BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 1821-1291, URL: HTTP://WWW.BMATHAA.ORG

VOLUME 2 ISsuE 3, PAGEs 100-108.

RIESZ PROJECTION AND WEYL’S THEOREM FOR
HEREDITARILY ABSOLUTE-(p,r)-PARANORMAL OPERATORS

D.SENTHILKUMAR AND PRASAD.T

ABSTRACT. A bounded linear operator T' € B(H), H a Hilbert space is hered-
itarily absolute-(p,r)-paranormal (HAP) , if when ever M C H is a closed
invariant subspace of T , the restriction T|M of T to M is absolute-(p,r)-
paranormal. We study the necessary and sufficient condition for the self-
adjoinness of Riesz Projection Py associated with A € o(T'), T is hereditarily
absolute-(p,r)-paranormal and show that Weyl’s theorem holds for hereditarily

absolute-(p,r)-paranormal operators.

1. INTRODUCTION AND PRILIMINARIES

Let B(H) denote the algebra of all bounded linear operators on infinite dimen-
sional separable Hilbert space H. An operator T' € B(H) is said to be p-paranormal
if |||T|PU|T|Px|| > |||T|Pz||? for every unit vector x and p > 0 , where the polar
decomposition of T is defined by T' = U|T|. The class of p-paranormal operators
was introduced in [II], and have since been studied in [26] and [I5]. An oper-
ator T € B(H) is said to be absolute (p,r)-paranormal for p > 0 and r > 0 if
TP |T*|"||" > | T*|"z||P*" for every unit vector x and normaloid if r(T) = ||T|| ,
where r(T) denotes the spectral radius of T'. The class of absolute (p,r)-paranormal
operators was defined and studied by Yamazaki and Yanagida [27]. It is well known
that every absolute (p,p)-paranormal is p-paranormal and every absolute (k,1)-

paranormal is absolute-k-paranormal, see [27].
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The quasinilpotent part Ho(7T) and the analytic core K(T') of a Hilbert space
operator T are defined by
Ho(T) = {x € H: lim,_,o ||T"z|* = 0}
and
K(T)={x € X : there exists a sequence {z,} C X and § > 0 for which z=wx,
T(Xpi1)=x, and ||z, || < 6™||z|| for all n=1,2,...} .

It is well known that Ho(7') and K(T') are non - closed hyperinvariant subspaces
of T such that T-9(0) C Hy(T) for all ¢=0,1,2, ... and TK(T)=K(T) [I7]. An
operator T' € B(H) is said to be semi regular if T'(H) is closed and T1(0) C
T°(H)=(,cy T"(H). An operator T' admits a generalized Kato decomposition ,
GKD for short , if there exists a pair of T - invarient closed subspaces (M, N) such
that H=M & N, the restriction T'|M is quasinilpotent and T'|N is semi regular. For
more information, see [I] and [18].

If the range T(H) of T € B(H) is closed and o(T)=dim(T~1(0)) < oo (resp.,
B(T)=dim(H/T(H)) < co) then T is upper semi Fredholm (resp., lower semi Fred-
holm) operator. Let ®,(H) (resp.,®_(H)) denote the semigroup of upper semi
Fredholm (resp., lower semi Fredholm) operator on H. An operator T' € B(H) is
said to be semi Fredhom if T € &, (H) U ®_(H) and Fredholm if T € &, (H) N
®_(H). If T is semi Fredholm then the index of T is defined by

ind(T) = o(T) — B(T).

The ascent of T, asc(T'), is the least non negative integer n such that 7-"(0) =
7=+ (0). If such n does not exist, then asc(T) = co. The descent of T, des(T),
is the least non negative integer n such that T (H)=T""1(H). If such n does not
exist, then des(T") = co . We say that T is of finite ascent (resp., finite descent) if
asc(T—\) < oo (resp., des(T'— ) < o) for all complex numbers A. Tt is well known
that if asc(T') and des(T') are both finite then they are equal [14, Proposition 38.6].

An operator T' € B(H) is Weyl if it is Fredholm of index zero and Browder if T'
is Fredholm and asc(T")= des (T)< oo . Let C denote the set of complex numbers
and let o(T) denote the spectrum of T' . The Weyl spectrum o,,(7") and Browder
spectrum o (T") of T are defined by

ow(T)={A € C:T — X is not Weyl},
op(T) ={A € C: T — X is not Browder }-.
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Let moo(T") denote the set of eigenvalues of T of finite geometric multiplicity and
let mo(T") := o(T) \ 0p(T) denote set of all Riesz points of T'. According to Coburn
[6], Weyl’s theorem holds for T' if

o(T)\ 0w(T) = moo(T),
and that Browder’s theorm holds for T' if
o(T)\ 0u(T) = mo(T).

Note that Weyl’s theorem = Browder’s theorem , see [13].

Hermann Weyl [25] examined the spectra of all compact perturbations T+ K of
a single hermitian operator T' and discovered that A € o(T + K) for every compact
operator K if and only if A is not an isolated eigenvalue of finite multiplicity in
o(T). This remarkable result is known as Weyl’s theorem. Many mathematicians
extended Weyl’s theorem to several classes of operators including p-hyponormal [5],
paranormal [4] , w-hyponormal and Class A, see [12] and [22].

Let K(H) denote the ideal of all compact operators on H and let o,(T) be
the approximate point spectrum of T' € B(H). The essential approximate point

spectrum o.,(7") is defined by
ea(T) =N{o,(T+K): K € K(H)}.

In [19], Rakocevi¢ introduced the concept of a-Weyl’s theorem. An operator T €
B(H) holds a-Weyl’s theorem if

ea(T) = 0a(T) \ mao(T),

where 7,0(T) = {A € C: X\ € is00,(T) and 0 < a(T — \) < oo}. This approximate
point spectrum version of Weyl’s theorem have been much investigated in [7] and
8]

An operator T € B(H) has the single valued extension property (SVEP) at A\g €
C, if for every open disc Dy, centered at A\ the only analytic function f : Dy, = H
which satisfies (T'— X) f(A)=0 for all A € D, is the function f = 0. We say that T
has SVEP if it has SVEP at every A € C.

Let T € B(H) and let A be an isolated point of o(T") . If there exist a closed
disc D) centered at A that satisfies Dy No(T) = {A}, then the operator
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P = ﬁfapko‘ —T)~tdx
associated with ) is defined by familiar Cauchy integral[14] is called Riesz projection
with respect to A , which has the properties that Pf = P, , PT = TP, and
o(T|PyH) = {\}.

Self-adjointness of Riesz Projection Py associated with A € o(T') for hyponormal
operators has been proved by Stampfli [20] and this result was extended for w-
hyponormal by Han, Lee and Wang [12], for class A and paranormal operators by
Uchiyama ([23], [24]). Duggal [9] investigated the necessary and sufficient condition
for the self-adjointness of Riesz Projection for operators of class CHN. In this
paper, we show the necessary and sufficient condition for the self-adjointness of
Riesz Projection associated with A € isoo(T) and Weyl’s theorem holds for T €
HAP .

2. RIESZ PROJECTION AND WEYL’'S THEOREM

The class of p-paranormal operators inherit some of the properties of paranor-
mal operators , as in the case , if T is invertible and p-paranormal then 7! is
p-paranormal [15]. If T is invertible and absolute (p,r)-paranormal, then T~ is
absolute-(r,p)-paranormal [27]. A part of an operator is a restriction of it to an
invariant subspace. If T is paranormal then we see that every part of it is para-
normal. Now we define class of hereditarily absolute-(p,r)-paranormal operators

(HAP) as follows .

Definition 2.1. The class HAP of hereditarily absolute-(p,r)-paranormal opera-
tors between Hilbert Spaces consists of those operators T € B(H) for which , when
ever M C H is a closed invariant subspace of T , the restriction T|M of T to M

is absolute-(p,r)-paranormal.

The class HAP is large; it contains , among others, the classes of hyponormal
(T € B(H):T*T >TT* ), p-hyponormal (T € B(H) :(T*T)? > (TT*)?,0<p<1
) and class A (T € B(H) :|T?| > |T|* ) operators. Every class HAP operator is
normaloid.

For hereditarily absolute-(p,r)-paranormal operators, isolated points of spectrum

are simple poles of resolvent set.
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Theorem 2.2. If T € HAP , then every isolated point of o(T) is simple pole of
the resolvent of T .

Proof. If T € HAP and X is an isolated point of o(T') , then
H=Ho(T —\) @& K(T - \)
where Ho(T — \) # {0} and (T — \)K(T — A\)=K(T — X) [I7). If A =0, consider
the hereditarily absolute (p,r)-paranormal operator T|Hy(T) . Since T|Hy(T) is
absolute (p,r)-paranormal, T|Ho(7T') is normaloid by [27, Theorem 8]. Therefore,
o(T|Ho(T)) = {0} implies T|Ho(T) =0 . If A # 0, we may assume A = 1 . Since
T|Ho(T—1) is hereditarily absolute (p,r) paranormal and sup ||(T|Ho(T—1))"|| < 1,
where supremum is taken over all integers n, it follows that T|Ho(T—1) = I|Ho(T —
1) by [16, Theorem 1.5.14] which implies that Ho(T — 1) = (T — 1)~1(0) and so
Ho(T —X) = (T — X)71(0). Hence (T —NH=0& (T — N K(T —\)=0® K(T — \).
Thus H = (T'—X)71(0) & (T'— \)H. Hence X is a simple pole of the resolvent of T'.
O

An operator T € B(H) is said to be reguloid if A is an isolated point of o(T)
implies (T'—A\)~1(0) and (T'—\)H are complimented in H. Evidently, T is reguloid
implies T' is isoloid (ie., every isolated point of o(T') is an eigenvalue of T). The

following corollaries are immediate consequences of Theorem 2.2.

Corollary 2.3. If T € HAP then T is reguloid.
Corollary 2.4. If T € HAP then 7o(T)=moo(T).

Theorem 2.5. If T € HAP and )\ € isoo(T), then Py is self-adjoint if and only
if (T = A)7H0) (T = N)~H0).

Proof. Y T € HAP and X € isoo(T), then
H=Hy(T -~ \) @ K(T — \) = (T — \)~10) & (T — \)H

as a topological direct sum and 7" has matrix decomposition

T1 T2 (T — )\)71(0)

0 Ty (T — NH
where o(T1)={\} and o(T3)=0(T) \ {\}.

T—=
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Suppose that (T'— X\)~1(0) C (T* — X\)~1(0). If 2=x, © x5 € (T — X\)~1(0), then
x1 € (Ty — A)~1(0) and x5 = 0. Since (T — \)~1(0) C (T* = X)~1(0), (T* = X)(z1 ®
0) =0® Tyz; = 0 and so Ty is the zero operator. Thus (T — A\)~1(0) reduces T.
Consequently, Py 1(0)+ = Py\H. Thus, P is self-adjoint.

Conversely, suppose the Riesz Projection Py is self-adjoint. From [I4, Theorem
19.1), PyH = Ho(T—X) = (T—A)~}(0) and P_1(0) = K(T—\) = (T—\)H. Since
P\H* = P;'(0), and since P\H* = (T — \)H* = (T* — X)~*(0), the condition
(T — X\)71(0) C (T* — X\)~1(0) is necessary.

(]

Let M and N be linear subspaces of a Banach space X. Then M is said to be
orthogonal to N, M LN, in the sense of G.Brikhoff, if ||z| < ||z + y| for every
x € M and y € N. Note that in general this is not symmetric relation. when X is
Hilbert Space it reduces to the usual (symmetric) orthogonality. If T € B(H) we
shall write R(T) and N(T') for the range and null space of T' and v(T") denote the

numerical radius of T .

Proposition 2.6. If T € HAP , then N(T — o) LN(T — ) for distinct complex
numbers a(#£ 0) and S.

Proof. Suppose |a| > |8] . Let M denote the subspace generated by z and y
such that (T — a)x =0 = (T — B)y and T = T|M . Then o(Ty) = {«, 5} and
r(Ty) = v(Ty) = |a| . Thus « € Ov(B(M),Ty) , where dv(B(M),T;) denotes the
boundary of the numerical range of T3 € B(M). By [2I, Proposition 1] it follows
that [|[(Th — a)w + z|| > ||z| for z € N(T' — «) and w € M . Let P,(T1) denotes
the Riesz projection of T; associated with « , then R(Ty — a) = R(I — P,(T1)) =
R(Ps(Th)) = N(Ty — ) implies ||z|| < ||z +y| . If || < |B| then T; is invertible
with o(T; ') = {a™!,37!} . Being hereditarily absolute-(p,r)-paranormal, T} *
also normaloid. Thus 7(T,!) = [a~ ' and (IT7 ' —a DNz =0= (I7" - BNy .
This completes the proof.

O

For an operator T' € B(H) ,the reduced minimum modulus is defined by
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(T) = an{% cx € H\T7Y0)}.
Obviously v(T*) = ~(T), and T(H) is closed if and only if v(T") > 0[10].

Theorem 2.7. IfT € HAP, thenT and T* have SVEP at points A € o(T)\ow(T).

Proof. Let A € o(T) \ 0, (T) then (T — X) is Fredhlom of index zero . Suppose
that the point spectrum of T clusters at A, then there exists a sequence {\,} of
non zero eigenvalues of T' converging to A\. Choose A\, € {\,}. By Proposition 2.6
eigenspaces corresponding to non zero eigenvalues of 1" are mutually orthogonal,
and if A = 0 then eigenspaces corresponding to the eigenvalue )\, is orthogonal to
the eigenspaces corresponding to the eigenvalue 0. Then dist(x, (T — X)~1(0)) > 1
for every unit vector = € (T — \,;,)~1(0). We have

§(Am, A) =sup{dist(z,(T — X\)~1(0)) : 2 € (T — \)~1(0), || z ||= 1} > 1for all m.
Thus

~(T — )\):Js?;\”_i‘) — 0asm — oo

which contradicts the fact that (T'— A)H is closed. Hence the point spectrum of T'
does not clusters at A . Applying [3, Corollary 2.10], it follows that 7" and T™* has
SVEP at A. O

Theorem 2.8. If T € HAP, then T and T* holds Weyl’s theorem.

Proof. By Theorem 2.7, T have SVEP at points A € o(T) \ 0, (T) . Recall from
Corollary 2.4 that mo(T") = moo(T") . Applying [10, Theorem 2.3] , it follows that T
satisfies Weyl’s Theorem.

Now we show that T* holds Weyl’s theorem. Since T satisfies Weyl’s theorem,

T* satisfies Browder’s theorem. Then
o(T*)\ 0 (T*) = 7o (T™).

The inclusion 7o(T*) C mo(T™) holds for all T € B(H). To prove the opposite

inclusion, let A € moo(T™*) then A €isoo(T") and so
H=(T-\N"Y0)a(T-\NH.
Thus

H* = (T* = \[")H* @ (T* — \I*)~1(0).
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It follows that A is the simple pole of the resolvent of T* and so T* — AI* has closed
range. Since T* has SVEP and 0 < a(T* — AI*) < oo, both asc(T* — A\I*) and
des(T™* — AI*) are finite. Then S(T™* — A\I*) < oo by [14} Proposition 38.6]. Hence
T* — A\I* is Browder and so A € mo(T™*). Thus T* satisfies Weyl’s theorem. d

Theorem 2.9. Let T € HAP. Then both T and T* holds a-Weyl’s theorem.

Proof. By Theorem 2.8, Weyl’s theorem holds for 7. Since T has SVEP, a-Weyl’s
theorem holds for T by [2 Theorem 3.6]. From Theorem 2.8, T* satisfies Weyl’s
theorem and by Theorem 2.7, T has SVEP. Applying [2, Theorem 3.6], T* satisfies

a-Weyl’s theorem. ([l
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