BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS
ISSN: 1821-1291, URL: HTTP://WWW.BMATHAA.ORG
VOLUME 3 ISSUE 3(2011), PAGES 97-108.

ON SPACE LIKE SUBMANIFOLDS WITH R =aH +b IN DE
SITTER SPACE FORM S77(c)

(COMMUNICATED BY UDAY CHAND DE)

YINGBO HAN, SHUXIANG FENG

ABSTRACT. In this paper, we investigate nm-dimensional complete spacelike
sumbmanifolds M™ (n > 3) with R = aH +b in de Sitter space form Sp+?(c).
Some rigidity theorems are obtained for these spacelike submanifolds.

1. INTRODUCTION

A de Sitter space form S;'*P(c) is an (n + p)-dimensional connected pseudo-
Riemannian manifold of index p with constant sectional curvature ¢ > 0. A sub-
manifold immersed in Sg“’ (c) is said to be spacelike if the induced metric in M"™
from the metric of the ambient space Sg“’ (¢) is positive definite. Since Goddard’s
conjecture (see [6]), several papers about spacelike hypersurfaces with constant
mean curvature in de Sitter space have been published. For the study of space-
like hypersurface with constant scalar curvature in de Sitter space, there are also
many results such as [2, 9, 15, 16]. There are some results about space like suman-
ifolds with constant scalar curvature and higher codimension in de Sitter space
form S7*P(c) such as [17]. Recently, F.E.C.Camargo, et al.[5] and Chao X.L. [4]
obtained some interesting characters for space like submanifolds with parallel nor-
malized mean vector(which is much weaker than the condition to have parallel
mean curvature vector) in S’gﬂ’ (¢). In this note, we consider complete space like
submanifolds with R = aH + b in de Sitter space and we get the following results:

Theorem 1.1. Let M™ (n > 3) be a complete space like submanifold with R =
aH +b, (n—1)a® +4nc—4nb > 0 and a > 0 in SPHP(c). If S < 2¢/(n—1)c, then
M™ is totally umbilical.

Theorem 1.2. Let M™ (n > 3) be a complete space like submanifold with R =
aH +b, (n—1)a* + 4nc — 4nb > 0 and a > 0 in de Sitter space form Syt (c).
Suppose that M™ has bounded mean curvature H :
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(1) If sup(H)?* < %c, then S = nH? and M™ is totally umbilical.

(2) If sup(H)? = %c, then either S = nH? and M™ is totally
L (n=2)*pP+4(n—1)
=nc (7L—2)21;+4(n—1) :

(3-a) If sup(H)? > ¢ > %c, then either S = nH? and M™ is totally

umbilical, or nsup H? < sup S < S*.

(3-b) If sup(H)? = ¢ > %c, then either S = nH? and M™ is totally

umbilical, or nsup H?> < sup S < S7.

(3-c) If ¢ > sup(H)? > %c, then either S = nH? and M™ is totally

umbilical, or S~ < supS < ST.

Where §+ — 202 20— 0@ g, 124 gup 7 [=ZE O A3l Te)

npc, and ST = géﬁ:f)) [2("_2)2]”22(2‘1,(2‘)‘1)(1’*” sup H?—sup |H|p2\/[(n_2)2p+4(n_12,]st2_4(n_1)c]_

npc.

umbilical, or sup(S)

Remark. (i) We take the parallel normalized mean curvature vector off from our
theorems. (ii)From the conclusion (1) in theorem 1.2, we obtain the theorem 1.2 in
[4] -

Recently, the first author in [7] obtained an intrinsic inequality for space like
submanifolds in S}'*7(c),

Theorem 1.3. [7] If M™ (n > 1) is a complete space-like submanifold of indefinite
space form M*P(c)(c > 0) (p > 1), Ric and R are Ricci curvature tensor and the
normalized scalar curvature of M™, respectively, then

|Ric|* > 2cRn(n —1)® — ¢*n(n — 1)% (1.1)

Moreover, |Ric|?> = 2cRn(n — 1)? — ¢®n(n — 1)? if and only if M™ is a spacelike
Finstein submanifolds with Ric;; = c¢(n — 1)g;;, where g is the Riemannian metric
of M™.

In this note, we also obtain the following result:

Theorem 1.4. Let M™ (n > 3) be a complete space-like submanifold of de Sitter
space form S;}er(c) (p > 1). If the mean curvature satisfies the following inequality:

c

H? < (1.2)
then |Ric|*> = 2¢Rn(n — 1)? — 2n(n — 1)? if and only if M™ is totally geodesic,
where Ric and R are Ricci curvature tensor and the normalized scalar curvature of
M™, respectively.

2. PRELIMINARIES

We choose a local field of semi-Riemannian orthonormal frames {ey, - , ey, €n41,
© L entpt N SI’}“’(c) such that, restricted to M™, ey, -- , e, are tangent to M™.
Let wi,- - ,wn4p be its dual frame field such that the semi-Riemannian metric of
SptP(c) is given by ds? = " ea(wa)?, where ¢, = 1,5 =1,--- ,n and e, = —1,
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a=mn+1,---,n+p. Then the structure equations of S}*?(c) are given by
deZ—ZGBUJAB/\wB, wap +wpa =0, (2.1)
B
1
dwap = — Z ccwac Nwep + 5 Z Kapcpwe ANwp, (2.2)
c CcD
Kapcep = ceaep(6acdpp — dapdpc). (2.3)
We restrict these forms to M™, then
we=0, a=n+1,---,n+p, (2.4)

and the Riemannian metric of M™ is written as ds* = ), w?. Since

0=dw, = — Zw‘“ A wi, (2.5)
i

by Cartan’s lemma we may write

Wai = Y hfsws,  h = h. (2.6)
J

From these formulas, we obtain the structure equations of M™:

dw; = — E wij AWy, Wi +0in=0,
J

1
dwij = — Zwik A wrj + 2 ZRijklwk N wy,
k

k,l
Rijii = c(0irdj — dudjr) — (hihG — hihfy), (2.7)
where R,k are the components of curvature tensor of M™. We call
B = Z h%wi ®w;j @ eq (2.8)
1,7,

the second fundamental form of M™. The mean curvature vector is h = % Zi,a h$eq =
>0 0%€q, where 0% = L 37 1% We denote S = Y ija(h)?, and H? = |h|>. We
call that M™ is maximal if its mean curvature field vanishes, i.e. h = 0.

Let hf;, and h;,, denote the covariant derivative and the second covariant

3 3 ’ [e3% [e3 — (e}
derivative of hf;. Then we have A, = h{} ; and

o —hS == h& Rkt — Y b Boning — Y his Ragit, (2.9)
m m B
where R,y are the components of the normal curvature tensor of M™.

Rogrr = — Y _(hghy — W hd), (2.10)

i

Rici, = (n— V)edi — Y (O hihil, + Y hiihi, (2.11)
I I

e

nin—1DR=n(n—1)c+ S —n?H? (2.12)

where R is the normalized scalar curvature.
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The Laplacian AR, of hf; is defined by AhS; =37 hityy. From (2.9) we have
ARG = i = > hf Ronije — > iRk — > hpiRagir.  (2.13)
k

Now, we assume H > 0. We choose e,+1 = % Hence
tr(H"™) =nH, tr(HY) =0, a#n+1, (2.14)
where Hdenote the matrix (hg;). Let us define

n+l _ jpn+l _
Ortl = pitt — HGy,  @F = he

K

ijs a#n+1. (2.15)
Therefore
ot = gt _HI, ®*=H® a#n+1. (2.16)

where ®* denotes the matrix (®f;). Then

@2 = tr(H")? —nH?, Y@= Y (k)P (@) =0, (2.17)

a#n+1 a#n+1
forvVge{n+1,--- ,n+ p}. Thus
n+p
B = > [0 =85 —nH". (2.18)
a=n+1

Set S; = tr(H"1)2 and Sy = Za¢n+1(h%)2, so S = 81 + S,, where S;, So are
well defined on M.
By replacing (2.7) (2.10) and (2.14) into (2.13), we get the following equations:

AREFY = mehT — nHedij +nHg + > hptthD bl —2 3" W EeD bl
B,k,m B,k,m
+ > R RE b = nH YRR R 4 N RIERD B (2.19)
B,k,m m B,k,m
and
AR = nch —nHedj +nHi+ Y hfy,hb bl —2 Y " b, hD bl
B,k,m B,k,m
+ Y RSk b, —nH Y he R+ " RS D R (2.20)
B,k,m m B,k,m
Since
1 a \2 « a
505 = D (hg)?+ > G AR, (2.21)
a,ijk a,ij
from (2.19) and (2.20), we have that
1
508 = > (h)? + kT (nH )iy + neS — n’cH? —nH Y tr(H"T (H*)?)
a,ijk «a
+ > [tr(HOH?)? + > N(H°H® — HH*), (2.22)
a,f a,B

where N(A) = trAA’ for all matrix A = (a;;).
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In this note we consider the spacelike submanifolds with R = aH + b in de Sitter
space from S;}“’ (c), where a, b are real constants. Following Cheng-Yau [3], Chao
X.L. in [4] introduced a modified operator acting on any C2-function f by

L(f) = (nHd; — hii™) fij +

ij

"; Loay (2.23)

We need the following Lemmas.

Lemma 2.1. [4]Let M™ be a spacelike submanifolds in S;*P(c) with R = aH +b,
and (n — 1)a? + 4nc — 4nb > 0. We have the following:
(1)

> (hg)? = n?|VH. (2.24)

(2)If the mean curvature H of M™ is bounded and a > 0, then there is a sequence
of points {x} € M™ such that

lim nH(zy) =sup(nH), lim |VnH(zk) =0, lim sup(L(nH)(zy)) < (2.25)
k—o0 k— o0 k—o00

Lemma 2.2. [1, 11] Let p1,- -, pn be real numbers such that Y . p; = 0 and
Do u? = 32, where 8 > 0 is constant. Then

| Z pi| < \/721)53 (2.26)

and equality holds if and only if at least n — 1 of uis are equal.

Lemma 2.3. [13] Let x;,y; i = 1,--- ,n, be the real numbers such that ), x; =
0=>",vi. Then

S et < (T (227)

Lemma 2.4. (7] Let ay,--- ,a, and by,--- , by, be real numbers such that ), b; = 0.

Then
Z a;a; (b 2)(Z b2). (2.28)

3. PROOF OF THE THEOREMS
First, we prove the following algebraic lemmas,

Lemma 3.1. Let A, B be two real symmetric matrizes such that trA = trB = 0.
Then

n—2

|tr(A?B)| < [tr A%][tr(B?)]2. (3.1)

n(n—1)

Proof. We can find an orthogonal matrix Q such that QAQ ! = (ai;) where a;; =

a;i0;;. Since Q is an orthogonal matrix, we have trB = trQBQ ™! = tr(b”).
So we have

tr(A2B) = tr(QAQ'QAQ'QBQ™Y) = tr((ai;)? (b)) = Y @i b (3.2)
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Since trA =trB =0, we have >, a;; = ), by = 0. By using Lemma 2.3, we have

A

n—2 — 21
[tr(A*B |—|Za” b” < an‘Q)(Zbii)Q

n(n—1) <
n—2 ~2 1
al'L b’L E

n(n—1) Z !
n—2 2 213

= —————[trA®|[tr B*]2.
n(n —1

This proves this Lemma. O

Lemma 3.2. Let A and B be real symmetric matrizes satisfying tr(A) = 0. Then

tr(B)tr(A*B) — (tr(AB))? tr(A2)tr(B). (3.3)

n
D —
T 2yn—1

Proof. We can find an orthogonal matrix @ such that QAQ ™! (aw) Where aij =

a;i0;;. Since @ is an orthogonal matrix, we have trB = trQBQ ™' = ( ;). By
using trA = 0 and Lemma 2.4, we have

tr(B)tr(A’B) — (tr(AB))*> = ZE;[ , @i by Za” i

R
= §Zbiibjj(aii*ajj)2
i

IA

ﬁ( i i) (D bis )

i

IN

Q\/ﬁ( 1‘ i) (D bis )

ij

= = n_ltr(AQ)tr(Bz).

This proves this Lemma. U

Proof of Theorem 1.1: Choose a local orthonormal frame field {e, - ,e,}
such that A" = APF16;; and 71 = A6, — Hoy Let p; = AP — H and



ON SPACE LIKE SUBMANIFOLDS WITH R =aH + b 103

denote ®3 = Y, u?. From (2.12) and (2.22) and the relation R = aH + b, we have
(n—1)a

5 A(nH)

L(nH) = > (nHb; — b (nH); +
ij
= nHA(nH)— XJ: hi (nH )i + %A(n(n — )R —n(n—1)b)
= SAIRHY +n(n— DB~ 2| VHP — Y R (nH)g
i
= %A[n(n —1ec+S]—n*|VH|? - Z hi™ (nH)s
ij
- %AS —n?|VH[* =Y hit (nH);;

ij

1
- iAS —n?|VH[* — h\" (nH,y)

> Z( %k)Q —n?|VH|> + neSy — n?cH? + (tr(H" ™ H™1))2 — nHtr(H" )3

ijka )

neSy —nH Y tr(H"WH(H)?) + > [tr(H"H)P+ Y [tr(HYH)P.

a#n+1 B#n+1 a,B#n+1
I
Firstly, we estimate (I):
—nHtr(H"™) = —nH Y (A = —nH[> (i) + 381 H — 3nH> + nH?|
= —3nS1H?+27H* —nH Y (1) (3.5)
By applying Lemma 2.2 to real numbers pq,-- -, y, we get
-2) .
CnHE(H > 308, B2 4 2m2H — 22 i, 3.6
So
I > |®1*(nc—nH? +|®* — \’;L))m@ﬂ) (3.7)
Consider the quadratic form P(z,y) = —2% — \/ixy + 2. By the orthogonal
transformation
1
u = —((1+vn- + —1)x
(1 V= Dy (1= VA=)
1
v = —(-1+vn—-1y+(1+vVn-1)x)
V2n

P(z,y) = 2\/7( v?). Take x = \/nH and y = |®1]; we obtain u?+v? = x2+y?,

and by (3.7), we have
5 n n

I > |9 +7n — %) > P12 (nc — ———(u? + v?) + ————2u°
|®1]%(nc 2\/71(u v°)) > |®1|*(nc 5 *1(11 +v )—|—2 ~— u”)

> | SR u? +0?)) > | ? S Sh). 3.8
[ @1 (ne 2\/n—1( v')) 2 |l (ne 2vn—1 ) (38)
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Finally, we estimate (II):
Since trH* = 0, we can use Lemma 3.2 and get

n+1 a2 n+1 rroy2 n a2
—nHtr(H" Y (HY)?) + (trH" ' H®) zfmSltr(H )= (3.9

so we have

IT > neSy — nHtr(H" ™ (H*)?) 4 (trH" W H*)? > Sy(nc — o

2¢y/(n—1)

$1).(3.10)

From the inequalities (2.24) (3.4) (3.8)and (3.10), we get

L(nH) > |®1(nc — ———=S1) + Sa(nc — ———=
(n ) = | 1| (TLC 2m 1) 2(77,0 9 (Tl*].) 1)
> (82 (ne — ——eu8y) > B (ne — —e5),
= | |(7’lC zm 1)—| |(7’lC 9 (7’7,—1))
that is,
L(nH) > |®|*(nc — ————). 3.11
(nH) 2 @ (e — 5 8) (311)
From the assumption S < 2y/n — 1c and Eq. (2.12), we have
nH? +n(n —1)(aH +b) —n(n—1)c= S < 2vn — e, (3.12)

So we know that H is bounded. According to Lemma 2.1 (2), there exists a sequence
of points {xx} in M™ such that

ler{:O nH (zy) = sup(nH), klirr;o sup(L(nH)(zr)) < 0. (3.13)
From Eq.(2.12) and (2.18), we have
|®]*> =n(n — 1)(H? —c+ R) =n(n — 1)(H? — c+aH + ). (3.14)
Notice that limy_,oc nH (x) = sup(nH) and R is constant, so we have
khﬁrgo |®|?(xy) = sup |D|?, kh%n;o S(xg) =sup S (3.15)

Evaluating (3.11) at the points zj, of the sequence, taking the limit and using (3.13),
we obtain that

0> lim sup(L(nH)(wx)) = sup || (ne - ﬁ sup S) (3.16)

If S < y/2(n—1)c, we have sup |®| = 0, that is, ® = 0. Thus, we infer that
S =nH? and M™ is totally umbilical. This proves Theorem 1.1.
Proof of Theorem 1.2:

—nH Y tr(H"T(H*)?)

aF#En+1
= —nH Y tr[(H"™™ — HI)(H*)’] - nH*> Y tr(H*)?
aF#En+1 aF#En+1
= —nH Y tr(®"(®*)?) - nH>S, (3.17)
a#n+1
By applying Lemma 3.1 to the matrixes ®"*! ... &P we get

—nH Y tr(H"(H®)?) > —n|H]| ”_21

a#n+1 \% n(n )

|(I)1‘Sg —nHQSQ. (318)
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So
I

v

neSy —nH Z tr(H" T (H*)?) + Z [tr(H*H"))?
a#n+1 a,B#n+1

-2
n [91]S, ~ nH?S; + Y (@)% (3.19)

v TL(TL ) a#n+1
From the inequalities (2.24) (3.4) (3.7)and (3.19), we get

2 2 |CI>|2 n(n —2)
L(nH) > |®|*(nc —nH* + 7 — m|H||<I>|) (3.20)

> neSy —n|H|

According to Lemma 2.1 (2), there exists a sequence of points {zj} in M™ such
that
lim nH(z;) =sup(nH), lim sup(L(nH)(xy)) <0. (3.21)
k— o0 k—o00
Evaluating (3.20) at the points x of the sequence, taking the limit and using
(3.21), we obtain that
0 > lim sup(L(nH)(xy))
k—o0

sup |®|? ~ n(n-2)

Vvn(n—1)

> sup|®|?(nc — nsup H? +

sup | H|sup |®|)(3.22)

Consider the following polynomial given by

2
Lopn(a) = &= - =2
D n(n —1)

(1) If sup(H)? < %c, it is easy to check that the discriminant of
Lqup (2) is negative. Hence, for any @, Leup m(x) > 0, so does Lgyp g (sup |®]) > 0.
From (3.22), we know that sup|®| = 0, that is |®| = 0. Thus, we infer that
S =nH? and M" is totally umbilical.

(2) If sup(H)? = %c, we have

sup |H|z + nc — nsup H?. (3.23)

Loup 1 (x) = (sup |®] — n(n\/_;)p \/p(n —o)2 i pree 1))2 > 0. (3.24)

If (sup |®|— n(y\l/_;)p p(n72)2i4(n71))2 > 0, from (3.22) we have sup |®| = 0, that is

|®| = 0. Thus, we infer that sup(S) = nH? and M™ is totally umbilical. If sup |®| =

n{n— n— 2p? n—
(\/;)p \/ proyT At —e- from (2.18) we have that sup(S) = nc%.

(3) If sup(H)? > %c, we know that Lgy, g(x) has two real roots

— + .
Ty and zg, g given by

Toupr = P ﬁ{(n —2)sup [H| - \/[(n —2)%p +4(n

T =P %{(n— 2)sup |H| + \/[(n_ 2p+an

—1)]supH2 — 4(n — 1)c
p

}

1)]sup H2 —4(n — 1)c
p

}
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it is easy to say that x;lp g is always positive; on the other hand, Topm <0 if and
only if sup H? > ¢, Tgp g = 0 if and only if sup H? = ¢, and T >0 if and only
if sup H? < c.
In this case, we also have that
1 _
LsupH(x) = };(sup |(I’| ~ Zgup H)(sup ‘(I>| - a::;lpH) (325)
From (3.22) and (3.25), we have that
1 _
0 sup [0 (5up 9] — a2 1) (sup 9] L, 1) (3.26)
(3-a) If sup(H)? > ¢ > %c, then we have z_ 5 < 0. Therefore,
from (3.26), we have sup |[®|?> = 0, i.e. M™ is totally umbilical or 0 < sup |®| <
+ .
x ie.
sup H»

nsup H> <sup S < ST,

where ST — n(n—2) [2(n72)2p2+4(n71)(p+1) sup H2+sup |H|p2\/[(n72)2p+4(n71)] sup H274(n71)6]7

2(n—1) 2(n—2) P
npc.
(3-b) If sup(H)? = ¢ > %c, then we have z_, p = 0. Therefore,

from (3.26), we have sup |®|?> = 0, i.e. M" is totally umbilical or 0 < sup |®| <
x;pH, i.e.
nsup H?> < supS < S+.

(3-¢) If ¢ > sup(H)? > %c, then we have z_ 5 > 0. Therefore,

from (3.26), we have sup |®|*> = 0, i.e. M™ is totally umbilical or z_,  ; < sup|®| <

x:,;pH, i.e.

S <supS < ST,
where S™ = g((::f)) [2("’2)27)22&4_(;‘)*1)(1’“) sup H2—sup |H|p2\/[(n*2)2p+4(n71):l])sup H274(n71)C]7
npc.

This proves theorem 1.2.

Proof of Theorem 1.4: From theorem 1.3, we only need to prove that M™
is a spacelike Einstein submanifolds with Ric;; = ¢(n — 1)g;; if and only if M™ is
totally geodesic.

If M™ is totally geodesic in Sg“’(c), we have Ric;; = c¢(n—1)g;; by the equation
(2.11).

Conversely, if M™ is a spacelike Einstein submanifolds with Ric;; = c¢(n — 1)g; ,
we have R = ¢ = 0H + ¢ and S = n?H?. From inequality (3.20), we have the
following:

|2 -2
L(nH) > |®|*(nc — nH? + [oF _ M|H||¢>|).
p n(n —1)
Because Ric;; = c(n — 1)d;;, we see by the Bonnet-Myers theorem that M™ is
bounded and hence compact. Since L is self-adjoint, we have

@_ n(n —2)

Vn(n —1)

02/ ®[2(ne — nH? + \H|[®)). (3.27)
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Since n?|H|? = S and |®|?> = S —nH? = n(n — 1)H?, we have
[®]*>  n(n-2)

nc—nH?* + — — ———"2_|H||®|
p n(n —1)
—1)H?
= nc—nH2+u—n(n—2)H2
L
= nc—n(n—-1)(1--)H".
p

2 c o2y 2 n(n-2) :

If H* < DAL e have (nc—nH*+ \/m|H||<I>|) > 0, which together
with (3.27) yields |®|> = 0. That is, S = nH?, so we know that n?H? = nH?, so
we have H = 0, i.e. S =nH? =0, so M™ is totally geodesic. This proves Theorem
1.4.

Remark. Whenp = 1, sincen?H? = S, we have nc—nH2+$—%|HH®| =

W=y

nc > 0, so we know that |®| =0, i.e. S =nH?, so M™ is totally geodesic.
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