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ON A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS IN R¥Y
INVOLVING CRITICAL SOBOLEV EXPONENTS

(COMMUNICATED BY VICENTIU RADULESCU)

G.A.AFROUZI, T.A. ROUSHAN

ABSTRACT. We study here a class of quasilinear elliptic systems involving the
p-Laplacian operator. Under some suitable assumptions on the nonlinearities,
we show the existence result by using a fixed point theorem.

1. INTRODUCTION AND PRELIMINARIES

This paper is concerned with the existence of nontrivial solution to the quasilin-
ear elliptic system of the form

—Apu=f(z) | u P "2 u+ N2 (z,u,v), in RY,
A= g@) 0|72 o+ p @ u), RV, (1.1)
u(z),v(z) -0, as|z|—+o0

where A, is the so called p-Laplacian operator, i.e. A,u = div(| Vu [P~2Vu). f, g
and F are real-valued functions satisfying some assumptions; u and v are unknown
real valued functions defined in RY and belonging to appropriate function spaces; A
and p are positive parameters, which can be taken equal to 1, and the parameters
p and ¢ are real numbers satisfying 2 < p,q < N. The real number p* = NN—E;)
designates the critical Sobolev exponent of p.

In recent years, several authors use different methods to solve quasilinear equations
or systems defined in bounded or unbounded domains. Djellit and Tas [6] investi-
gated a system such as (1.1) by employing variational approach.

In this work, motivated by [A. Djellit, S. Tas. On some nonlinear elliptic systems.
Nonl. Anal. 59 (2004), 695-706], we show an existence result by using a fixed point
theorem due to Bohnenblust-Karlin.

This paper is divided into three sections, organized as follows: in Section 2,we give
some notation and hypotheses; Section 3 is devoted to establish an existence theo-
rem.
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2. NOTATION AND HYPOTHESES

We denote by DV™(RY) the completion of C§°(RY) in the norm
|t m =] Vit = (/ | Vu ™ dr)%; 1<m<N.
RN

It is well known that D™ (RY) is a uniformly convex Banach space and may be
written as

D'™RN) = {ue L™ (RY); Vue (L™RY)N}.
Moreover, we have the following Sobolev constant defined by

S = C7™(N, m) = inf {”“T’" u € DV(RN)\ {0}} :

(RN

We denote Z by the product space Z = DVP(RY) x DY4(RY) with the norm
| (w,v) lz=|l wllip + | vll1,q Z* is the dual space of Z equipped with the dual
norm || . [|«.

In addition, let T and N be two operators defined from Z into Z* by

T(u,0)(w.2) = |

| Vu |P~2 VuVwdz —|—/ | Vo [772 VoV zda,
RN RN

and

N(u,v)(w,z) = /RN[(f(JU) | P2 u+)\g—5(x,u,v))w
+(g(z) v |7 20+ u%—f(m,u, v))zldz, V (u,v),(w,z) € Z.

Now, we recall the fixed point theorem due to Bohnenblust-Karlin (see [11]).

Theorem 2.1.([11]) Let Z be a Banach space, let B C Z be a nonempty, closed,
convex set and let S : B — 28 be a set-valued mapping satisfying

(a) for each U € Z, the set SU is nonempty, closed and convex,

(b) S is closed,

(c) the set S(B) = Jyep SU is relatively compact.

Then S has a fixed point in B i.e. there is U € B such that U € SU.

Our aim is to find the condition of the above theorem. The fixed points of the set-
valued mapping S are precisely the weak solutions of system (1.1). In other words,
we state the existence of a pair (u,v) € Z such that T'(u,v)(w, 2) = N(u,v)(w, 2),
V(w, z) € Z, under the following assumptions.

(H1) f and g are positive and bounded functions.
(H2) F € CYRY,R,R) and F(x,0,0) = 0.
(H3) For all U = (u,v) € R? and for almost every z € RY

~ —
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oF

| 5, @ U) IS av(@) | U P17 taz(x) | U 27
oOF

| 55 @ U) IS bule) [ U |27 ba(a) | U [

where 1 < p1,¢q1 < min(p,q), max(p,q) < p2,q2 < min(p*,q*)
a; € LY(RMYNLPARY), b e L (RY)NLYRY), i=1,2.
o p _q _ g
Q; = . y Vi = " ’ 57'_ * ok * * )
P* —pi T —aq pq* —p*(pi—1)—q
* ok
P*¢* —q* (i —1)—p

3. EXISTENCE OF SOLUTIONS

The goal of this section is to establish the following result.

Theorem 3.1. Under hypotheses (H;) — (Hs), the equation T'(u,v) = N(u,v) has
a solution in Z.

First, two preliminary results. The first one concerns the properties of the oper-
ator T while the second one describes the property of the operator N.

Lemma 3.2. The operator T" is monotone, hemicontinuous, coercive and satisfies
the following property:

[(tn, vn) = (u,0), T (tn, vn) = T(u,v)] = (Un,vs) = (u,v). (3.1)

Proof. Let us denote by T}, the operator defined from D'P(RY) into (D*P(RY))*
by

Tp(uw)w = / | Vu P72 Vu - Vwdz, Yu,w € DVP(RY)
RN

and T, the corresponding one with p replaced by g.

Observe that T'(u,v)(w, z) = Tp(w)w + Ty(v)z, Y(u,v), (w, 2) € Z. T, T, are du-
ality mappings on DVP(RY) and D14(R¥) corresponding to the Guage functions
®,(T) = tP~! and ®,(t) = 97!, respectively. Hence T}, T, are demicontinu-
ous(see[3,p.175]).

So, for (un,vn,) — (u,v) in Z, we have Tp(un) — Tp(u) in (DVP(RY))* and
T,(v,) = Ty(v) in (DY4(RN))*. Since DVP(RY) and D14(RY) are reflexive, and the
dual space of any reflexive space is reflexive. we get T'(up,vn) = Tp(upn) +Ty(vyn) —
Tp(u) + Ty(v) = T(u,v) in Z*, i.e. T is demicontinuous. So, it is hemicontinuous.
We note according to [2] that VA, u € RY

IA=pP<SUAP2A=[u P72 p)- (A —p)  ifp>2.

Replacing A and p by Vu, Vv respectively and integrating over R, we obtain

/ | Vu—Vu |P< / (| Vu [P2 Vu— | Vo P72 Vo) (Vu—Vo) if p>2. (3.2)
RN RN
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By virtue of (3.2) we show that T, (similarly T}) is monotone, indeed,
(Tru —Thw)(u—w) = Toulu—w)—Thw(u—w)

/ (| Vu P72 VuV (u — w)dz
RN

—/ (| Vw P2 VoV (u — w)dz
RN

/ (| Vu [P2 Vu— | Vw P72 Vw)(Vu — Vw)dz
RN

Y

[ 1vu=vop—u-wlf,z0
RN

So, T'is monotone.On the other hand, T is coercive since T'(u,v)(u,v) =| u [},
+ [l v, Now we show that T' satisfies property (3.1).

Let us take a sequence (uy, v,) € Z such that (un,v,) = (u,v) in Z and T'(uy, v,) —
T(u,v) in Z*. Then T (un, vp)(tn,v,) = T(u,v)(u,v). So || up ||’1”p + || vn ||‘{’q—>

| wllf, + v, . According to the uniform convexity of Z, (un,v,) — (u,v) in
Z. d

Lemma 3.3. Under hypothesis (Hy) — (H3), the operator N is compact.

Proof. Let Bg be the ball of radius R, centered at the origin of RY. We put B}, =
RN — B and we designate Ng the operator defined from Zr = DV?(Br)x D*4(Bg)
into Z%, by

Na(wo)w.z) = [ (@) [u P uk A G o)

« oF
+(g(x) |v|T Pv+p %(:mu,v))z]dx.

Let {(un,v,)} be a bounded sequence in Z.There is a subsequence denoted again
as {(un,vyn)}, weakly convergent to (u,v) in Z. For (w, z) € Z, we have

| N (tn, vn)(w; 2) = N(u, v)(w, 2) |

_| Ngr un,Un)(w Z) NR(U v)(w Z) |

+|/f

+ I/ 9(@)(|vn 1972 vp— [0 |7 7% v)2da |
By

P2 = u P2 w)wdz |

+ | - A (%(Iaun7vn) - g%(x,u,v))wdx |
oF oOF
+ | H(%(%Umvn) - %(x,u,v))zdx | . (33)

By
Since the restriction operator (u,v) — (u,v)|p, is continuous from D'P(RY) x
DY(RY) into DYP(Bg) x D%“9(Bgr), we have (un,v,) — (u,v) in DVP(Bg) x
DY4(Bpg).We have also that the embeddings D'?(Br) < LP(Bgr) and DY9(Bg) —
L4(Bg) are compact, so
Upy —> U a.e. in Bg,

Up — U a.e. in BRg.
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Hypothesis (Hs) gives

oF
— (@, Uy, V)W |

|3u

IN

a1 (@) (| wn P71 + [ v [17)
+az(@)(|un [P0+ Jo PP [w ], (34)

and
OF
| Sy @ o)z | < @) [ o 27

+b2(2) (| un |27+ Lo [27H] | 2] (3.5)
Using Holder’s inequality and Sobolev’s imbedding, and the fact that
a; € L%(RN)N L% (RY), b; € L7 (RV) (N L% (RY), we get that the right hand side
of inequalities (3.4), (3.5) belong to L*(Bg). Hence under hypotheses (H;) — (H3)
and by using Holder’s inequality and Sobolev’s imbedding, according to Dominated
convergence theorem, we obtain,the first expression on the right hand side of the
inequality (3.3) tends to 0 as n — +oo; Taking (H;) and (Hj) into account, and
the fact that for i = 1,2,

| ai Lo By + I @i s By, = 0,
1105 1z () + I bi Mlss (my)— O,

as R — 400; we obtain, the other expressions tend also to 0 as R sufficiently large.
So, the compactness of N follows. O

Lemma 3.4. Suppose that (H;) and (Hs) hold. There is a constant k > 0 such
that T'(u,v) = N(o,p) and || (o, p) ||z< k implies || (u,v) ||z< k.
Proof. Let (u,v), (0,p) € Z be such that T'(u,v) = N(o, p), then

T(u,v)(w,2) = N(o,p)(w,2),  V(w,2) € Z.

In particular, we have T'(u,v)(u,0) = N(o, p)(u,0) i.e.

e [ AVupde= [ (@) 0P oA @ puds.  (36)
RN RN U

IKC

In view of (Hy) and (Hs), by using Holder’s inequality and Sobolev’s imbedding

we obtain
/ f(@) o P2 oude < c’/ o [P u|dae
RN RN
"1 -1
< dullpllolp-""<allulhplelt,, (3.7)
and
OF —1 -1
/ Agr@apudr < e flulluy (Fa ol o T + lan lls )l plIT
RN u
—1 —1
+llaz laoll o 115 + L a2 gl £ 1757 (3.8)
So, by virtue of (3.6), (3.7) and (3.8) we get
p1—1

-1 -1 -1
lullf,” < adloli,” +lallalolty,” +lallalle

-1 -1
+ a2 flasll o 175 + a2 lla Ml 2 177 )- (3.9)

1,9
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In the same way, we have

-1 *_1 -1 -1
lvlify < cploliy +1blalloliy + 10l elty
-1 -1
102 lloll o 155 + 1 02 [laall 2 [1525)- (3.10)

] (0.0) 2=l o 1y + | p l1a< ks we have || o [l1,< & and | p [y k. So, in
view of (3.9), (3.10) we get

[ w ||€,;1 < eAERPT T g Rl gl

” v H(f;]l < C,U(kq*—l 4+ gt +kq2_1),

Since p1 < pa < p* and ¢1 < g2 < ¢*, there is a k > 0 such that c(kp*’l + kPl 4
kra=t) < (5)r=tand e (ke R0 4 k) < (B)170 S0, [0l + o lug< b
implies || w1 + || v 1< k. O

We have on the following proposition, which is standard in the theory of monotone
operators.

Proposition 3.5. Let X be a real normed space, T' : X — X* be a monotone,
hemicontinuous operator and let w € X, f € X*.

The following two assertions are equivalent

(a) Tw = f

(b) (Tz— f,z—w) >0 for all z € X.

Now, we are ready to give the following proof.

Proof of Theorem 3.1. In view of lemma 3.4, let B C Z be the closed ball of
radius k centered at the origin. We define the operator S from B into 27 by

(0,p) = S(o,p) = {(u,v); T(u,v) =N(o,p)}

By virtue of lemma 3.2, T is monotone, hemicontinuous and coercive, then ac-
cording to Browder’s Theorem (see[13,p.557]), S(o, p) is nonempty, convex, closed
and bounded for every (o,p) € B. Furthermore, the operator S is closed, in-
deed, let {(on,pn)} C B; (on,pn) — (0,p) € Z, and {(un,v,)} C Z such that
(Un,vn) € S(on, pn) and (un,v,) — (u,v) in Z.

Since N is continuous, it is demicontinuous. We have also that T is demicontinuous,
SO we can write

T(up,vn) — T(u,v),
N(Unypn> — N(o, P)-
(

Since (un,vn) € S(on, pn), we have T(un,vy) = N(opn,pn). Hence T(up,v,) —
N(o, p) .Since the weak limit is unique, we get

T(u,v) = N(o,p).
On the other hand , B is closed, consequently (o, p) € B and then (u,v) € S(o, p).
Now, let us show that S(B) = U, ,)ep 5(0, p) is relatively compact.
Let (un,vn) C U, pep S(o,p) and (on, pn) C B be such that
T (tn,vn) = N(on, pn)- (3.11)

In view of lemma 3.3, N(B) is relatively compact. So there exists H € Z* such
that N(on,pn) — H, Hence by (3.11) we have T(un,v,) — H. Consequently
T (up,vy) is bounded. Since T is coercive, (un,vy,) is also bounded; otherwise, if
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I (tn,v) || = 00, we have T'(uy,, v,) — 0o, which is a contradiction. Hence, we may
choose a subsequence denoted again by {(u,,v,)}, weakly convergent to (ug,vg) in
Z.

The monotonicity of T leads to (T'(u, v) =T (tn, vy)) (U—tp, v—2vy) > 0, V(u,v) € Z,
and passing to the limit, we obtain

(T(u,v) — H)(u — ugp,v — vg) >0, Y(u,v) € Z,

ie. (T'(u,v) — H,(u,v) — (ug,v0)) > 0,Y(u,v) € Z. So by virtue of proposition
3.5, we have T'(up,v9) = H. Taking the condition (3.1) into account, we obtain
the convergence of (uy,,v,) to (ug,vo). Finally, by Bohnenblust-Karlin fixed point
theorem, S possesses a fixed point.i.e. there exist (0¢, po) € B such that T(cg, po) =
N (o0, po)- O
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