theorem holds for hereditarily

absolute-(p,r)-paranormal operators.

1. Introduction and Priliminaries

Let B(H) denote the algebra of all bounded linear operators on infinite dimen-

sional separable Hilbert space H. An operator T ∈ B(H) is said to be p-paranormal

if ∥∣T ∣pU ∣T ∣px∥ ≥ ∥∣T ∣px∥2 for every unit vector x and p > 0 , where the polar

decomposition of T is defined by T = U ∣T ∣. The class of p-paranormal operators

was introduced in [11], and have since been studied in [26] and [15]. An oper-

ator T ∈ B(H) is said to be absolute (p,r)-paranormal for p > 0 and r > 0 if

∥∣T ∣p∣T ∗∣rx∥r ≥ ∥∣T ∗∣rx∥p+r for every unit vector x and normaloid if r(T ) = ∥T∥ ,

where r(T ) denotes the spectral radius of T . The class of absolute (p,r)-paranormal

operators was defined and studied by Yamazaki and Yanagida [27]. It is well known

that every absolute (p,p)-paranormal is p-paranormal and every absolute (k,1)-

paranormal is absolute-k-paranormal, see [27].
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The quasinilpotent part H0(T ) and the analytic core K(T ) of a Hilbert space

operator T are defined by

H0(T ) = {x ∈ H : limn→∞ ∥Tnx∥
1
n = 0}

and

K(T )={x ∈ X : there exists a sequence {xn} ⊂ X and � > 0 for which x=x0,

T (xn+1)=xn and ∥xn∥ ≤ �n∥x∥ for all n=1, 2, ...} .

It is well known that H0(T ) and K(T ) are non - closed hyperinvariant subspaces

of T such that T−q(0) ⊆ H0(T ) for all q=0, 1, 2, ... and TK(T )=K(T ) [17]. An

operator T ∈ B(H) is said to be semi regular if T (H) is closed and T−1(0) ⊂

T∞(H)=
∩
n∈N T

n(H). An operator T admits a generalized Kato decomposition ,

GKD for short , if there exists a pair of T - invarient closed subspaces (M,N) such

that H=M ⊕N , the restriction T ∣M is quasinilpotent and T ∣N is semi regular. For

more information, see [1] and [18].

If the range T (H) of T ∈ B(H) is closed and �(T )=dim(T−1(0)) < ∞ (resp.,

�(T )=dim(H/T (H)) <∞) then T is upper semi Fredholm (resp., lower semi Fred-

holm) operator. Let Φ+(H) (resp.,Φ−(H)) denote the semigroup of upper semi

Fredholm (resp., lower semi Fredholm) operator on H. An operator T ∈ B(H) is

said to be semi Fredhom if T ∈ Φ+(H) ∪ Φ−(H) and Fredholm if T ∈ Φ+(H) ∩

Φ−(H). If T is semi Fredholm then the index of T is defined by

ind(T ) = �(T )− �(T ).

The ascent of T , asc(T ), is the least non negative integer n such that T−n(0) =

T−(n+1)(0). If such n does not exist, then asc(T ) =∞. The descent of T , des(T ),

is the least non negative integer n such that Tn(H)=Tn+1(H). If such n does not

exist, then des(T ) =∞ . We say that T is of finite ascent (resp., finite descent) if

asc(T−�) <∞ (resp., des(T−�) <∞) for all complex numbers �. It is well known

that if asc(T ) and des(T ) are both finite then they are equal [14, Proposition 38.6].

An operator T ∈ B(H) is Weyl if it is Fredholm of index zero and Browder if T

is Fredholm and asc(T )= des (T )<∞ . Let ℂ denote the set of complex numbers

and let �(T ) denote the spectrum of T . The Weyl spectrum �w(T ) and Browder

spectrum �b(T ) of T are defined by

�w(T ) = {� ∈ ℂ : T − � is not Weyl},

�b(T ) = {� ∈ ℂ : T − � is not Browder }⋅.
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Let �00(T ) denote the set of eigenvalues of T of finite geometric multiplicity and

let �0(T ) := �(T ) ∖�b(T ) denote set of all Riesz points of T . According to Coburn

[6], Weyl’s theorem holds for T if

�(T ) ∖ �w(T ) = �00(T ),

and that Browder’s theorm holds for T if

�(T ) ∖ �w(T ) = �0(T ).

Note that Weyl’s theorem =⇒ Browder’s theorem , see [13].

Hermann Weyl [25] examined the spectra of all compact perturbations T +K of

a single hermitian operator T and discovered that � ∈ �(T +K) for every compact

operator K if and only if � is not an isolated eigenvalue of finite multiplicity in

�(T ). This remarkable result is known as Weyl’s theorem. Many mathematicians

extended Weyl’s theorem to several classes of operators including p-hyponormal [5],

paranormal [4] , w-hyponormal and Class A, see [12] and [22].

Let K(H) denote the ideal of all compact operators on H and let �a(T ) be

the approximate point spectrum of T ∈ B(H). The essential approximate point

spectrum �ea(T ) is defined by

�ea(T ) = ∩{�a(T +K) : K ∈ K(H)}.

In [19], Rakočevic̀ introduced the concept of a-Weyl’s theorem. An operator T ∈

B(H) holds a-Weyl’s theorem if

�ea(T ) = �a(T ) ∖ �a0(T ),

where �a0(T ) = {� ∈ ℂ : � ∈ iso�a(T ) and 0 < �(T − �) <∞}. This approximate

point spectrum version of Weyl’s theorem have been much investigated in [7] and

[8].

An operator T ∈ B(H) has the single valued extension property (SVEP) at �0 ∈

ℂ, if for every open disc D�0
centered at �0 the only analytic function f : D�0

→ H

which satisfies (T − �)f(�)=0 for all � ∈ D�0 is the function f ≡ 0. We say that T

has SVEP if it has SVEP at every � ∈ ℂ.

Let T ∈ B(H) and let � be an isolated point of �(T ) . If there exist a closed

disc D� centered at � that satisfies D� ∩ �(T ) = {�}, then the operator
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P� = 1
2�i

∫
∂D�

(�− T )−1d�

associated with � is defined by familiar Cauchy integral[14] is called Riesz projection

with respect to � , which has the properties that P 2
� = P� , P�T = TP�, and

�(T ∣P�H) = {�}.

Self-adjointness of Riesz Projection P� associated with � ∈ �(T ) for hyponormal

operators has been proved by Stampfli [20] and this result was extended for w-

hyponormal by Han, Lee and Wang [12], for class A and paranormal operators by

Uchiyama ([23], [24]). Duggal [9] investigated the necessary and sufficient condition

for the self-adjointness of Riesz Projection for operators of class CHN . In this

paper, we show the necessary and sufficient condition for the self-adjointness of

Riesz Projection associated with � ∈ iso�(T ) and Weyl’s theorem holds for T ∈

HAP .

2. Riesz projection and Weyl’s theorem

The class of p-paranormal operators inherit some of the properties of paranor-

mal operators , as in the case , if T is invertible and p-paranormal then T−1 is

p-paranormal [15]. If T is invertible and absolute (p,r)-paranormal, then T−1 is

absolute-(r,p)-paranormal [27]. A part of an operator is a restriction of it to an

invariant subspace. If T is paranormal then we see that every part of it is para-

normal. Now we define class of hereditarily absolute-(p,r)-paranormal operators

(HAP ) as follows .

Definition 2.1. The class HAP of hereditarily absolute-(p,r)-paranormal opera-

tors between Hilbert Spaces consists of those operators T ∈ B(H) for which , when

ever M ⊆ H is a closed invariant subspace of T , the restriction T ∣M of T to M

is absolute-(p,r)-paranormal.

The class HAP is large; it contains , among others, the classes of hyponormal

(T ∈ B(H) :T ∗T ≥ TT ∗ ) , p-hyponormal (T ∈ B(H) :(T ∗T )p ≥ (TT ∗)p, 0 < p < 1

) and class A (T ∈ B(H) :∣T 2∣ ≥ ∣T ∣2 ) operators. Every class HAP operator is

normaloid.

For hereditarily absolute-(p,r)-paranormal operators, isolated points of spectrum

are simple poles of resolvent set.
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Theorem 2.2. If T ∈ HAP , then every isolated point of �(T ) is simple pole of

the resolvent of T .

Proof. If T ∈ HAP and � is an isolated point of �(T ) , then

H=H0(T − �)⊕K(T − �)

where H0(T − �) ∕= {0} and (T − �)K(T − �)=K(T − �) [17]. If � = 0 , consider

the hereditarily absolute (p,r)-paranormal operator T ∣H0(T ) . Since T ∣H0(T ) is

absolute (p,r)-paranormal, T ∣H0(T ) is normaloid by [27, Theorem 8]. Therefore,

�(T ∣H0(T )) = {0} implies T ∣H0(T ) = 0 . If � ∕= 0 , we may assume � = 1 . Since

T ∣H0(T−1) is hereditarily absolute (p,r) paranormal and sup ∥(T ∣H0(T−1))n∥ ≤ 1,

where supremum is taken over all integers n, it follows that T ∣H0(T−1) = I∣H0(T−

1) by [16, Theorem 1.5.14] which implies that H0(T − 1) = (T − 1)−1(0) and so

H0(T − �) = (T − �)−1(0). Hence (T − �)H=0⊕ (T − �)K(T − �)=0⊕K(T − �).

Thus H = (T −�)−1(0)⊕ (T −�)H. Hence � is a simple pole of the resolvent of T .

□

An operator T ∈ B(H) is said to be reguloid if � is an isolated point of �(T )

implies (T −�)−1(0) and (T −�)H are complimented in H. Evidently, T is reguloid

implies T is isoloid (ie., every isolated point of �(T ) is an eigenvalue of T). The

following corollaries are immediate consequences of Theorem 2.2.

Corollary 2.3. If T ∈ HAP then T is reguloid.

Corollary 2.4. If T ∈ HAP then �0(T )=�00(T ).

Theorem 2.5. If T ∈ HAP and � ∈ iso�(T ), then P� is self-adjoint if and only

if (T − �)−1(0) ⊆ (T ∗ − �)−1(0).

Proof. If T ∈ HAP and � ∈ iso�(T ), then

H=H0(T − �)⊕K(T − �) = (T − �)−1(0)⊕ (T − �)H

as a topological direct sum and T has matrix decomposition

T=

⎛⎝ T1 T2

0 T3

⎞⎠ ⎛⎝ (T − �)−1(0)

(T − �)H

⎞⎠
where �(T1)={�} and �(T3)=�(T ) ∖ {�}.
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Suppose that (T − �)−1(0) ⊆ (T ∗ − �)−1(0). If x=x1 ⊕ x2 ∈ (T − �)−1(0), then

x1 ∈ (T1−�)−1(0) and x2 = 0. Since (T −�)−1(0) ⊆ (T ∗−�)−1(0), (T ∗−�)(x1⊕

0) = 0 ⊕ T ∗2 x1 = 0 and so T2 is the zero operator. Thus (T − �)−1(0) reduces T .

Consequently, P−1� (0)⊥ = P�H. Thus, P� is self-adjoint.

Conversely, suppose the Riesz Projection P� is self-adjoint. From [14, Theorem

49.1], P�H = H0(T −�) = (T −�)−1(0) and P−1� (0) = K(T −�) = (T −�)H. Since

P�H
⊥ = P−1� (0), and since P�H

⊥ = (T − �)H⊥ = (T ∗ − �)−1(0), the condition

(T − �)−1(0) ⊆ (T ∗ − �)−1(0) is necessary.

□

Let M and N be linear subspaces of a Banach space X. Then M is said to be

orthogonal to N, M⊥N , in the sense of G.Brikhoff, if ∥x∥ ≤ ∥x + y∥ for every

x ∈M and y ∈ N . Note that in general this is not symmetric relation. when X is

Hilbert Space it reduces to the usual (symmetric) orthogonality. If T ∈ B(H) we

shall write R(T ) and N(T ) for the range and null space of T and �(T ) denote the

numerical radius of T .

Proposition 2.6. If T ∈ HAP , then N(T − �)⊥N(T − �) for distinct complex

numbers �(∕= 0) and �.

Proof. Suppose ∣�∣ ≥ ∣�∣ . Let M denote the subspace generated by x and y

such that (T − �)x = 0 = (T − �)y and T1 = T ∣M . Then �(T1) = {�, �} and

r(T1) = �(T1) = ∣�∣ . Thus � ∈ ∂v(B(M), T1) , where ∂v(B(M), T1) denotes the

boundary of the numerical range of T1 ∈ B(M). By [21, Proposition 1] it follows

that ∥(T1 − �)w + x∥ ≥ ∥x∥ for x ∈ N(T − �) and w ∈ M . Let P�(T1) denotes

the Riesz projection of T1 associated with � , then R(T1 − �) = R(I − P�(T1)) =

R(P�(T1)) = N(T1 − �) implies ∥x∥ ≤ ∥x + y∥ . If ∣�∣ < ∣�∣ then T1 is invertible

with �(T−11 ) = {�−1, �−1} . Being hereditarily absolute-(p,r)-paranormal, T−11

also normaloid. Thus r(T−11 ) = ∣�−1∣ and (T−11 − �−1)x = 0 = (T−11 − �−1)y .

This completes the proof.

□

For an operator T ∈ B(H) ,the reduced minimum modulus is defined by
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(T ) = inf{ ∥Tx∥
dist(x,(T )−1(0)) : x ∈ H ∖ T−1(0)}.

Obviously 
(T ∗) = 
(T ), and T (H) is closed if and only if 
(T ) > 0[10].

Theorem 2.7. If T ∈ HAP , then T and T ∗ have SVEP at points � ∈ �(T )∖�w(T ).

Proof. Let � ∈ �(T ) ∖ �w(T ) then (T − �) is Fredhlom of index zero . Suppose

that the point spectrum of T clusters at �, then there exists a sequence {�n} of

non zero eigenvalues of T converging to �. Choose �m ∈ {�n}. By Proposition 2.6

eigenspaces corresponding to non zero eigenvalues of T are mutually orthogonal,

and if � = 0 then eigenspaces corresponding to the eigenvalue �m is orthogonal to

the eigenspaces corresponding to the eigenvalue 0. Then dist(x, (T − �)−1(0)) ≥ 1

for every unit vector x ∈ (T − �m)−1(0). We have

�(�m, �) =sup{dist(x, (T − �)−1(0)) : x ∈ (T − �m)−1(0), ∥ x ∥= 1} ≥ 1for all m.

Thus


(T − �)= ∣�m−�∣�(�m,�)
→ 0 as m→∞

which contradicts the fact that (T − �)H is closed. Hence the point spectrum of T

does not clusters at � . Applying [3, Corollary 2.10], it follows that T and T ∗ has

SVEP at �. □

Theorem 2.8. If T ∈ HAP , then T and T ∗ holds Weyl’s theorem.

Proof. By Theorem 2.7, T have SVEP at points � ∈ �(T ) ∖ �w(T ) . Recall from

Corollary 2.4 that �0(T ) = �00(T ) . Applying [10, Theorem 2.3] , it follows that T

satisfies Weyl’s Theorem.

Now we show that T ∗ holds Weyl’s theorem. Since T satisfies Weyl’s theorem,

T ∗ satisfies Browder’s theorem. Then

�(T ∗) ∖ �w(T ∗) = �0(T ∗).

The inclusion �0(T ∗) ⊆ �00(T ∗) holds for all T ∈ B(H). To prove the opposite

inclusion, let � ∈ �00(T ∗) then � ∈iso�(T ) and so

H = (T − �)−1(0)⊕ (T − �)H.

Thus

H∗ = (T ∗ − �I∗)H∗ ⊕ (T ∗ − �I∗)−1(0).
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It follows that � is the simple pole of the resolvent of T ∗ and so T ∗−�I∗ has closed

range. Since T ∗ has SVEP and 0 ≤ �(T ∗ − �I∗) < ∞, both asc(T ∗ − �I∗) and

des(T ∗ − �I∗) are finite. Then �(T ∗ − �I∗) <∞ by [14, Proposition 38.6]. Hence

T ∗ − �I∗ is Browder and so � ∈ �0(T ∗). Thus T ∗ satisfies Weyl’s theorem. □

Theorem 2.9. Let T ∈ HAP . Then both T and T ∗ holds a-Weyl’s theorem.

Proof. By Theorem 2.8, Weyl’s theorem holds for T . Since T ∗ has SVEP, a-Weyl’s

theorem holds for T by [2, Theorem 3.6]. From Theorem 2.8, T ∗ satisfies Weyl’s

theorem and by Theorem 2.7, T has SVEP. Applying [2, Theorem 3.6], T ∗ satisfies

a-Weyl’s theorem. □
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