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OSCILLATION CRITERIA FOR THIRD-ORDER NONLINEAR

DELAY DYNAMIC EQUATIONS ON TIME SCALES

(COMMUNICATED BY AGACIK ZAFER)

TONGXING LI, ZHENLAI HAN, CHENGHUI ZHANG, YING SUN

Abstract. By means of Riccati transformation technique, we establish some
new oscillation criteria for the third-order nonlinear delay dynamic equations

x∆
3
(t) + p(t)xγ(τ(t)) = 0

on a time scale T unbounded above, here γ > 0 is a quotient of odd positive

integers with p real-valued positive rd-continuous function defined on T. Three

examples are given to illustrate the main results.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was
introduced by Hilger in his Ph. D. thesis [1] in order to unify continuous and
discrete analysis. A time scale T is an arbitrary nonempty closed subset of the
reals, and the cases when this time scale is equal to the reals or to the integers
represent the classical theories of differential and of difference equations. Many
other interesting time scales exist, and they give rise to plenty of applications,
among them the study of population dynamic models (see [2]).

Not only can this theory of so-called dynamic equations unify the theories of
differential equations and difference equations, but also it is able to extend these
classical cases to cases “in between”, e.g., to so-called q-difference equations. Several
authors have expounded on various aspects of this new theory; see the survey paper
by Agarwal et al. [3] and references cited therein. A book on the subject of time
scales, by Bohner and Peterson [2], summarizes and organizes much of the time
scale calculus, see also the book by Bohner and Peterson [4] for advances in dynamic
equations on time scales.
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Recently, there has been a great deal of research activity concerning the oscil-
lation and nonoscillation of solutions of various equations on time scales, we refer
the reader to the papers which deal with the first-order dynamic equations [5–7]
and second-order dynamic equations [8–16]. However, there are few results dealing
with the oscillation of solutions of third-order and higher-order dynamic equations
[17–27].

Han et al. [16] considered the second-order Emden-Fowler delay dynamic equa-
tions

x∆2

(t) + p(t)xγ(τ(t)) = 0, t ∈ T with supT =∞. (1.1)

Using the equality

(uγ)∆

(
z2

uγ

)∆

= (z∆)2 − (uuσ)γ
(( z

uγ

)∆
)2

, (1.2)

where u and z are differentiable on a time scale T with u(t) 6= 0 for all t ∈ T, they
established some oscillation criteria for (1.1).

In 2007, Erbe et al. [18] investigated the third-order dynamic equations

x∆3

(t) + p(t)x(t) = 0, t ∈ T with supT =∞, (1.3)

where p is a positive real-valued rd-continuous function on T, and the authors
obtained some Hille and Nehari type criteria for the oscillation of (1.3).

Han et al. [25] studied the third-order nonlinear delay dynamic equations(
(x∆2

(t))γ
)∆

+ p(t)xγ(τ(t)) = 0, t ∈ T with supT =∞, (1.4)

and obtained some new oscillation results for (1.4).
In this paper, by using (1.2), we consider the following delay dynamic equations

x∆3

(t) + p(t)xγ(τ(t)) = 0, t ∈ T with supT =∞. (1.5)

We assume that γ > 0 is a quotient of odd positive integers, p is a positive real-
valued rd-continuous function defined on T, τ : T → T is a rd-continuous function
such that τ(t) ≤ t and τ(t)→∞ (t→∞).

Since we are interested in oscillatory behavior, we assume throughout this paper
that the given time scale T is unbounded above. We assume t0 ∈ T and it is
convenient to assume t0 > 0. We define the time scale interval of the form [t0,∞)T
by [t0,∞)T := [t0,∞) ∩ T.

The paper is organized as follows: In Section 2, we apply a simple consequence
of Keller’s chain rule, devoted to the proof of the sufficient conditions which ensure
that every solution of (1.2) is either oscillatory or has a finite limit at∞. In Section
3, three examples are considered to illustrate the main results. In Section 4, we will
give some conclusions for this paper.

2. Main results

In this section we establish some new oscillation criteria for (1.5). In order to
prove our main results, we will use the formula

((x(t))γ)
∆

= γ

∫ 1

0

[hxσ(t) + (1− h)x(t)]
γ−1

x∆(t)dh, (2.1)
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where x is delta differentiable and eventually positive or eventually negative, which
is a simple consequence of Keller’s chain rule (see Bohner and Peterson [2, Theorem
1.90]).

Before stating our main results, we begin with the following lemmas which are
crucial in the proofs of the main results.

Lemma 2.1. Assume that x is an eventually positive solution of (1.5). Then there
are only the following two cases for t ≥ t1 sufficiently large:

(i) x(t) > 0, x∆(t) > 0, x∆2

(t) > 0 and x∆3

(t) < 0 (unbounded),
or
(ii) x(t) > 0, x∆(t) < 0, x∆2

(t) > 0 and x∆3

(t) < 0 (bounded).

The proof of the lemma above is a direct consequence of Kneser’s theorem (see
[22]) for third order derivative.

In [2, Section 1.6] the Taylor monomials {hn(t, s)}∞n=0 are defined recursively by

h0(t, s) = 1, hn+1(t, s) =

∫ t

s

hn(τ, s)∆τ, t, s ∈ T, n ≥ 0.

It follows from [2, Section 1.6] that h1(t, s) = t − s for any time scale, but simple
formulas in general do not hold for n ≥ 2.

Lemma 2.2. [18, Lemma 4] Assume that x satisfies case (i) of Lemma 2.1. Then

lim inf
t→∞

tx(t)

h2(t, t0)x∆(t)
≥ 1. (2.2)

Lemma 2.3. Assume that x is a solution of (1.5) which satisfies case (i) of Lemma
2.1. If ∫ ∞

t0

p(t)(h2(τ(t), t0))γ∆t =∞, (2.3)

then

x∆(t) ≥ tx∆2

(t),
x∆(t)

t
is eventually nonincreasing. (2.4)

Proof. Let x be a solution of (1.5) such that case (i) of Lemma 2.1 holds for
t ≥ t1. Define

X(t) = x∆(t)− tx∆2

(t).

Thus
X∆(t) = −σ(t)x∆3

(t) > 0.

We claim that X(t) > 0 eventually. Otherwise, there exists t2 ≥ t1 such that
X(t) < 0 for t ≥ t2. Therefore,(

x∆(t)

t

)∆

= −X(t)

tσ(t)
> 0, t ≥ t2,

which implies that x∆(t)/t is strictly increasing on [t2,∞)T. Pick t3 ≥ t2 such that
τ(t) ≥ t2 for all t ≥ t3. Then, we have

x∆(τ(t))

τ(t)
≥ x∆(t2)

t2
= d > 0,

then x∆(τ(t)) ≥ dτ(t) for all t ≥ t3. By Lemma 2.2, for any 0 < k < 1, there exists
t4 ≥ t3 such that

x(t)

x∆(t)
≥ kh2(t, t0)

t
, t ≥ t4.
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Hence, there exists t5 ≥ t4 so that

x(τ(t)) ≥ kh2(τ(t), t0)

τ(t)
x∆(τ(t)) ≥ dkh2(τ(t), t0)

τ(t)
τ(t) = dkh2(τ(t), t0), t ≥ t5.

Integrating both sides of (1.5) from t5 to t, we have

x∆2

(t)− x∆2

(t5) + (dk)γ
∫ t

t5

p(s)(h2(τ(s), t0))γ∆s ≤ 0,

which yields that

x∆2

(t5) ≥ (dk)γ
∫ t

t5

p(s)(h2(τ(s), t0))γ∆s,

which contradicts (2.3). Hence, X(t) > 0 and x∆(t)/t is eventually nonincreasing.
The proof is complete.

Lemma 2.4. Assume that x is a solution of (1.5) which satisfies case (ii) of
Lemma 2.1. If ∫ ∞

t0

h2(t0, σ(s))p(s)∆s =∞, (2.5)

then limt→∞ x(t) = 0.

The result above is a restriction of [23, Theorem 3.1] to (1.5).

Theorem 2.5. Assume that (2.3) holds, γ ≥ 1. If

lim sup
t→∞

t

∫ ∞
t

p(s)

(
h2(τ(s), t0)

s

)γ
∆s =∞, (2.6)

then every solution x of (1.5) is either oscillatory or limt→∞ x(t) exists.

Proof. Suppose that (1.5) has a nonoscillatory solution x on [t0,∞)T. We may
assume without loss of generality that x(t) > 0 and x(τ(t)) > 0 for all t ∈ [t1,∞)T,
t1 ∈ [t0,∞)T. Then by Lemma 2.1, x satisfies either case (i) or (ii).

Assume case (i) holds. Set y(t) = x∆2

(t). By (1.5), we have for T ≥ t ≥ t1,

y(T ) = y(t) +

∫ T

t

y∆(s)∆s = y(t)−
∫ T

t

p(s)xγ(τ(s))∆s.

Hence ∫ T

t

p(s)xγ(τ(s))∆s = y(t)− y(T ) ≤ y(t) = x∆2

(t).

By (2.2) and (2.4), for any 0 < k < 1, we have

x∆(t) ≥ tx∆2

(t) ≥ t
∫ ∞
t

p(s)xγ(τ(s))∆s ≥ t
∫ ∞
t

kp(s)

(
h2(τ(s), t0)

τ(s)
x∆(τ(s))

)γ
∆s

≥ kt
∫ ∞
t

p(s)

(
h2(τ(s), t0)

τ(s)

τ(s)

s
x∆(s)

)γ
∆s = kt

∫ ∞
t

p(s)

(
h2(τ(s), t0)

s

)γ
(x∆(s))γ∆s

≥ kt(x∆(t))γ
∫ ∞
t

p(s)

(
h2(τ(s), t0)

s

)γ
∆s,

which yields that

t

∫ ∞
t

p(s)

(
h2(τ(s), t0)

s

)γ
∆s ≤ 1

k

(
1

x∆(t)

)γ−1

≤ 1

k

(
1

x∆(t1)

)γ−1

,
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this contradicts (2.6). If case (ii) holds, then limt→∞ x(t) exists. The proof is
complete.

Using a Riccati transformation technique and (1.2), we establish the following
results.

Theorem 2.6. Assume that (2.3) holds, γ ≥ 1. Furthermore, suppose that there
exists a function z ∈ C1

rd([t0,∞)T,R) such that for some 0 < k < 1 and for all
constants M > 0, one has

lim sup
t→∞

∫ t

t0

[
p(s)ξ(s)(z(σ(s)))2 −Mγ−1(z∆(s))2

]
∆s =∞, (2.7)

where ξ(t) = kγ (h2(τ(t), t0)/σ(t))
γ
. Then every solution x of (1.5) is either oscil-

latory or limt→∞ x(t) exists.

Proof. Suppose that (1.5) has a nonoscillatory solution x on [t0,∞)T. We may
assume without loss of generality that x(t) > 0 and x(τ(t)) > 0 for all t ∈ [t1,∞)T,
t1 ∈ [t0,∞)T. Then by Lemma 2.1, x satisfies either case (i) or (ii).

Assume x satisfies case (i). Define the function ω by

ω =
z2x∆2

(x∆)γ
. (2.8)

Then ω(t) > 0. Using the product rule, we have

ω∆ =

(
z2

(x∆)γ

)σ
x∆3

+ x∆2

(
z2

(x∆)γ

)∆

.

So, letting u = x∆, from (1.5) and (1.2) we get

ω∆ = −p(zσ)2
(x ◦ τ
x∆σ

)γ
+

x∆2

((x∆)γ)∆
(z∆)2 − x∆2

((x∆)γ)∆
(x∆x∆σ)γ

((
z

(x∆)γ

)∆
)2

.

(2.9)
In view of (2.2) and (2.4), for any 0 < k < 1, we find

xγ(τ(t))

(x∆σ(t))γ
=

xγ(τ(t))

(x∆(τ(t)))γ
(x∆(τ(t)))γ

(x∆σ(t))γ

≥
(
k
h2(τ(t), t0)

τ(t)

)γ (
τ(t)

σ(t)

)γ
= kγ

(
h2(τ(t), t0)

σ(t)

)γ
. (2.10)

On the other hand, it is follows (2.1) that

((x∆(t))γ)∆ = γ

∫ 1

0

[hx∆σ(t) + (1− h)x∆(t)]γ−1x∆2

(t)dh

≥ γ(x∆(t))γ−1x∆2

(t) ≥M1−γx∆2

(t), (2.11)

where M = (γ1/(γ−1)x∆(t1))−1, if γ > 1. If γ = 1, we choose M = 1.
Thus, from (2.9), (2.10) and (2.11), we see that

ω∆ ≤ −p(zσ)2ξ +Mγ−1(z∆)2. (2.12)

Therefore, ∫ t

t1

[
p(s)ξ(s)(z(σ(s)))2 −Mγ−1(z∆(s))2

]
∆s ≤ ω(t1),

which contradicts (2.7).
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If case (ii) holds, then limt→∞ x(t) exists. This completes the proof.
From Theorem 2.6, we can obtain different conditions for oscillation of all solu-

tions of (1.5) with different choices of z.
For example, let z =

√
t, z ≡ 1. Now Theorem 2.6 yields the following results.

Corollary 2.7. Assume that (2.3) holds, γ ≥ 1. If

lim sup
t→∞

∫ t

t0

(
p(s)σ(s)ξ(s)− Mγ−1

(
√
s+

√
σ(s))2

)
∆s =∞ (2.13)

for some 0 < k < 1 and for all constants M > 0, where ξ is as in Theorem 2.6,
then every solution x of (1.5) is either oscillatory or limt→∞ x(t) exists.

Corollary 2.8. Assume that (2.3) holds, γ ≥ 1. If

lim sup
t→∞

∫ t

t0

p(s)

(
h2(τ(s), t0)

σ(s)

)γ
∆s =∞, (2.14)

then every solution x of (1.5) is either oscillatory or limt→∞ x(t) exists.

Sometimes the following criteria is easier to check than the one given in Corollary
2.7, but it follows easily from Corollary 2.7 as we always have σ(t) ≥ t for all t ∈ T.

Corollary 2.9. Assume that (2.3) holds, γ ≥ 1. If

lim sup
t→∞

∫ t

t0

(
p(s)σ(s)ξ(s)− Mγ−1

4s

)
∆s =∞ (2.15)

for some 0 < k < 1 and for all constants M > 0, where ξ is as in Theorem 2.6,
then every solution x of (1.5) is either oscillatory or limt→∞ x(t) exists.

Theorem 2.10. Assume that (2.3) holds, γ ≤ 1. Furthermore, assume that there
exists a positive function z ∈ C1

rd([t0,∞)T,R) such that for some 0 < k < 1 and for
all constants K > 0, one has

lim sup
t→∞

∫ t

t0

[
p(s)ξ(s)(z(σ(s)))2 −Kγ−1(σ(s))1−γ(z∆(s))2

]
∆s =∞, (2.16)

where ξ is as defined as in Theorem 2.6. Then every solution x of (1.5) is either
oscillatory or limt→∞ x(t) exists.

Proof. Suppose that (1.5) has a nonoscillatory solution x on [t0,∞)T. We may
assume without loss of generality that x(t) > 0 and x(τ(t)) > 0 for all t ∈ [t1,∞)T,
t1 ∈ [t0,∞)T. Then by Lemma 2.1, x satisfies either case (i) or (ii).

Assume x satisfies case (i). Define the function ω as (2.8). We proceed as in the
proof of Theorem 2.6 and we get (2.9) and (2.10). Note that γ ≤ 1, by (2.1) we
have

((x∆(t))γ)∆ = γ

∫ 1

0

[hx∆σ(t) + (1− h)x∆(t)]γ−1x∆2

(t)dh

≥ γ(x∆σ(t))γ−1x∆2

(t),

from (2.4), there exists a constant L > 0 such that x∆(t) ≤ Lt, so

((x∆(t))γ)∆ ≥ (σ(t))γ−1

Kγ−1
x∆2

(t), (2.17)

where we put K = (γ1/(γ−1)L)−1, if γ < 1. If γ = 1, we choose K = 1.
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Hence, from (2.9), (2.10) and (2.17), we see that

ω∆ ≤ −p(zσ)2ξ +Kγ−1σ1−γ(z∆)2. (2.18)

Therefore,∫ t

t1

[
p(s)ξ(s)(z(σ(s)))2 −Kγ−1(σ(s))1−γ(z∆(s))2

]
∆s ≤ ω(t1),

which contradicts (2.16).
If case (ii) holds, then limt→∞ x(t) exists. This completes the proof.
From Theorem 2.10, we can obtain different conditions for oscillation of all so-

lutions of (1.5) with different choices of z.
For example, let z =

√
t, z ≡ 1. Now Theorem 2.10 yields the following results.

Corollary 2.11. Assume that (2.3) holds, γ ≤ 1. If

lim sup
t→∞

∫ t

t0

(
p(s)σ(s)ξ(s)− Kγ−1(σ(s))1−γ

(
√
s+

√
σ(s))2

)
∆s =∞ (2.19)

for some 0 < k < 1 and for all constants K > 0, where ξ is as in Theorem 2.6,
then every solution x of (1.5) is either oscillatory or limt→∞ x(t) exists.

Corollary 2.12. Assume that (2.3) holds, γ ≤ 1. If (2.14) holds, then every
solution x of (1.5) is either oscillatory or limt→∞ x(t) exists.

Sometimes the following criteria is easier to check than the one given in Corollary
2.11, but it follows easily from Corollary 2.11 as we always have σ(t) ≥ t for all
t ∈ T.

Corollary 2.13. Assume that (2.3) holds, γ ≤ 1. If

lim sup
t→∞

∫ t

t0

(
p(s)σ(s)ξ(s)− (σ(s))1−γK

γ−1

4s

)
∆s =∞ (2.20)

for some 0 < k < 1 and for all constants K > 0, where ξ is as in Theorem 2.6,
then every solution x of (1.5) is either oscillatory or limt→∞ x(t) exists.

From Lemma 2.4, we have the following results.

Theorem 2.14. Assume that (2.3) and (2.5) hold, γ ≥ 1. If one of the conditions
(2.6) and (2.7) holds, then every solution of (1.5) oscillates or tends to zero.

Theorem 2.15. Assume that (2.3), (2.5) and (2.16) hold, γ ≤ 1. Then every
solution of (1.5) oscillates or converges to zero.

3. Examples

In this section we give the following examples to illustrate our main results.
Example 3.1 Consider the third order delay dynamic equations on time scales

x∆3

(t) +
β

t

(
σ(t)

h2(τ(t), t0)

)γ
xγ(τ(t)) = 0, t ∈ [t0,∞)T, (3.1)

where β > 0, γ ≥ 1 is a quotient of odd positive integers.
Let p(t) = β (σ(t)/h2(τ(t), t0))

γ
/t. It is easy to see that all the conditions

of Corollary 2.8 hold. Hence, every solution x of (3.1) is either oscillatory or
limt→∞ x(t) exists.



OSCILLATION CRITERIA FOR THIRD-ORDER NONLINEAR DELAY DYNAMIC EQUATIONS59

Example 3.2 Consider the third order delay dynamic equations on time scales

x∆3

(t) +
β

t(h2(τ(t), t0))γ
xγ(τ(t)) = 0, t ∈ [t0,∞)T, (3.2)

where β > 0, γ ≤ 1 is a quotient of odd positive integers.
Let p(t) = β/(t(h2(τ(t), t0))γ). It is easy to see that all the conditions of Corollary

2.12 hold. Therefore, every solution x of (3.2) is either oscillatory or limt→∞ x(t)
exists.

Example 3.3 Consider the third order delay differential equation

x′′′(t) + (e2t−6)x3(t− 2) = 0, t ∈ [t0,∞), (3.3)

where γ = 3, τ(t) = t− 2.
For T = R, we have h2(τ(t), t0) = (t− 2− t0)2/2. Let p(t) = e2t−6. It is easy to

see that all the conditions of Theorem 2.14 hold. Thus, every solution x of (3.3) is
either oscillatory or limt→∞ x(t) = 0. For example, x(t) = e−t is a solution of (3.3).

4. Conclusions

In this paper, we consider the oscillatory behavior of the third-order nonlinear
delay dynamic equations (1.5), the method is different from [25–27], and these
results are new.

Acknowledgments. The authors sincerely thank the reviewer for his/her valuable
suggestions and useful comments that have led to the present improved version of
the original manuscript.
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