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PROPERTY (Bw) AND WEYL TYPE THEOREMS

(COMMUNICATED BY VIJAY GUPTA)

ANURADHA GUPTA, NEERU KASHYAP

Abstract. The paper introduces the notion of property (Bw), a version of
generalized Weyl’s theorem for a bounded linear operator T on an infinite

dimensional Banach space X. A characterization of property (Bw) is also
given. Certain conditions are explored on Hilbert space operators T and S so

that T ⊕ S obeys property (Bw).

1. Introduction

Let B(X) denote the algebra of all bounded linear operators on an infinite-
dimensional complex Banach space X. For an operator T ∈ B(X), we denote by
T ∗, σ(T ), σiso(T ), N(T ) and R(T ) the adjoint, the spectrum, the isolated points
of σ(T ), the null space and the range space of T , respectively. Let α(T ) and β(T )
denote the dimension of the kernel N(T ) and the codimension of the range R(T ),
respectively. If the range R(T ) of T is closed and α(T ) < ∞ (resp. β(T ) < ∞),
then T is called an upper semi-Fredholm (resp., a lower semi-Fredholm) operator.

If T is either an upper or a lower semi-Fredholm then T is called a semi-Fredholm
operator, while T is said to be a Fredholm operator if it is both upper and lower
semi-Fredholm. If T ∈ B(X) is semi-Fredholm, then the index of T is defined as

ind(T ) = α(T )− β(T ).

The descent q(T ) and the ascent p(T ) of T are given by

q(T ) = inf{n : R(Tn) = R(Tn+1)},
p(T ) = inf{n : N(Tn) = N(Tn+1)}.

An operator T ∈ B(X) is called Weyl (resp., Browder) if it is a Fredholm operator
of index 0 (resp., a Fredholm operator of finite ascent and descent). The Weyl
spectrum σW (T ) (resp., Browder spectrum σb(T )) of T is the set of λ ∈ C such
that T − λI is not Weyl (resp., λ ∈ C such that T − λI is not Browder).
Let

E0(T ) = {λ ∈ σiso(T ) : 0 < α(T − λI) <∞},
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then we say that T satisfies Weyl’s theorem if σ(T )\σW (T ) = E0(T ) and T satisfies
Browder’s theorem if σ(T ) \ σW (T ) = π0(T ), where π0(T ) is the set of poles of T
of finite rank.

For a bounded linear operator T and a nonnegative integer n, we define Tn to be
the restriction of T to R(Tn) viewed as a map from R(Tn) into itself (in particular
T0 = T ). If for some integer n, the range space R(Tn) is closed and Tn is an upper
(resp., a lower) semi-Fredholm operator, then T is called an upper (resp., a lower)
semi-B-Fredholm operator. A semi-B-Fredholm operator is an upper or a lower
semi-B-Fredholm operator. Moreover, if Tn is a Fredholm operator, then T is called
a B-Fredholm operator. From [4, Proposition 2.1] if Tn is a semi-Fredholm operator
then Tm is also a semi-Fredholm operator for each m ≥ n and ind(Tm) = ind(Tn).
Thus the index of a semi-B-Fredholm operator T is defined as the index of the
semi-Fredholm operator Tn (see [3, 4]).

An operator T ∈ B(X) is called a B-Weyl operator if it is a B-Fredholm operator
of index 0. The B-Weyl spectrum σBW (T ) of T is defined as

σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.
We say that generalized Weyl’s theorem holds for T if

σ(T ) \ σBW (T ) = E(T ),

where E(T ) is the set of isolated eigen values of T and that generalized Browder’s
theorem holds for T if

σ(T ) \ σBW (T ) = π(T ),

where π(T ) is the set of poles of T [3, Definition 2.13].
Berkani and Koliha [3] proved that generalized Weyl’s theorem ⇒ Weyl’s theo-

rem. Berkani and Arroud [2] established generalized Weyl’s theorem for hyponormal
operators acting on a Hilbert space.

The single valued extension property was introduced by Dunford ([8], [9]) and it
plays an important role in local spectral theory and Fredholm theory ([1], [10]).

The operator T ∈ B(X) is said to have the single valued extension property at
λ0 ∈ C (abbreviated SVEP at λ0 ∈ C) if for every open disc U of λ0 the only
analytic function f : U → X which satisfies the equation (T − λI)f(λ) = 0 for all
λ ∈ U , is the function f ≡ 0.

An operator T ∈ B(X) is said to have SVEP if T has SVEP at every point λ ∈ C.
An operator T ∈ B(X) has SVEP at every point of the resolvent ρ(T ) = C \ σ(T ).
Every operator T has SVEP at an isolated point of the spectrum.

Duggal [5] gave the following important results:

Theorem 1.1 ([5, Proposition 3.9]). (a) The following statements are equivalent.
(i) T satisfies generalized Browder’s theorem.
(ii) T has SVEP at points λ /∈ σBW (T )

(b) T satisfies generalized Browder’s theorem if and only if T satisfies Browder’s
theorem.

Remark 1.2. Duggal [5] proved that T ∗ satisfies generalized Browder’s theorem
if and only if T satisfies Browder’s theorem as σ(T ) = σ(T ∗), σBW (T ) = σBW (T ∗)
and π(T ) = π(T ∗).

In this paper, we introduce a new variant of generalized Weyl’s theorem called
the property (Bw) (see Definition 2.1). We prove that T satisfies property (Bw) if
and only if generalized Browder’s theorem holds for T and π(T ) = E0(T ).



PROPERTY (Bw) AND WEYL TYPE THEOREMS 3

2. Property (Bw)

Let us define property (Bw) as follows:

Definition 2.1. A bounded linear operator T ∈ B(X) is said to satisfy property
(Bw) if

σ(T ) \ σBW (T ) = E0(T ).

We give an example of an operator satisfying property (Bw):

Example 2.2. Let Q ∈ l2(N) be the quasinilpotent operator Q(x0, x1, x2, . . .) =(
1

2
x1,

1

3
x2 . . .

)
and N ∈ l2(N) be a nilpotent operator. Let T = Q ⊕ N . Then

σ(T ) = σW (T ) = σBW (T ) = {0}, E(T ) = {0} and E0(T ) = φ, which implies that
T satisfies property (Bw).

Next is an example of an operator which fails to satisfy property (Bw):

Example 2.3. Let T ∈ l2(N) be defined as

T (x0, x1, . . .) =

(
1

2
x1,

1

3
x2, . . .

)
for all (xn) ∈ l2(N) .

Theorem 2.4. Let T ∈ B(X) satisfy property (Bw). Then generalized Browder’s
theorem holds for T and σ(T ) = σBW (T ) ∪ σiso(T ).

Proof. By Proposition 3.9 of [5] it is sufficient to prove that T has SVEP at every
λ 6∈ σBW (T ). Let us assume that λ 6∈ σBW (T ).

If λ 6∈ σ(T ), then T has SVEP at λ. If λ ∈ σ(T ) and suppose that T satisfies
property (Bw) then λ ∈ σ(T ) \ σBW (T ) = E0(T ). Thus λ ∈ σiso(T ) which implies
T has SVEP at λ. To prove that σ(T ) = σBW (T ) ∪ σiso(T ), we observe that λ ∈
σ(T ) \ σBW (T ) = E0(T ). Thus λ ∈ σiso(T ). Hence σ(T ) ⊆ σBW (T )∪ σiso(T ). But
σBW (T )∪σiso(T ) ⊆ σ(T ) for every T ∈ B(X). Thus σ(T ) = σBW (T )∪σiso(T ). �

A characterization of property (Bw) is given as follows:

Theorem 2.5. Let T ∈ B(X). Then the following statements are equivalent:

(i) T satisfies property (Bw),
(ii) generalized Browder’s theorem holds for T and π(T ) = E0(T ).

Proof. (i) ⇒ (ii). Assume that T satisfies property (Bw). By Theorem 2.4 it is
sufficient to prove the equality π(T ) = E0(T ).
If λ ∈ E0(T ) then as T satisfies property (Bw), it implies that λ ∈ σ(T )\σBW (T ) =
π(T ), because generalized Browder’s theorem holds for T .
If λ ∈ π(T ) = σ(T ) \ σBW (T ) = E0(T ), therefore the equality π(T ) = E0(T ).

(ii)⇒(i). If λ ∈ σ(T ) \ σBW (T ), then generalized Browder’s theorem implies that
λ ∈ π(T ) = E0(T ). Conversely, if λ ∈ E0(T ) then λ ∈ π(T ) = σ(T ) \ σBW (T ).
Thus σ(T ) \ σBW (T ) = E0(T ). �

Theorem 2.6. Let T ∈ B(X). If T or T ∗ has SVEP at points in σ(T ) \ σBW (T ),
then T satisfies property (Bw) if and only if E0(T ) = π(T ).

Proof. The hypothesis T or T ∗ has SVEP at points in σ(T ) \ σBW (T ) = σ(T ∗) \
σBW (T ∗) implies that T satisfies generalized Browder’s theorem (see Theorem 1.1
and Remark 1.2). Hence, if π(T ) = E0(T ), then σ(T ) \ σBW (T ) = π(T ) = E0(T ).

�
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Definition 2.7. Operators S, T ∈ B(X) are said to be injectively interwined,
denoted, S ≺i T , if there exists an injection U ∈ B(X) such that TU = US.

If S ≺i T , then T has SVEP at a point λ implies S has SVEP at λ. To
see this, let T have SVEP at λ, let U be an open neighbourhood of λ and let
f : U → X be an analytic function such that (S − µ)f(µ) = 0 for every µ ∈ U .
Then U(S − µ)f(µ) = (T − µ)Uf(µ) = 0 ⇒ Uf(µ) = 0. Since U is injective,
f(µ) = 0, i.e., S has SVEP at λ.

Theorem 2.8. Let S, T ∈ B(X). If T has SVEP and S ≺i T , then S satisfies
property (Bw) if and only if E0(S) = π(S).

Proof. Suppose that T has SVEP. Since S ≺i T , therefore S has SVEP. Hence the
result follows from Theorem 2.6. �

Definition 2.9. An operator T ∈ B(X) is said to be finitely isoloid if all the
isolated points of its spectrum are eigenvalues of finite multiplicity i.e. σiso(T ) ⊆
E0(T ). An operator T ∈ B(X) is said to be finitely polaroid (resp., polaroid) if
all the isolated points of its spectrum are poles of finite rank i.e. σiso(T ) ⊆ π0(T ),
(resp., σiso(T ) ⊆ π(T )).

Theorem 2.10. Let T ∈ B(X) be a polaroid operator and satisfy property (Bw).
Then generalized Weyl’s theorem holds for T .

Proof. T is polaroid and satisfies property (Bw) ⇔.
σ(T ) \ σBW (T ) = E0(T ) ⊆ E(T ) = π(T ) = σ(T ) \ σBW (T ). (Since T satisfies

generalized Browder’s theorem by Theorem 2.5). �

Definition 2.11. The analytic core of an operator T ∈ B(X) is the subspace
(not necessarily closed) K(T ) of all x ∈ X such that there exists a sequence {xn}
and a constant c > 0 such that (i) Txn+1 = xn, x = x0 (ii) ‖xn‖ ≤ cn‖x‖ for
n = 1, 2, . . . .

Apparently, σBW (T ) ⊆ σW (T ) for every T ∈ B(X). Hence, if T satisfies prop-
erty (Bw), then σ(T ) \ σW (T ) ⊆ σ(T ) \ σBW (T ) = E0(T ). Thus, if σiso(T ) = φ,
then σ(T ) = σW (T ) = σBW (T ) (and T satisfies Weyl’s theorem and generalized
Weyl’s theorem). For a non-quasinilpotent T ∈ B(X), a condition guaranteeing
σiso(T ) = φ is that K(T ) = {0}.

Theorem 2.12. Let T ∈ B(X) be not quasinilpotent and K(T ) = {0}, then
σ(T ) = σW (T ) = σBW (T ) and T satisfies both property (Bw) and generalized
Weyl’s theorem.

Proof. Let T ∈ B(X) be not quasinilpotent and K(T ) = {0}, then T has SVEP,
σ(T ) = σW (T ) is a connected set containing 0 and σiso(T ) = φ [1, Theorem 3.121].
SVEP implies T satisfies generalized Browder’s theorem. Hence σ(T ) \ σBW (T ) =
π(T ) = φ = E0(T ) = E(T ), i.e., T satisfies property (Bw) and generalized Weyl’s
theorem (so also Weyl’s theorem). �

Remark 2.13. Let T ∈ B(X) be quasinilpotent, then σ(T ) = σBW (T ) = {0};
hence T satisfies property (Bw) is equivalent to T satisfies generalized Weyl’s the-
orem.

Theorem 2.14. Let T ∈ B(X) be a finitely isoloid operator and satisfy generalized
Weyl’s theorem. Then T satisfies property (Bw).
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Proof. If T satisfies generalized Weyl’s theorem then σ(T ) \ σBW (T ) = E(T ). To
show that T satisfies property (Bw), we need to prove that E(T ) = E0(T ). Suppose
λ ∈ E(T ). It implies that λ ∈ σiso(T ) ⊆ E0(T ), as T is finitely isoloid. Thus
E(T ) ⊆ E0(T ). Other inclusion is always true. �

Theorem 2.15. Let T ∈ B(X) be a finitely polaroid operator. If T or T ∗ has
SVEP, then property (Bw) holds for T .

Proof. If T or T ∗ has SVEP, then T satisfies generalized Browder’s theorem. Sup-
pose λ ∈ E0(T ). It implies that λ ∈ σiso(T ) ⊆ π0(T ) ⊆ π(T ), as T is finitely
polaroid. Therefore E0(T ) ⊆ π(T ). For the reverse inclusion suppose λ ∈ π(T ),
then λ ∈ σiso(T ) ⊆ π0(T ) ⊆ E0(T ). Thus π(T ) ⊆ E0(T ). Using Theorem 2.5, we
have that T satisfies property (Bw). �

3. Property (Bw) for class of operators satisfying norm condition

The bounded linear operator T ∈ B(X) is normaloid if

‖T‖ = r(T ) = v(T ),

where ‖T‖ is usual operator norm of T , r(T ) is its spectral radius and v(T ) is its
numerical radius.

A part of an operator is its restriction to a closed invariant subspace. We say
that an operator T ∈ B(X) is totally hereditarily normaloid, T ∈ THN , if every
part of T , and the inverse of every part of T (whenever it exists), is normaloid.
Hereditarily normaloid operators are simply polaroid (i.e., isolated points of the
spectrum are simple poles of the resolvent) [6, Exampe 2.2] and have SVEP [6,
Theorem 2.8]. We say that T is polynomially THN if there exists a non-constant
polynomial p(·) such that p(T ) ∈ THN .

Theorem 3.1. Let T ∈ B(X) be a polynomially THN operator. Then T and T ∗

satisfy property (Bw) if and only if E(T ) = E0(T ).

Proof. If p(T ) ∈ THN for some non-constant polynomial p(·), then p(T ) has SVEP
and p(T ) is simply polaroid. But then T has SVEP [1, Theorem 2.40] and T is
polaroid [6, Example 2.5]. Hence σ(T ) \ σBW (T ) = E(T ). This implies that T
satisfies property (Bw) if and only if E(T ) = E0(T ). Observe that T has SVEP
implies that T ∗ satisfies generalized Browder’s theorem, i.e., σ(T ∗) \ σBW (T ∗) =
π(T ∗). Since T polaroid implies T ∗ polaroid, we also have that E(T ) = σ(T ) \
σBW (T ) = σ(T ∗) \ σBW (T ∗) = π(T ∗) = E(T ∗). Clearly, if α(T − λ) ≺ ∞ and
λ ∈ σ(T ) \ σBW (T ), then α(T ∗ − λI∗) = β(T − λI) ≺ ∞. Hence T ∗ satisfies
property (Bw) if and only if E(T ) = E0(T ).

4. Property (Bw) for direct sums

Let H and K be infinite-dimensional Hilbert spaces. In this section we show
that if T and S are two operators on H and K respectively and at least one of
them satisfies property (Bw) then their direct sum T ⊕S obeys property (Bw). We
have also explored various conditions on T and S so that T ⊕ S satisfies property
(Bw).

Theorem 4.1. Suppose that property (Bw) holds for T ∈ B(H) and S ∈ B(K).
If T and S are isoloid and σBW (T ⊕ S) = σBW (T ) ∪ σBW (S), then property (Bw)
holds for T ⊕ S.
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Proof. We know σ(T ⊕ S) = σ(T ) ∪ σ(S) for any pair of operators.
If T and S are isoloid, then

E0(T ⊕ S) = [E0(T ) ∩ ρ(S)] ∪ [ρ(T ) ∩ E0(S)] ∪ [E0(T ) ∩ E0(S)]

where ρ(.) = C \ σ(.).
If property (Bw) holds for T and S, then

[σ(T ) ∪ σ(S)] \ [σBW (T ) ∪ σBW (S)]

= [E0(T ) ∩ ρ(S)] ∪ [ρ(T ) ∩ E0(S)] ∪ [E0(T ) ∩ E0(S)].

Thus σ(T ⊕ S) \ σBW (T ⊕ S) = E0(T ⊕ S).
Hence property (Bw) holds for T ⊕ S.

Theorem 4.2. Suppose T ∈ B(H) has no isolated point in its spectrum and S ∈
B(K) satisfies property (Bw). If σBW (T ⊕ S) = σ(T ) ∪ σBW (S), then property
(Bw) holds for T ⊕ S.

Proof. As σ(T ⊕ S) = σ(T ) ∪ σ(S) for any pair of operators, we have

σ(T ⊕ S) \ σBW (T ⊕ S) = [σ(T ) ∪ σ(S)] \ [σ(T ) ∪ σBW (S)]

= σ(S) \ [σ(T ) ∪ σBW (S)]

= [σ(S) \ σBW (S)] \ σ(T )

= E0(S) ∩ ρ(T )

where ρ(T ) = C \ σ(T ).
Now σiso(T ) is the set of isolated points of σ(T ) and σiso(T ⊕ S) is the set

of isolated points of σ(T ⊕ S) = σ(T ) ∪ σ(S). If σiso(T ) = φ, it implies that
σ(T ) = σacc(T ), where σacc(T ) = σ(T ) \ σiso(T ) is the set of all accumulation
points of σ(T ). Thus we have

σiso(T ⊕ S) = [σiso(T ) ∪ σiso(S)] \ [(σiso(T ) ∩ σacc(S)) ∪ (σacc(T ) ∩ σiso(S))]

= (σiso(T ) \ σacc(S)) ∪ (σiso(S) \ σacc(T ))

= σiso(S) \ σ(T )

= σiso(S) ∩ ρ(T ).

Let σp(T ) denote the point spectrum of T and σPF (T ) denote the set of all eigen-
values of T of finite multiplicity.

We have that σp(T ⊕ S) = σp(T ) ∪ σp(S) and dimN(T ⊕ S) = dimN(T ) +
dimN(S) for every pair of operators, so that

σPF (T ⊕ S) = {λ ∈ σPF (T ) ∪ σPF (S) : dimN(λI − T ) + dimN(λI − S) <∞}.

Therefore

E0(T ⊕ S) = σiso(T ⊕ S) ∩ σPF (T ⊕ S)

= σiso(S) ∩ ρ(T ) ∩ σPF (S)

= E0(S) ∩ ρ(T ).

Thus σ(T ⊕ S) \ σBW (T ⊕ S) = E0(T ⊕ S). Hence T ⊕ S satisfies property (Bw).
Let σ1(T ) denote the complement of σBW (T ) in σ(T ) i.e. σ1(T ) = σ(T ) \

σBW (T ). A straight forward application of Theorem 4.2 leads to the following
corollaries.
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Corollary 4.3. Suppose T ∈ B(H) is such that σiso(T ) = φ and S ∈ B(K) satisfies
property (Bw) with σiso(S) ∩ σPF (S) = φ and σ1(T ⊕ S) = φ, then T ⊕ S satisfies
property (Bw).

Proof. Since S satisfies property (Bw), therefore given condition σiso(S)∩σPF (S) =
φ implies that σ(S) = σBW (S). Now σ1(T ⊕ S) = φ gives that σ(T ⊕ S) =
σBW (T ⊕ S) = σ(T ) ∪ σBW (S). Thus from Theorem 4.2 we have that T ⊕ S
satisfies property (Bw).

Corollary 4.4. Suppose T ∈ B(H) is such that σ1(T )∪σiso(T ) = φ and S ∈ B(K)
satisfies property (Bw). If σBW (T ⊕ S) = σBW (T ) ∪ σBW (S), then property (Bw)
holds for T ⊕ S.

Theorem 4.5. Suppose T ∈ B(H) is an isoloid operator that satisfies property
(Bw), then T ⊕S satisfies property (Bw) whenever S ∈ B(K) is a normal operator
and satisfies property (Bw).

Proof. If S ∈ B(K) is normal, then S (also, S∗) has SVEP, and ind(S − λ) = 0 for
every λ such that S − λ is B-Fredholm. Observe that λ /∈ σBW (T ⊕ S) ⇔ T − λ
and S − λ are B-Fredholm and ind(T − λ) + ind(S − λ) = ind(T − λ) = 0.
⇔ λ /∈ {σ(T ) \ σBW (T )} ∩ {σ(S) \ σBW (S)}. Hence σBW (T ⊕ S) = σBW (T ) ∪

σBW (S). It is well known that the isolated points of the spectrum of a normal
operator are simple poles of the resolvent of the operator (implies S is isoloid).
Hence the result follows from Theorem 4.1.
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