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AN APPLICATION OF HYPERGEOMETRIC FUNCTIONS ON
HARMONIC UNIVALENT FUNCTIONS

(DEDICATED IN OCCASION OF THE 70-YEARS OF
PROFESSOR HARI M. SRIVASTAVA)

SAURABH PORWAL AND KAUSHAL KISHORE DIXIT

ABSTRACT. The purpose of the present paper is to establish connections be-
tween various subclasses of harmonic functions by applying certain convolu-
tion operator involving hypergeometric functions. To be more precise, we
investigate such connections with Goodman-Rgnning-type harmonic univalent
functions in the open unit disc U.

1. INTRODUCTION

Let A denote the class of functions of the form
f(z) :z+Zanz" (1.1)
n=2

which are analytic in the open unit disc U. Hohlov [8] introduced the convolution
operator H(a,b;c): A — A defined by

H(a,b;c)f(2) = 2F(a,b; ¢; 2) * f(2),
where the symbol ”+” stands for the convolution of two power series, which is defined

for two functions f,g € A , where f(z) and g(z) are of the form f(z) = Z+Z anz"
n=2
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o0
(fx9)(2) = f(2)xg(2) = Z+Z anbp 2™ and F(a, b; ¢; 2) is a well-known Gaussian
n=2
hypergeometric function and given by the series

- (a)n(b)n
F(a,b;c;z) = "
(bii2) =2 (0.
where a,b,c are complex numbers such that ¢ # 0,—1,-2,... and (a), is the
Pochhammer symbol defined in terms of the Gamma function, by

_ T(a+n)
@ ="Fay

)1 ifn=20
ala+1)......... (a+n—1) ifne N=1{1,23..}.
A hypergeometric function F(a,b;c; z) is analytic in U and plays an important role
in Geometric Function Theory. See, for example, the works by Ahuja [3], Carleson
and Shaffer [5], Miller and Mocanu [9], Owa and Srivastava [10], Ponnusamy and
Rgnning [T1], Ruscheweyh and Singh [13] and Swaminathan [I4].
Let H be the family of all harmonic functions of the form f = h + g, where

hz) =2+ Ax2", g(2) =Y Bu2", |Bi| <1, (z €U), (1.2)
n=2 n=1

are in the class A. For complex parameters a1, by, ¢1, ag, ba, ca (c1,¢2 #0,—1,-2,...),
we define the functions ®4(z) = 2F (a1, b1;¢1;52) and Po(2) = 2F (ag, be; 25 2) .
Corresponding to these functions, we consider the following convolution operator
QEQc“bhcv:HaH

asz, b23 C2

defined by

’ b, B e A
Q(Z; o z;)fzf*(@1+¢2>=h*¢1+g*¢z

for any function f =h+gin H.
Letting

0 <‘“’ b, Cl) F(2) = H(z) + C(2),

az, b2, co

is the identity mapping.
This convolution operator 2 were defined and studied by the author in [2].
Denote by Sy the subclass of H that are univalent and sense-preserving in U.

Note that £=8LL ¢ Sy whenever f € Sy. We also let the subclass S% of Sy

1-|B1|?
Sy ={f=h+3g€Su:¢(0)=B; =0}.
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The classes S and Sy were first studied in [6]. Also, we let K%, §3° and C%
denote the subclasses of SY of harmonic functions which are, respectively, convex,
starlike and close-to-convex in U. For definitions and properties of these classes,
one may refer to ([I], [6]) or [7].

For 0 <~y <1, let

Ny () = {feH:Ref/Z(,Z) >,z =re € U},
G _ . 7Y Zf/(Z)_ 2eY
H(Y)=9f€H Res(1+e )7f(2) et >y, a€R2eU s,
where
z':%(z:mw), f'(z):% (re?).
Define

TNy (v) = Nu (v)NT and TGy (v) = Gu (v) NT,

where T consists of the functions f = h 4+ g in Sy so that h and ¢ are of the form

o0 oo

h(z)=z—Y_|Au|2", g(z) = > |Bnlz". (1.4)

n=2 n=1

The classes Ng(7y) and G () were initially introduced and studied, respectively,
in (M), [12]). A function in Gg(v) is called Goodman-Rgnning-type harmonic
univalent function in U.

Throughout this paper, we will frequently use the notations

o =a( @ o)
25

az, C2

(laxl),,—1 (|b1]),,—
Dn—l = : = 13 En—l =

(€)1 (1),

and a well-known formula

(lazl)p—y (1b2])
(cz)nfl (1)1171 ,

F(c—a—-0b)T(c)

F(a,b;c;1) = T(c—a)T(c—b)’

Re(c—a—1b) > 0.

The main object of this paper is to establish some important connections between
the classes K%, S}}’O, C%, Ny (v) and Gy (v) by applying the convolution operator
Q.

2. CONNECTIONS WITH GOODMAN-R@NNING-TYPE HARMONIC UNIVALENT
FUNCTIONS

In order to establish connections between harmonic convex functions, we need
following results in Lemma [6], Lemma [12] and Lemma 2.

Lemma 2.1. If f = h+g € K% where h and g are given by (1.2)), then

1 —1
A < 25 B <
2 2
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Lemma 2.2. Let f = h+g be given by (1.2). If

Y @n—1-) A+ (2n+1+7) B <17, (2.1)
n=2 n=1

then f is sense-preserving, Goodman-Rgnning-type harmonic univalent functions
inU and f € Gu(y).

Remark 1. In [12], it is also shown that f = h + g given by (1.4) is in the
family TGy (), if and only if the coefficient condition (2.1) holds. Moreover, if
f€TGy (), then

A< =T n>2
2n—1—+’
1B,| < < 1= 1
o414y T
Lemma 2.3. Ifa,b,c> 0, then
> a b a
(@0 S (-1 Ec;n_ll((lin_i _ CiaibbilF(a,b;c;l), ife>a+b+1.
ad a b a a
(i) > (n—1) EC))"_E 8”_1 = {(c fa)i(:)j o, Ciaibbi C| Flabic 1), ife> atbt2.
” - 013 Wn1 Oy (a); (b)s 3(a), (b), ab
( );( Vo 0., {(c—a—b—3)3+(c—a—b—2)2+c—a—b—1

F(a,b;¢;1), ifc >a+b+3.
Theorem 2.1. Let a;,b; € C\{0}, ¢; € R and ¢; > |a;| + |b;| +2 for j =1,2. If
for some v(0 < v < 1), the inequality
Q1F (laa|, [b1]5c151) + R F (laz], b2 c251) < 4(1 =)
is satisfied, then
Q(Ky) CGu(y),
where

0, = — 2lal), (1611),

(e1 = la1| = [b1] = 2),

|aiby |
(c1 = las] = [b2] = 1)
2 (Jaz|), (Ib2]), |azba|
(c2 = |az| = [b2] = 2), (c2 = |az| = [b2| = 1)
Proof. Let f = h+g € K% where h and g are of the form (1.2)) with B; = 0. We
need to show that Q (f) = H + G € Gy (), where H and G defined by are

analytic functions in U.
In view of Lemma we need to prove that

+(7=7)

Ry =

+5B+7y)

Pl S 1— v
where
- (a1),,—q (b1),_4 - (a2),, 1 (b2),,_4
P, = o2n—1— n A, (2n+1+ — = TR B
! 7;2( ) (Cl)n71 )n7 EZ: ”) (02)n71 (1)n71
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In view of Lemma [2.1] and 2.3] it follows that

1 — 1 —
P §5;(n+1)(2n71ffy)Dn_lJr57;2(1171)(271+1+7)En_1

:72[ (n—12+G-7)(n—-1)+2(1—v } 1t Z[ (n—12+@B+7)(n—1)|E,_y

1
= §Q1F(Ia1| bl 1) + SR E (Jaz [b2] 5 e251) = (1 =)
Now P; <1 — « follows from the given condition. (I
Analogous to Theorem we next find connections of the classes SEO, CY with

Gu (). However, we first need the following result which may be found in ([1], [6])
or [15].

Lemma 2.4. If f = h+g € SH or C% with h and g as given by (1.2)) with B; =0,
then

|An| <

2n+1)(n+1
SRS

2n—-1)(n—1)
—e

Theorem 2.2. Let a;,b; € C\ {0}, ¢; € R and ¢; > |aj| + |bj| +3 for j =1,2. If
for some v(0 <~ < 1), the inequality

Q2F (Jax], [b1]; c131) + RoF (lag], [bo] 5 c2:1) <12(1 =)
is satisfied, then

Q(S3°) € G (7) and 2 (C§) € Gt (7).

where
(Jax])s (b1 L (aDy (b,
= Tl -3, M T G ] b -,
a1
3= e = e
O 2 PSS (2 S lasbs]

(c2 = [az| = [b2] = 3); (c2 — |az| = [b2| = 1), (c2 — laz| — [b2] — 1)

Proof. Let f=h+7¢€ S}}O(C’?{) where h and g of the form with By = 0. We
need to show that Q (f) = H + G € Gy (), where H and G defined by are
analytic functions in U.

In view of Lemma we need to prove that

Pl S ]- -,
where
= (a’l)nfl (bl)n 1 (a2)n71 (bQ)nfl
P = 2n—1—7)|————A,+)> 2n+1+7)|—-——"—B,|.
2 ey Doy Z V| e Wy

In view of Lemma [2.3] and [2.4] it follows that

oo

P1§%Z[(2n+1)(n+1)(2n—1— Dp1+= Z 2n—1)(n—1)(2n+1+7)]En_s

n=2 n=2
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:éz[4(n_1)3+2(8—’Y)(Tl—1)2+(19—7'y)(n—1)+6(1—7)}Dn_1
n=2

Fe S [t 20 (= 17 4 (34 9) (- 1) B
n=2

1 1
= 6Q2F(|a1| b1l e 1) + ngF(|a2| s 025 c251) — (1 —7)

Now P; <1 — v follows from the given condition. O

In order to determine connection between TNy (8) and Gg(7y), we need the
following results in Lemma 4] and Lemma 3.

Lemma 2.5. Let f = h+ g where h and g as given by (1.4) with By = 0, and
suppose that 0 < 8 < 1. Then

fETNu(B) & Y nlAu|+ > n|Ba<1-8.
n=2 n=2

Remark 2. If f € TNy (B), then
B

1_
A, < ——, n>2,
n

1—
|B,| < J, n > 1.
n
Lemma 2.6. Let a,b € C\{0}, a # 1, b # 1, ¢ € (0,1) U (1,00) and ¢ >
max {0, |a| + [b] — 1}. Then

il(‘aanl (|b|)n71 — (C_|a|_|b‘) F(|a\,\b|,c,l)— (C_l)

= (@ Wy (el =1) (o = 1) (lal = 1) (Jo] = 1)’

Theorem 2.3. Leta;,bj € C\{0}, a; #1, b; # 1, ¢; € R and ¢; > max {0, |a;| + |b;| — 1}
for j =1,2. If for some B(0 < B < 1) and v(0 < v < 1), the inequality

(1-7)(2-5)
(1-5)
(a1 —1) (2 —1)

—(147) (Jaz| — 1) (|bs] — 1) N (laz] — 1) (|b2] — 1)

QsF (Ja1], |bi];c151) + R3F (|ag|, [ba] 5 c2;1) <

is satisfied, then

Q(I'Nu(B)) CGu(v),
where
(c1 —laa| — [b1])

Qs =2~ (4 Qo =0 (o] - 1)

and
(c2 — |az| — [ba])

Ba =244 G D) (oo - 1)
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Proof. Let f = h+ 9 € TNy(B) where h and g are given by (L.4). In view of
Lemma [2.2] it is enough to show that P, <1 — v, where

Pa= ), @n=1=0) | gy et ) (2 “”)‘(@)n_l(nn_l By

Using Remark [2] and Lemma [2.6] it follows that

] S{CRCE ) PSS (A=) P

n=2 n=1

(I+7y) (=1

(1+7)(c2—1)

=(1-58) [Q3F(|al|,|b1 ;13 1) 4+ R3F (Jazl, |bo] 5 c251) — (1 — ) +

S 1- s
by the given hypothesis. (I

In next theorem, we establish connections between TGy () and Gy (7).
Theorem 2.4. Let a;,b; € C\{0}, ¢; € R and ¢; > |a;| + |b;| for j =1,2. If for
some (0 < v < 1), the inequality

F(lai],[b1];e1;1) + F (laz], [b2];c251) <2
is satisfied, then
QTGu () € Gu(7)-

Proof. Making use of Lemma [2.2] and the definition of P, in Theorem we only
need to prove that P, <1 —~
Using Remark [T} it follows that

= (@1),_q (b1),—4 = (a2),_y (b2)p_y
P = 2n—1-7) #A n+1+7) | ——"—B,

712222 (Cl)nfl (l)n— EZ: (62)77,—1 (1)77,—1

- ’7) [Z anl + Z Enfl
n=2 =
= (L= [F(al,|b1]5151) =1+ F (laz|, [b2] ; 25 1)]
S 1- v,

by the given condition and this completes the proof. O

In the next result, we establish connections between TGy (y) and Gg(y) by
diluting the restrictions on the complex coefficients of Theorem

Theorem 2.5. If a;,b; > —1, a1b; < 0, ¢; > max{0,a1 + b1}, az,bs € C\ {0}
and cg > |az| + |b2|, then a sufficient condition for
Q(TGh (7)) € Gu (7)
is that
F(a1,b15¢131) = F(laz], [ba] 5 ¢2;1) 2 0
for any v(0 <~ < 1).

(Jar| = 1) (Jba| = 1)

(Jaz| = 1) (|b2] = 1)
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Proof. Let f =h+g € TGy(y) with h and g in (1.4). Then

Nt (a1),_ ( 1) 1 = a2 1
Q(f) =2~ - = IA\Z + Jn- | By 2.
TLZQ (Cl)n 1 ( ) Z n—1 )n 1
This function can be rewritten as
|a1b1| a1+1 n 2 b1+1)n 2 — )n 1
Q(f) = |An] 2"+ - " |B,| 2™.
Z (141 ( ) Z )n—l 1B
In view of Lemma@ we need to prove that Py <1 — 1,
where
= byl | (ay +1 by +1
P3:Z(2n7177)|a1 1| (1 ) (1 )n 2A
o Cc1 (Cl + l)n 9 (1)
(a2),,_q (b2),,_4
+ @2n+1+7) | ——7"—8B,
nz::l (62)1’7,71 (1)7171
<oyt SR
albl n=2 n=1
< (=9 [=F(a1,bi;e151) + 1+ F (Jaz], [ba] 5 c2;1)]
S 1- e
by the given condition. O

In next theorem, we present conditions on the parameters aq, as, b1, b2, c1, co and
obtain a characterization for operator {2 which maps TG (7y) onto itself.

Theorem 2.6. Let aj,b; >0, ¢; > a; +b; for (j =1,2) and v(0 < v < 1).Then
Q(TGy (7)) CTGyH (), if and only if

F(al,bl;cl;l) +F(a2,b2;02;1) S 2

Proof. Let f = h+7 € TGy (y) with h and ¢ in (1.4). In view of Remark [I} we
only need to prove that Q(f) given by (1.3) is in TG g (), if and only if P, < 1—1,
where

PQZZ(2”*1*’7)

n=2

(a2), 1 (b2), 4

(al)n—l (bl)n—l An ( ) (1)
C2)p—1 n—1

(c1)p—1 (1),4

Using the coefficient estimates stated in Remark [1) we obtain

oo 00
- 7) lz Dn—l + Z En—l
n=2 n=1

< (I —=7)[F(a1,b15¢151) — 14 F (a2, ba;c2;1)]

by the given condition. O

+> @2+ 1+7) B,|.

n=1
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