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ON A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS IN RN

INVOLVING CRITICAL SOBOLEV EXPONENTS

(COMMUNICATED BY VICENTIU RADULESCU)

G.A.AFROUZI, T.A.ROUSHAN

Abstract. We study here a class of quasilinear elliptic systems involving the

p-Laplacian operator. Under some suitable assumptions on the nonlinearities,
we show the existence result by using a fixed point theorem.

1. Introduction and Preliminaries

This paper is concerned with the existence of nontrivial solution to the quasilin-
ear elliptic system of the form −∆pu = f(x) | u |p∗−2 u+ λ ∂F

∂u (x, u, v), in RN ,
−∆qv = g(x) | v |q∗−2 v + µ ∂F

∂v (x, u, v), in RN ,
u(x), v(x)→ 0, as | x |→ +∞

(1.1)

where ∆p is the so called p-Laplacian operator, i.e. ∆pu = div(| ∇u |p−2 ∇u). f, g
and F are real-valued functions satisfying some assumptions; u and v are unknown
real valued functions defined in RN and belonging to appropriate function spaces; λ
and µ are positive parameters, which can be taken equal to 1, and the parameters
p and q are real numbers satisfying 2 ≤ p, q < N. The real number p∗ = Np

N−p
designates the critical Sobolev exponent of p.
In recent years, several authors use different methods to solve quasilinear equations
or systems defined in bounded or unbounded domains. Djellit and Tas [6] investi-
gated a system such as (1.1) by employing variational approach.
In this work, motivated by [A. Djellit, S. Tas. On some nonlinear elliptic systems.
Nonl. Anal. 59 (2004), 695-706], we show an existence result by using a fixed point
theorem due to Bohnenblust-Karlin.
This paper is divided into three sections, organized as follows: in Section 2,we give
some notation and hypotheses; Section 3 is devoted to establish an existence theo-
rem.
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2. Notation and hypotheses

We denote by D1,m(RN ) the completion of C∞0 (RN ) in the norm

‖ u ‖1,m≡‖ ∇u ‖m= (

∫
RN
| ∇u |m dx)

1
m ; 1 < m < N.

It is well known that D1,m(RN ) is a uniformly convex Banach space and may be
written as

D1,m(RN ) = {u ∈ Lm
∗
(RN ); ∇u ∈ (Lm(RN ))N}.

Moreover, we have the following Sobolev constant defined by

Sm ≡ C−m(N,m) = inf

{‖ u ‖m1,m
‖ u ‖mm∗

, u ∈ D1,m(RN ) \ {0}
}
.

We denote Z by the product space Z ≡ D1,p(RN ) × D1,q(RN ) with the norm
‖ (u, v) ‖Z=‖ u ‖1,p + ‖ v ‖1,q; Z∗ is the dual space of Z equipped with the dual
norm ‖ . ‖∗.
In addition, let T and N be two operators defined from Z into Z∗ by

T (u, v)(w, z) =

∫
RN
| ∇u |p−2 ∇u∇wdx+

∫
RN
| ∇v |q−2 ∇v∇zdx,

and

N(u, v)(w, z) =

∫
RN

[(f(x) | u |p
∗−2 u+ λ

∂F

∂u
(x, u, v))w

+ (g(x) | v |q
∗−2 v + µ

∂F

∂v
(x, u, v))z]dx, ∀ (u, v), (w, z) ∈ Z.

Now, we recall the fixed point theorem due to Bohnenblust-Karlin (see [11]).

Theorem 2.1.([11]) Let Z be a Banach space, let B ⊂ Z be a nonempty, closed,
convex set and let S : B → 2B be a set-valued mapping satisfying
(a) for each U ∈ Z, the set SU is nonempty, closed and convex,
(b) S is closed,
(c) the set S(B) =

⋃
U∈B SU is relatively compact.

Then S has a fixed point in B i.e. there is U ∈ B such that U ∈ SU .

Our aim is to find the condition of the above theorem. The fixed points of the set-
valued mapping S are precisely the weak solutions of system (1.1). In other words,
we state the existence of a pair (u, v) ∈ Z such that T (u, v)(w, z) = N(u, v)(w, z),
∀(w, z) ∈ Z, under the following assumptions.
(H1) f and g are positive and bounded functions.
(H2) F ∈ C1(RN ,R,R) and F (x, 0, 0) = 0.
(H3) For all U = (u, v) ∈ R2 and for almost every x ∈ RN
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| ∂F
∂u

(x, U) |≤ a1(x) | U |p1−1 +a2(x) | U |p2−1

| ∂F
∂v

(x, U) |≤ b1(x) | U |q1−1 +b2(x) | U |q2−1

where 1 < p1, q1 < min(p, q), max(p, q) < p2, q2 < min(p∗, q∗)

ai ∈ Lαi(RN ) ∩ Lβi(RN ), bi ∈ Lγi(RN ) ∩ Lδi(RN ), i = 1, 2.

αi =
p∗

p∗ − pi
, γi =

q∗

q∗ − qi
, βi =

p∗q∗

p∗q∗ − p∗(pi − 1)− q∗
,

δi =
p∗q∗

p∗q∗ − q∗(qi − 1)− p∗
.

3. Existence of solutions

The goal of this section is to establish the following result.

Theorem 3.1. Under hypotheses (H1)− (H3), the equation T (u, v) = N(u, v) has
a solution in Z.

First, two preliminary results. The first one concerns the properties of the oper-
ator T while the second one describes the property of the operator N.

Lemma 3.2. The operator T is monotone, hemicontinuous, coercive and satisfies
the following property:

[(un, vn) ⇀ (u, v), T (un, vn)→ T (u, v)]⇒ (un, vn)→ (u, v). (3.1)

Proof. Let us denote by Tp the operator defined from D1,p(RN ) into (D1,p(RN ))∗

by

Tp(u)w =

∫
RN
| ∇u |p−2 ∇u · ∇wdx, ∀u,w ∈ D1,p(RN )

and Tq the corresponding one with p replaced by q.
Observe that T (u, v)(w, z) = Tp(u)w + Tq(v)z, ∀(u, v), (w, z) ∈ Z. Tp, Tq are du-
ality mappings on D1,p(RN ) and D1,q(RN ) corresponding to the Guage functions
Φp(T ) = tp−1 and Φq(t) = tq−1, respectively. Hence Tp, Tq are demicontinu-
ous(see[3,p.175]).
So, for (un, vn) → (u, v) in Z, we have Tp(un) ⇀ Tp(u) in (D1,p(RN ))∗ and
Tq(vn) ⇀ Tq(v) in (D1,q(RN ))∗. SinceD1,p(RN ) andD1,q(RN ) are reflexive, and the
dual space of any reflexive space is reflexive. we get T (un, vn) = Tp(un)+Tq(vn) ⇀
Tp(u) + Tq(v) = T (u, v) in Z∗, i.e. T is demicontinuous. So, it is hemicontinuous.
We note according to [2] that ∀λ, µ ∈ RN

| λ− µ |p≤ (| λ |p−2 λ− | µ |p−2 µ) · (λ− µ) if p ≥ 2.

Replacing λ and µ by ∇u, ∇v respectively and integrating over RN , we obtain∫
RN
| ∇u−∇v |p≤

∫
RN

(| ∇u |p−2 ∇u− | ∇v |p−2 ∇v) ·(∇u−∇v) if p ≥ 2. (3.2)
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By virtue of (3.2) we show that Tp (similarly Tq) is monotone, indeed,

(Tpu− Tpw)(u− w) = Tpu(u− w)− Tpw(u− w)

=

∫
RN

(| ∇u |p−2 ∇u∇(u− w)dx

−
∫
RN

(| ∇w |p−2 ∇w∇(u− w)dx

=

∫
RN

(| ∇u |p−2 ∇u− | ∇w |p−2 ∇w)(∇u−∇w)dx

≥
∫
RN
| ∇u−∇w |p=‖ u− w ‖p1,p≥ 0.

So, T is monotone.On the other hand, T is coercive since T (u, v)(u, v) =‖ u ‖p1,p
+ ‖ v ‖q1,q. Now we show that T satisfies property (3.1).

Let us take a sequence (un, vn) ∈ Z such that (un, vn) ⇀ (u, v) in Z and T (un, vn)→
T (u, v) in Z∗. Then T (un, vn)(un, vn)→ T (u, v)(u, v). So ‖ un ‖p1,p + ‖ vn ‖q1,q→
‖ u ‖p1,p + ‖ v ‖q1,q . According to the uniform convexity of Z, (un, vn) → (u, v) in
Z. �

Lemma 3.3. Under hypothesis (H1)− (H3), the operator N is compact.
Proof. Let BR be the ball of radius R, centered at the origin of RN . We put B′R =
RN−BR and we designateNR the operator defined from ZR ≡ D1,p(BR)×D1,q(BR)
into Z∗R by

NR(u, v)(w, z) =

∫
BR

[(f(x) | u |p
∗−2 u+ λ

∂F

∂u
(x, u, v))w

+ (g(x) | v |q
∗−2 v + µ

∂F

∂v
(x, u, v))z]dx.

Let {(un, vn)} be a bounded sequence in Z.There is a subsequence denoted again
as {(un, vn)}, weakly convergent to (u, v) in Z. For (w, z) ∈ Z, we have

| N(un, vn)(w, z)−N(u, v)(w, z) |
=| NR(un, vn)(w, z)−NR(u, v)(w, z) |

+ |
∫
B′R

f(x)(| un |p
∗−2 un− | u |p

∗−2 u)wdx |

+ |
∫
B′R

g(x)(| vn |q
∗−2 vn− | v |q

∗−2 v)zdx |

+ |
∫
B′R

λ (
∂F

∂u
(x, un, vn)− ∂F

∂u
(x, u, v))wdx |

+ |
∫
B′R

µ (
∂F

∂v
(x, un, vn)− ∂F

∂v
(x, u, v))zdx | . (3.3)

Since the restriction operator (u, v) → (u, v)|BR is continuous from D1,p(RN ) ×
D1,q(RN ) into D1,p(BR) × D1,q(BR), we have (un, vn) ⇀ (u, v) in D1,p(BR) ×
D1,q(BR).We have also that the embeddings D1,p(BR) ↪→ Lp(BR) and D1,q(BR) ↪→
Lq(BR) are compact, so

un → u a.e. in BR,

vn → v a.e. in BR.
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Hypothesis (H3) gives

| ∂F
∂u

(x, un, vn)w | ≤ [a1(x)(| un |p1−1 + | vn |p1−1)

+ a2(x)(| un |p2−1 + | vn |p2−1)] | w |, (3.4)

and

| ∂F
∂v

(x, un, vn)z | ≤ [b1(x)(| un |q1−1 + | vn |q1−1)

+ b2(x)(| un |q2−1 + | vn |q2−1)] | z | . (3.5)

Using Holder’s inequality and Sobolev’s imbedding, and the fact that
ai ∈ Lαi(RN )

⋂
Lβi(RN ), bi ∈ Lγi(RN )

⋂
Lδi(RN ), we get that the right hand side

of inequalities (3.4), (3.5) belong to L1(BR). Hence under hypotheses (H1)− (H3)
and by using Holder’s inequality and Sobolev’s imbedding, according to Dominated
convergence theorem, we obtain,the first expression on the right hand side of the
inequality (3.3) tends to 0 as n → +∞; Taking (H1) and (H3) into account, and
the fact that for i = 1, 2,

‖ ai ‖Lαi (B′R) + ‖ ai ‖Lβi (B′R)→ 0,

‖ bi ‖Lγi (B′R) + ‖ bi ‖Lδi (B′R)→ 0,

as R→ +∞; we obtain, the other expressions tend also to 0 as R sufficiently large.
So, the compactness of N follows. �

Lemma 3.4. Suppose that (H1) and (H3) hold. There is a constant k > 0 such
that T (u, v) = N(σ, ρ) and ‖ (σ, ρ) ‖Z≤ k implies ‖ (u, v) ‖Z≤ k.
Proof. Let (u, v), (σ, ρ) ∈ Z be such that T (u, v) = N(σ, ρ), then

T (u, v)(w, z) = N(σ, ρ)(w, z), ∀(w, z) ∈ Z.

In particular, we have T (u, v)(u, 0) = N(σ, ρ)(u, 0) i.e.

‖ u ‖p1,p=
∫
RN
| ∇u |p dx =

∫
RN

(f(x) | σ |p
∗−2 σ + λ

∂F

∂u
(x, σ, ρ))udx. (3.6)

In view of (H1) and (H3), by using Holder’s inequality and Sobolev’s imbedding
we obtain∫

RN
f(x) | σ |p

∗−2 σudx ≤ c′
∫
RN
| σ |p

∗−1| u | dx

≤ c′ ‖ u ‖p∗‖ σ ‖p
∗−1
p∗ ≤ c1 ‖ u ‖1,p‖ σ ‖p

∗−1
1,p , (3.7)

and∫
RN

λ
∂F

∂u
(x, σ, ρ)udx ≤ c1 ‖ u ‖1,p (‖ a1 ‖α1‖ σ ‖

p1−1
1,p + ‖ a1 ‖β1‖ ρ ‖

p1−1
1,q

+ ‖ a2 ‖α2‖ σ ‖
p2−1
1,p + ‖ a2 ‖β2‖ ρ ‖

p2−1
1,q ) (3.8)

So, by virtue of (3.6), (3.7) and (3.8) we get

‖ u ‖p−11,p ≤ c1 λ(‖ σ ‖p
∗−1

1,p + ‖ a1 ‖α1
‖ σ ‖p1−11,p + ‖ a1 ‖β1

‖ ρ ‖p1−11,q

+ ‖ a2 ‖α2‖ σ ‖
p2−1
1,p + ‖ a2 ‖β2‖ ρ ‖

p2−1
1,q ). (3.9)
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In the same way, we have

‖ v ‖q−11,q ≤ c2 µ(‖ ρ ‖q
∗−1

1,q + ‖ b1 ‖δ1‖ σ ‖
q1−1
1,p + ‖ b1 ‖γ1‖ ρ ‖

q1−1
1,q

+ ‖ b2 ‖δ2‖ σ ‖
q2−1
1,p + ‖ b2 ‖γ2‖ ρ ‖

q2−1
1,q ). (3.10)

If ‖ (σ, ρ) ‖Z=‖ σ ‖1,p + ‖ ρ ‖1,q≤ k, we have ‖ σ ‖1,p≤ k and ‖ ρ ‖1,q≤ k. So, in
view of (3.9), (3.10) we get

‖ u ‖p−11,p ≤ c λ(kp
∗−1 + kp1−1 + kp2−1),

‖ v ‖q−11,q ≤ c µ(kq
∗−1 + kq1−1 + kq2−1).

Since p1 < p2 < p∗ and q1 < q2 < q∗, there is a k > 0 such that c (kp
∗−1 + kp1−1 +

kp2−1) ≤ (k2 )p−1 and c (kq
∗−1 + kq1−1 + kq2−1) ≤ (k2 )q−1. So, ‖ σ ‖1,p + ‖ ρ ‖1,q≤ k

implies ‖ u ‖1,p + ‖ v ‖1,q≤ k. �
We have on the following proposition, which is standard in the theory of monotone
operators.

Proposition 3.5. Let X be a real normed space, T : X → X∗ be a monotone,
hemicontinuous operator and let w ∈ X, f ∈ X∗.
The following two assertions are equivalent
(a) Tw = f
(b) 〈Tz − f, z − w〉 ≥ 0 for all z ∈ X.
Now, we are ready to give the following proof.

Proof of Theorem 3.1. In view of lemma 3.4, let B ⊂ Z be the closed ball of
radius k centered at the origin. We define the operator S from B into 2B by

(σ, ρ) 7→ S(σ, ρ) = {(u, v); T (u, v) = N(σ, ρ)}.
By virtue of lemma 3.2, T is monotone, hemicontinuous and coercive, then ac-
cording to Browder’s Theorem (see[13,p.557]), S(σ, ρ) is nonempty, convex, closed
and bounded for every (σ, ρ) ∈ B. Furthermore, the operator S is closed, in-
deed, let {(σn, ρn)} ⊂ B; (σn, ρn) → (σ, ρ) ∈ Z, and {(un, vn)} ⊂ Z such that
(un, vn) ∈ S(σn, ρn) and (un, vn)→ (u, v) in Z.
Since N is continuous, it is demicontinuous. We have also that T is demicontinuous,
so we can write

T (un, vn) ⇀ T (u, v),

N(σn, ρn) ⇀ N(σ, ρ).

Since (un, vn) ∈ S(σn, ρn), we have T (un, vn) = N(σn, ρn). Hence T (un, vn) ⇀
N(σ, ρ) .Since the weak limit is unique, we get

T (u, v) = N(σ, ρ).

On the other hand , B is closed, consequently (σ, ρ) ∈ B and then (u, v) ∈ S(σ, ρ).
Now, let us show that S(B) =

⋃
(σ,ρ)∈B S(σ, ρ) is relatively compact.

Let (un, vn) ⊂
⋃

(σ,ρ)∈B S(σ, ρ) and (σn, ρn) ⊂ B be such that

T (un, vn) = N(σn, ρn). (3.11)

In view of lemma 3.3, N(B) is relatively compact. So there exists H ∈ Z∗ such
that N(σn, ρn) → H, Hence by (3.11) we have T (un, vn) → H. Consequently
T (un, vn) is bounded. Since T is coercive, (un, vn) is also bounded; otherwise, if
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‖ (un, vn) ‖→ ∞, we have T (un, vn)→∞, which is a contradiction. Hence, we may
choose a subsequence denoted again by {(un, vn)}, weakly convergent to (u0, v0) in
Z.
The monotonicity of T leads to (T (u, v)−T (un, vn))(u−un, v−vn) ≥ 0, ∀(u, v) ∈ Z,
and passing to the limit, we obtain

(T (u, v)−H)(u− u0, v − v0) ≥ 0, ∀(u, v) ∈ Z,
i.e. 〈T (u, v) − H, (u, v) − (u0, v0)〉 ≥ 0,∀(u, v) ∈ Z. So by virtue of proposition
3.5, we have T (u0, v0) = H. Taking the condition (3.1) into account, we obtain
the convergence of (un, vn) to (u0, v0). Finally, by Bohnenblust-Karlin fixed point
theorem, S possesses a fixed point.i.e. there exist (σ0, ρ0) ∈ B such that T (σ0, ρ0) =
N(σ0, ρ0). �
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[8] M. Ghergu and V. Rădulescu, Nonlinear Analysis and Beyond. Partial Differential Equations
Applied to Biosciences, Springer Monographs in Mathematics, Springer-Verlag, Heidelberg,

2011.

[9] A. Kristály, V. Rădulescu and Cs. Varga, Variational Principles in Mathematical Physics,
Geometry and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Prob-

lems, Encyclopedia of Mathematics (No. 136), Cambridge University Press, Cambridge, 2010.

[10] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43
(1992), 270-291.

[11] D.R. Smart, Fixed Point Theorems, Cambridge University Press, Cambridge, 1974.

[12] L.S. Yu, Nonlinear p-Laplacian problems on unbounded domains, Proc. Amer. Math. Soc.
115 (1992), 1037-1045.

[13] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. II/B Nonlinear Monotone

Operators, vol. III Variational Methods and Optimizations, Springer, Berlin, 1990.

G.A. Afrouzi, T.A. Roushan, Department of Mathematics, Faculty of Mathematical

Sciences, University of Mazandaran, Babolsar, Iran.
E-mail address: afrouzi@umz.ac.ir; t.roushan@umz.ac.ir


	1. Introduction and Preliminaries
	2. Notation and hypotheses
	3. Existence of solutions
	References

