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ON MODULAR EQUATIONS AND LAMBERT SERIES FOR A

CONTINUED FRACTION OF RAMANUJAN

(COMMUNICATED BY FRANCISCO MARCELLAN)

BHASKAR SRIVASTAVA

Abstract. Modular equations and generalized Lambert series are given for

theta functions G1(q) and H1(q).

1. Introduction

In [6], we considered the continued fraction of Ramanujan defined by

C(q) =
1

1+

(1 + q)

1+

q2

1+

(q + q3)

1+

q4

1 + ...
, |q| < 1 (1.1)

=

∑∞
n=0

q(n
2+n)/2(−q;q)n

(q;q)n∑∞
n=0

q(n2−n)/2(−q;q)n
(q;q)n

(1.2)

=
(q; q4)∞(q3; q4)∞

(q2; q4)2∞
, (1.3)

and we called it analogous to the famous celebrated Rogers-Ramanujan continued
fraction R(q) defined by [1, p 9]:

R(q) =
q1/5

1+

q

1+

q2

1 + ....
, |q| < 1 (1.4)

= q1/5
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

. (1.5)

Considering the closed form of the continued fractionC(q), we define theta functionsG1(q)
and H1(q). We prove two relations for these theta functions G1(q) and H1(q) and
from these relations prove three modular equations. This is done in section 3.
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In section 4, we prove a generalized Lambert series and write number of generalized
Lambert series for theseG1(q) and H1(q) and for the continued fraction C(q)..
Recall the following two identities of Slater [5, eq. 8 and 13]

∞∑
n=0

q(n
2+n)/2(−q; q)n

(q; q)n
=

(−q; q)∞
(q; q)∞

(q; q4)∞(q3; q4)∞(q4; q4)∞ (1.6)

and

∞∑
n=0

q(n
2−n)/2(−q; q)n

(q; q)n
=

(−q; q)∞
(q; q)∞

[
(q; q4)∞(q3; q4)∞(q4; q4)∞ + (q2; q4)2∞(q4; q4)∞

]
.

(1.7)
Writing them as

1

G1(q)
=

(q; q)∞
(−q; q)∞

∞∑
n=0

q(n
2+n)/2(−q; q)n

(q; q)n
= (q; q4)∞(q3; q4)∞(q4; q4)∞ (1.8)

and

1

H1(q)
=

[
(q; q)∞

(−q; q)∞

∞∑
n=0

q(n
2−n)/2(−q; q)n

(q; q)n
− (q; q4)∞(q3; q4)∞(q4; q4)∞

]

= (q2; q4)2∞(q4; q4)∞, (1.9)

we have

C(q) =
H1(q)

G1(q)
. (1.10)

2. Preliminaries

We will be using the following standard notations:
If |q| < 1 and x 6= 0, then

j(x, q) = (x; q)∞(q/x; q)∞(q; q)∞. (2.1)

If m is a positive integer and a is an integer, then for m > 1

Ja,m = j(qa, qm), (2.2)

Ja,m = j(−qa, qm), (2.3)

and

Jm = j(qm, q3m) = (qm, qm)∞. (2.4)

The following identities follow easily from the above definitions:

j(q/x, q) = j(x, q), (2.5)

j(x−1, q) = −x−1j(x, q), (2.6)
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j(x, q)j(−x, q) = J1,2j(x
2, q2), (2.7)

x not integral power of q.

j(x, q) =
J1
Jnn

j(x, qn)j(qx, qn)....j(qn−1x, qn), n ≥ 1. (2.8)

We shall use the following standard q-hypergeometric notation:
For |qk| < 1,

(a; qk)n =

n∏
m=1

(1− aq(m−1)k),

(a; qk)∞ =

∞∏
m=1

(1− aq(m−1)k),

(a; qk)0 = 1.

Lastly, define

χ(−q) = (q; q2)∞.

Using the notation given in (2.1),

H1(q) =
1

j(q2, q4)
(2.9)

and

G1(q) =
1

j(q, q4)
. (2.10)

3. Two Identities for G1(q) and H1(q)

We shall prove the following two identities:

G2
1(q)H1(q2)−H2

1 (q)G1(q2) = 2qj2(q, q8)G1(q)H1(q)G1(q2)H2
1 (q2) (3.1)

and

G2
1(q)H1(q2) +H2

1 (q)G1(q2) =
2(−q4; q4)4∞j

2(q3, q8)

(−q; q)∞
G2

1(q)G3
1(q2). (3.2)

In proving the identities we shall use the following theorem of Hickerson [4,
eq.(1.19), p. 644].

For 0 < |q| < 1, x 6= 0, y 6= 0,

j(−x, q)j(y, q)− j(x, q)j(−y, q) = 2xj(y/x, q2)j(xyq, q2). (3.3)

Proof of (3.1) and (3.2)
First we prove (3.1).
Replacing q by q4, x by q and y by q2 in (3.3), we have

j(−q, q4)j(q2, q4)− j(q, q4)j(−q2, q4) = 2qj2(q, q8). (3.4)

Multiplying both sides of (3.4) by 1
j(q,q4)j(q2,q4)j(q2,q8)j(q4,q8) , we obtain
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j(−q, q4)

j(q, q4)j(q2, q8)j(q4, q8)
− j(−q2, q4)

j(q2, q4)j(q2, q8)j(q4, q8)
=

2qj2(q, q8)

j(q, q4)j(q2, q4)j(q2, q8)j(q4, q8)
.

(3.5)
By using (2.9) and (2.10), (3.5) simplifies to

G2
1(q)H1(q2)−H2

1 (q)G1(q2) = 2qj2(q, q8)G1(q)H1(q)G1(q2)H2
1 (q2), (3.6)

which proves (3.1).
Now we prove (3.2).
Replacing q by q4, x by 1

q and y by q2 in (3.3), we have

j(−q, q4)j(q2, q4) + j(q, q4)j(−q2, q4) = 2qj2(q3, q8). (3.7)

Multiplying both sides of (3.7) by 1
j(q,q4)j(q2,q4)j(q2,q8)j(q4,q8) and using (2.9) and

(2.10), we have

G2
1(q)H1(q2) +H2

1 (q)G1(q2) =
2(−q4; q4)4∞j

2(q3, q8)

(−q; q)∞
G2

1(q)G3
1(q2), (3.8)

which proves (3.2). Dividing (3.6) by (3.8)

B(q)
G2

1(q)H1(q2)−G1(q2)H2
1 (q)

G2
1(q)H1(q2) +G1(q2)H2

1 (q)
= C(q)C2(q2), (3.9)

where

B(q) =
(−q4; q4)4∞j

2(q3, q8)

q(−q; q)∞j2(q, q8)
. (3.10)

4. Applications

We now prove the following modular equations.
Theorem 1
Let

u = C(q2), v = C(q)

then

(i)B(q) =
u− v2

u+ v2
= u2v, (4.1)

(ii)k

(
1− k/B(q)

1 + k/B(q)

)2

= C5(q), (4.2)

where k = C(q)C2(q2)

(iii)B(q)
1

u2v
− 1

B(q)
uv2 =

χ(−q2)χ6(−q4)

qχ2(−q)
. (4.3)

B(q) is as given in (3.10).
Proof of (i)
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Dividing the numerator and denominator of the left side of (3.9) by G2
1(q)G1(q2)

and applying (1.10), we have

B(q)
C(q2)− C2(q)

C(q2) + C2(q)
= C(q)C2(q2).

By the definition of u and v, we have

B(q)
u− v2

u+ v2
= u2v,

which proves (4.1).
Proof of (ii)
Writing k for C(q)C2(q2), we obtain from (3.9)

k(q)

(
1− k/B(q)

1 + k/B(q)

)2

= C(q)C2(q2)

[
1− G2

1(q)H1(q
2)−G1(q

2)H2
1 (q)

G2
1(q)H1(q2)+G1(q2)H2

1 (q)

]2
[
1 +

G2
1(q)H1(q2)−G1(q2)H2

1 (q)

G2
1(q)H1(q2)+G1(q2)H2

1 (q)

]2
= C(q)C2(q2)

[
2G1(q2)H2

1 (q)

2G2
1(q)H1(q2)

]2
= C(q)C2(q2)

[
C2(q)

C(q2)

]2
= C5(q),

which proves (4.2).
Proof of (iii)

B(q)
1

u2v
− 1

B(q)
u2v

=
G2

1(q)H1(q2) +H2
1 (q)G1(q2)

G2
1(q)H1(q2)−H2

1 (q)G1(q2)
− G2

1(q)H1(q2)−H2
1 (q)G1(q2)

G2
1(q)H1(q2) +H2

1 (q)G1(q2)

=

[
G2

1(q)H1(q2) +H2
1 (q)G1(q2)

]2 − [G2
1(q)H1(q2)−H2

1 (q)G1(q2)
]2

[G2
1(q)H1(q2)−H2

1 (q)G1(q2)] [G2
1(q)H1(q2) +H2

1 (q)G1(q2)]

=
4G2

1(q)H2
1 (q)G1(q2)H1(q2)

[2qj2(q, q8)G1(q)H1(q)G1(q2)H2
1 (q2)]

[
2(−q4;q4)4∞j2(q3,q8)

(−q;q)∞ G2
1(q)G3

1(q2)
]

=
(−q; q)∞

q(−q4; q4)4∞j
2(q, q8)j2(q3, q8)

G1(q)H1(q)

G2
1(q)G2

1(q2)G1(q2)H1(q2)
. (4.4)

Now

G1(q)H1(q) =
1

(q; q)∞(q2; q2)∞
, (4.5)

G1(q)G1(q2) =
1

(q; q)∞(q8; q8)∞
(4.6)

and
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j(q, q8)j(q3, q8) = (q; q2)∞(q8; q8)2∞. (4.7)

Putting the values from (4.5), (4.6) and (4.7) in (4.4), we get

B(q)
1

u2v
− 1

B(q)
u2v =

χ(−q2)χ6(−q4)

qχ2(−q)
,

which proves (4.3).

5. Generalized Lambert Series

Series of the form

∞∑
−∞

(−1)εnqλn
2

R(qn),

where ε = 0 or 1, λ > 0 and R(x)is a rational function of x,is called a generalized
Lambert series.

In [6] we proved two identities

∞∑
n=0

qin

1− q4n+i
=

∞∑
n=0

q4n
2+2in 1 + q4n+i

1− q4n+i
, (5.1)

where 0 < i ≤ 3
and

∞∑
n=−∞

qin

1− q4n+i
=

(q4; q4)2∞(q2i; q4)∞(q4−2i; q4)∞
(q4−i; q4)2∞(qi; q4)2∞

, (5.2)

where 0 < i ≤ 3,i 6= 2.
This (5.2) can be generalized to

∞∑
n=−∞

qin

1− q4n+j
=

(q4; q4)2∞(qi+j ; q4)∞(q4−i−i; q4)∞
(qj ; q4)∞(q4−j ; q4)∞(qi; q4)∞(q4−i; q4)∞

, (5.3)

where 0 < i ≤ 3, 0 < j ≤ 3 and i+ j 6= 4.
The proof (5.2) and (5.3) depends on the summation formula of Ramanujan:

1ψ1(a; b; q, z) =

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(b/a; q)∞(az; q)∞(q/az; q)∞(q; q)∞
(q/a; q)∞(b/az; q)∞(b; q)∞(z; q)∞

.| (5.4)

We now prove Lambert series for G1(q), H1(q) and C(q).
We recall the definition of G1(q) and H1(q) given in (1.8) and (1.9):

G1(q) =
1

(q; q)∞(q3; q4)∞(q4; q4)∞
and

H1(q) =
1

(q2; q4)2∞(q4; q4)∞
.

We list identities for G1(q)and H1(q) below and after each identity list the spe-
cialization of (5.2) and (5.3) in brackets:
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(q4; q4)3∞H1(q) =

∞∑
n=−∞

qn

1− q4n+2
(5.5)

(i = 1, j = 2 in (5.3)).

(q4; q4)3∞
G2

1(q)

H1(q)
=

∞∑
n=−∞

qn

1− q4n+1
(5.6)

(i = 1 in (5.2)).

(q4; q4)3∞H1(q) =

∞∑
n=−∞

q2n

1− q4n+1
(5.7)

(i = 2, j = 1 in (5.3)).

(q2; q2)2∞(q4; q4)2∞G
2
1(q) =

∞∑
n=−∞

qn

1− q4n+1
(5.8)

(i = 1 in (5.2)).

(q4; q4)3∞
G2

1(q)

H1(q)
=

∞∑
n=−∞

q4n
2+2n 1 + q4n+1

1− q4n+1
(5.9)

(i = 1 in (5.1) and using (5.6)).

(q2; q2)2∞(q4; q4)2∞G
2
1(q) =

∞∑
n=−∞

q4n
2+2n 1 + q4n+1

1− q4n+1
(5.10)

(i = 1 in (5.1) and using (5.8)).

C2(q) =

∑∞
n=−∞

qn

1−q4n+2∑∞
n=−∞

qn

1−q4n+1

(5.11)

(divide (5.5) by (5.6)).

C2(q) =

∑∞
n=−∞

q2n

1−q4n+1∑∞
n=−∞

qn

1−q4n+1

(5.12)

(divide (5.7) by (5.6)).

(q4; q4)3∞G1(q) =

∞∑
n=−∞

qn

1− q8n+3
(5.13)

(q → q2, i = 1
2 , j = 3

2 in (5.3)).

(q4; q4)3∞H1(q) =

∞∑
n=−∞

q2n

1− q8n+2
(5.14)

(q → q2, i = 1 in (5.2)).

C(q) =

∑∞
n=−∞

q2n

1−q8n+2∑∞
n=−∞

qn

1−q8n+3

(5.15)
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(divide(5.14) by (5.13)).
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