
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 2 Issue 4(2010), Pages 137-139.

ON SOME ACCURATE ESTIMATES OF �

(DEDICATED IN OCCASION OF THE 70-YEARS OF

PROFESSOR HARI M. SRIVASTAVA)

CRISTINEL MORTICI

Abstract. The aim of this paper is to establish some inequalities related
to an accurate approximation formula of �. Being practically difficult, the

computations arising in this problem were made using computer softwares

such as Maple.

1. Introduction

Maybe the best known example of infinite product for estimating the constant
� is the Wallis product [4]
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which is related to Euler’s gamma function Γ, since

n∏
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4k2

4k2 − 1
=

16n (Γ (n+ 1))
4

(2n+ 1) (Γ (2n+ 1))
2 . (1.2)

Although it has a nice form, (1.1) is very slow, so it is not suitable for approximating
the constant �.

A possible starting point for accelerating (1.1) is the work of Fields [1] who shown
that
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+ (z + a− �)
a−b

O
(

(z + a− �)
−2N

)
,

2� = 1 + a− b, ∣arg (z + a)∣ ≤ � − ", " > 0.

where the symbols B
(2�)
2k stand for the generalized Bernoulli polynomials [2, 5].
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With z = n, a = −x, b = 1, and � = −x/2 in (1.3), we get(
x
n
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See also [3, p. 142], where the following identity is stated(
x
n

)
=

(−1)
n

Γ (−x)

Γ (n− x)

Γ (n+ 1)
.

Further, with x = −1/2 in (1.4), we obtain the following formula
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The idea of expressing � using the asymptotic expansion of the ratio Γ(n+1/2)
Γ(n+1) was

introduced by Tricomi and Erdélyi in [3, p. 142, Rel. 23]. Here we make use of

the asymptotic expansion for Γ(n+1/2)
Γ(n+1) given in [1] to improve the results of Tricomi

and Erdélyi [3].

2. The results

By truncation of series (1.5), increasingly accurate approximations for � can be
derived. As example, if n = 10, use of the first five terms in (1.5) gives � with an
error of 1.1639×10−12, while use of the first six terms in (1.5) gives � with an error
of 3.0431× 10−14.

We prove the following

Theorem 2.1. For every integer n ≥ 1, we have
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Proof. The sequences
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16n
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converge to � and it suffices to show that xn is strictly increasing and yn is strictly
decreasing. In this sense, we have

xn+1
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− 1 =

4 (4n+ 1) (n+ 1)
2

(4n+ 5) (2n+ 1)
2

a (n+ 1)

a (n)
− 1

= − P (n)
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17
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2

(134217728n8 + ⋅ ⋅ ⋅+ 172467)
2 ,

where the polynomial

P (n) = 60235603222675842001797120n24 + ⋅ ⋅ ⋅+ 22691018044772336786409

has all coefficients positive. In consequence, xn is strictly increasing, convergent to
�, so xn < �.

Then

yn+1
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2
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2
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2 ,

where the polynomial

Q (n+ 1) = 210420037966350927549442377646080n30

+ ⋅ ⋅ ⋅+ 1909672653415578833630022434217112437351

has all coefficients positive. In consequence, yn is strictly decreasing, convergent to
�, so yn > �. □

Remark. The computations in this paper were made using Maple software.
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[3] F. G. Tricomi, A. Erdélyi, The asymptotic expansion of a ratio of gamma functions, Pacific

J. Math., 1 1 (1951) 133-142.
[4] J. Wallis, Computation of � by successive interpolations, (1655) in: A Source Book in Math-

ematics, 1200-1800 (D. J. Struik, Ed.), Harvard University Press, Cambridge, MA, (1969),

244-253.

[5] N.M. Temme, Special Functions, Wiley (NewYork), 1996.

Cristinel Mortici, Valahia University of Târgovişte, Department of Mathematics,
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