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SRIVASTAVA-ATTIYA OPERATOR

(COMMUNICATED BY HARI SRIVASTAVA)
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ABSTRACT. In this paper, we obtain some applications of the theory of differ-
ential subordination and superordination results involving the operator J:"bp
and other linear operators for certain normalized p-valent analytic functions
associated with that operator.

1. INTRODUCTION

Let H(U) be the class of analytic functions in the open unit disc U = {2z : z € C, |z] < 1}
and let Hla,p] be the subclass of H(U) consisting of functions of the form:

f(z)=a+apzf +a, 127 +... (a€C). (1.1)
Also, let A(p) denote the class of functions of the form:

f(2) :zp—|—2ak+pzk+p (peN={1,2,...}), (1.2)
k=1
and let 4; = A(1).
If f, g€ A(p), we say that f is subordinate to g, written f < g if there exists
a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and
lw(z)| < 1 for all z € U, such that f(z) = g(w(z)), z € U. Furthermore, if the
function g is univalent in U, then we have the following equivalence (cf., e.g., [7]
,[12] and [13]):

f(z) < 9(2) & f(0) = g(0) and f(U) C g(U).
Let k,h € H(U) and let o(r,s,t;2) : C2 x U — C. If k and p(k(z2), 2K'(2),
22k (2); z) are univalent functions in U and if k satisfies the second-order superor-
dination

"

h(z) < p(k(2), 2K (2), 2%k (2); 2), (1.3)
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then p is a solution of the differential superordination (1.3). Note that if f sub-
ordinate to g, then ¢ is superordinate to f. An analytic function ¢ is called a
subordinant of (1.3), if ¢(z) < k(z) for all functions p satistying (1.3). An univalent
subordinant ¢ that satisfies ¢(z) < g(z) for all subordinants of (1.3) is called the
best subordinant. Recently, Miller and Mocanu [14] obtained sufficient conditions
on the functions &, ¢ and ¢ for which the following implication holds:

h(z) < ¢ (k(z), 2K (2), 22K (2); z) = q(2) < k(2). (1.4)

Using the results of Miller and Mocanu [14], Bulboaca [6] considered certain
classes of first order differential superordinations as well as superordination-preserving
integral operators [5]. Ali et al. [1], have used the results of Bulboaca [6] to obtain
sufficient conditions for normalized analytic functions to satisfy:

2f'(2)
A6

where ¢; and ¢o are given univalent functions in U with ¢; (0) = ¢ (0) = 1. Also,
Tuneski [28] obtained a sufficient condition for starlikeness of f in terms of the
() f(2)
(f'(2))*

for the normalized analytic functions f to satisfy

1) < 2k < (o)

< q2(2),

quantity Recently, Shanmugam et al. [22] obtained sufficient conditions

and .
q1(z) < L(Z) < q2(2).

{r(=)}y?

They [22] also obtained results for functions defined by using Carlson-Shaffer oper-
ator .

For functions f given by (1.1) and g € A(p) given by g(z) = 2P + 3 bg1p2" P, the
k=1
Hadamard product (or convolution) of f and g is defined by

(f*9)(2) = 2 + D arpbirpz™7 = (g% f)(2).
k=1
We begin our investigation by recalling that a general Hurwitz-Lerch Zeta func-
tion ®(z, s, a) defined by ( see [26])

O(z,s,a) = T (1.5)
kZ:O (k+a)

a€C\Zy ={0,-1,-2,..};Zg =Z\N,Z={0,1,72,..};s€C

when |z| < 1;R{s} > 1 when |z| =1.

Recently, the Srivastava and Attiya [25] ( see also [11], [17] and [18] ) introduced
and investigated the linear operator Jg,(f) : A1 — Ap, defined in terms of the
Hadamard product by

Jsnf(z) = Gep(2) % f(2) (2 € U;b € C\Zy ;s € C),
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where for convenience,
Gsp = (140)°[®(2,s,0) —b~°] (z € U).
In [29], Wang et al. defined the operator J/\;)p A(p) — A(p) by

TOPf(2) = F0(2) = f(2) (1.6)

(z€U;beC\Zy;s€ C; A > —pipeN; f € A(p)),

where
() ) = (17)
)= ———F— .
sb s,b (1 _ Z)>\+P
and
p+k+b> et
z) =2+ FARRS zeU;peN). 1.8
> (1 GeUpeN. 09
It is easy to obtain from (1.6),(1.7) and (1.8) that
\,p o - ()\“‘p)k p+b s s
oy f(z) =2+ Z i —— pyp2” TP, (1.9)

where (7)g, is the Pochhammer symbol defined in terms of the Gamma function
[, by
Iy +n)

_ 1 (k=
e = L'(7) _{ Y(y+1)(y+k—-1) (keN).

We note that — Jo, "7 f(2) = f(z) (f € A(p)).
Using (1.9), it is easy to verify that (see [29])

2 (1006) (2) = 04 DIP(E) — BIN, (1)) (1.10)

and

(205) (2 = 0+ NI E) - AN E). (111)

It should be remarked that the linear operator Jg’bp f (2) is generalization of many
other linear operators considered earlier. We have:
(1) J(i’lf’f(z) = DMP=1f(2) (A\> —p,p € N), where D**P~1 is the (A + p — 1)-th
order Ruscheweyh derivative of a function f(z) € A(p) (see [10]);
(2) Jll,;p’pf(z) = Jypf(2) (v > —p), where the generalized Bernardi-Libera-Livingston
operator J, , was studied by Choi et al. [8];

(3) JdTHE) = ) = 2+ 5, (125) a2t (meNo =NU{0)).
where for p = 1 the integral operator I7* = I" was introduced and studied by
Salagean [20];

(4) J1 PP f(z) = I7 f(2) (¢ >0), where the integral operator I was studied by
Shams et al. [21] and Aouf et al. [4];

(5) J91f(2) = PYf(2) (y>0,7 > 1), where the integral operator P} was intro-
duced and studied by Patel and Sahoo [16].
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2. DEFINITIONS AND PRELIMINARIES

In order to prove our results, we shall need the following definition and lemmas.
Definition 1 [14]. Let Q be the set of all functions f that are analytic and injec-
tive on U \ E(f), where E(f) = {¢ € U : lim,_,¢ f(2) = oo}, and are such that
f1(€) #0 for C€0U\ E(f).

Lemma 1 [12]. Let q be univalent in the unit disc U, and let 6 and ¢ be analytic
in a domain D containing q(U), with ¢(w) # 0 when w € q(U). Set C

Q(z) = 2d'(2)¢(q(2)) and h(z) = 0(q(2)) + Q(=) (2.1)
suppose that
(1) @ is a starlike function in U,

(i4) Re{zg((zz))} >0,z€U.
If p is analytic in U with k(0) = ¢(0), p(U) € D and
0(k(2)) + 2k (2)p(k(2)) < 0(q(2)) + 2¢'(2)¢(q(2)), (2.2)

then k(z) < q(z), and q is the best dominant of (2.2).
Lemma 2 [24]. Let &, 8 € C with 8 # 0 and let q be a convex function in U with

24'(2) pe
Re{l—i— 70 }>max{0, R B}.

If p is analytic in U and
Ek(2) + B2k (2) =< a(2) + Bzd'(2), (2.3)

then k < q and q is the best dominant of (2.3).
Lemma 3 [6]. Let g be a univalent function in U and let 6 and ¢ be analytic in
a domain D containing q(U). Suppose that

9/
(7) Re{ (q(z))} >0 for z€ U,

e(q(2))

(11) Q(z) = zq'(2)p(q(2)) is starlike univalent in U.
If k€ Hlq(0),1]NQ, with k(U) C D, 0(k(z)) + 2k'(2)p(k(z)) is univalent in U,

and

0(q(2)) + 24'(2)p(a(2)) < 0(k(2)) + 2k (2)0(k(2)), (2.4)
then q(2) < k(2) and q is the best subordinant of (2.4).
Lemma 4 [14]. Let q be convex univalent in U and let 5 € C, with Re{8} > 0. If
ke H[q(0),1]NQ, k(z) + Bzk'(2) is univalent in U and

q(2) + Bzq'(2) < k(z) + B2k (2), (2.5)

then ¢ < k and q is the best subordinant of (2.5).
Lemma 5 [19]. The function q(z) = (1 —2)72% (a,b € C* = C\ {0}) 4s univalent
in U if and only if |2ab—1| <1 or [2ab+ 1| < 1.

3. SUBORDINANT RESULTS FOR ANALYTIC FUNCTIONS

Unless otherwise mentioned, we shall assume in the reminder of this paper that
be C\Z,,s € C,p e NJA > —p, v € C*,z € U and the powers are understood as
principle values.
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Theorem 1. Let g(z) be univalent in U, with ¢(0) = 1 and suppose that Zg(S) is
starlike univalent in U. Let

Re {1 + Z(;],IES)} > max {0; —pRe (HTP)} : (3.1)
If f(z) € A(p) satisfies the subordination
JS)\LPL f(2) — J;’pf(z) 'yzq,(z)
% ( = + % E <a(z) + p(b+p) (3.2)

Then

A,p 2
B < g(2)

and q 1is the best dominant of (3.2).
Proof. Define a function k(z) by

A, p p
k(z) = 2218 ey, (3.3)

by differentiating (3.3) logarithmically with respect to z, we obtain that

& (n) _ 2(IFE)
k(z) TN F(2)

From (3.4) and (1.10), a simple computation shows that

J:Lp f(2) — J:_’pf(z) 2k (=
() e (B52) -+ 355

hence the subordination (3.2) is equivalent to

zk/(z) z /(z)
k&) + S <4+ 35w

Combining this last relation together with Lemma 2 for the special case § =
and £ = 1 we obtain our result. i

0
p(b+p)

Taking ¢(z) = 442 (-1 < B < A < 1) in Theorem 1, the condition (3.1) reduces

1+Bz
to
Re{%;gi} > max {O; —pRe (HTP>} . (3.5)
It is easy to check that the function ¢(¢) = %, [¢] < |B|, is convex in U and since

P(¢) = () for all [¢| < |B], it follows that the image (U) is convex domain
symmetric with respect to the real axis, hence

; —Bz | _ 1-|B]
inf {Re 1582} = 1247 > 0. (3.6)

Then the inequality (3.5) is equivalent to @Ii < pRe (bi) , hence, we obtain

the following corollary.

Corollary 2. Let f(z) € A(p), -1 < B<A<1 and maX{O;—pRe (b“’)} <

Y
1-|B]|
1+|B|° then

IR L f(2) oy (2P F(2) 14 As (A—B)z
3 (S0 s (SO (ke g ot )
implies

A,
Js,bp (2) ) 14+ Az
2P 1+Bz
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and }j_g'z is the best dominant of (3.7).

Taking ¢(z) = 12 in Theorem 1 (or putting A = 1 and B = —1 in Corollary 1),

z
the condition (3.1) reduces to

pRe (”Tp) >0, (3.8)

hence, we obtain the following corollary.

Corollary 3. Let f(z) € A(p), assume that (3.8) holds true and

T2 W F () —y [T 1(2) 2 z
P () e (BH9) <p 4 i, 69)
then
R
+z . .
and is the best dominant of (3.9).

Now, by appealing to Lemma 1 it can be easily prove the following theorem.

Theorem 4. Let q(z) be univalent in U, with ¢(0) =1 and q(z) # 0 for all z € U.
Let p, 6 € C* and a,7 € C, with o+ 7 # 0. Let f(z) € A(p) and suppose that f
and q satisfy the next conditions:

aJ P F(2) TN f(2)

(@tn)er #£0 (z€U) (3.10)
and
24 (2) _ 24 (2)
Re{l + q (z) q(2) } >0 (Z € U)- (3.11)
If
az(‘]:ﬂvbf(z))/+TZ(J3,bpf(z))/ _ 24 (2)
L+ om { ad 2P F()+T I F(2) pp <1490 =) (3.12)
then

QP F+r I )\
(AR < gt

and q 1is the best dominant of (3.12).

Taking ¢(z) = ﬂ'gz (-1<B<A<1l),a=0and 7 =9 =1 in Theorem 2, the

condition (3.11) reduces to

B A—B)z
{1 - o (1+(142)(1le)} > 0. (3.13)

hence, we obtain the following corollary.

Corollary 5. Let f(z) € A(p), assume that (3.13) holds true, —1 < B < A <1,

A,p
€ C*and suppose that Js'bzic(z) #0 (ze€U). If
A(205) A-B)-
1 +u{ e P <Lt T (3.14)

then
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2\ ;
( e ) < (3.15)
1+ Az

) ) .14).
153, the best dominant of (3.14)
Putting o = 0,7 =1, = ﬁ(a,be@*),u =a,5s =0,A=1-p(peN) and

a(z) = (1 — 2)>* in Theorem 2, hence combining this together with Lemma 5, we
obtain the following corollary.

and

Corollary 6. Let f(z) € A(p), assume that (3.11) holds true and a,b € C* such
that |2ab— 1| <1 or |2ab+ 1| < 1. If

141 (ZJ{(S) —p) <L (3.16)

then
(M)a <(1- 2)72'117

and (1 — 2)729 s the best dominant of (3.16).

Remark 1. (i) For p =1, Corollary 4 reduces to the result obtained by Obradovié
et al. [15, Theorem 1], the recent result of Aouf and Bulboaca et [3, Corollary 3.3]
and the recent result of El-Ashwah and Aouf [9, Corollary 4];

(i) For p = a = 1, Corollary 4 reduces to the recent result of Srivastava and Lashin
[27, Theorem 3] and the recent result of Shanmugam et al. [23, Corollary 3.6].

ab cos A

Remark 2. Putting p=1,s=0, § = e (a,bE(C*; A < %), = a and

—iX

q(z) = (1 — z)—2abecosre™™ 4 Theorem 2, we obtain the result obtained by Aouf et
al. [2, Theorem 1], the recent result of Aouf and Bulboacd et [3, Corollary 3.5] and
the recent result of El-Ashwah and Aouf [9, Corollary 6].

wA=B)
Putting a =0,7 =6 =1,s =0, A =1—-pand q(2) = 1+ Bz) B (u¢€
C*, -1 < B < A<1, B#0)in Theorem 2, it is easy to check that the assumption
(3.11) holds, hence we get the next corollary:

Corollary 7. Let f € A(p), n € C*, —1 < B < A <1, with B # 0 and suppose
that B4 1| <1 or [H42B) 1) <1,

zf' (2 A—B)z
L g (45— p) < LB, (3.17)

then
w pw(A—B)
(£2)" <a+B2) 5

MA=B)
and (1+ Bz) B is the best dominant of (3.17).

Remark 3. Forp =1, Corollary 5 reduces to the result obtained by Aouf and Bul-
boaca [3, Corollary 3.4] and the recent result of El-Ashwah and Aouf [9, Corollary

5/.

By using Lemma 1, we obtain the following result.
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Theorem 8. Let q(z) be univalent in U, with q(0) = 1, let p,6 € C* and let
a,7,0,m € C, witha+7 #0. Let f(z) € A(p) and suppose that f and q satisfy the

next two conditions:
I bf(z)+7—Jg b Y f(2)

(atn)z #0 (z€U) (3.18)
and
Re {H q<(>)}>max{05—Re%} (z€U). (3.19)
If
_ (erhus @iy )" az(I2 1) +r2(20£(2)
S(Z) = ( (a+7)zP o+ du aJ:ipl’bf(z)+TJs>\’,bpf(z) —p +n
(3.20)
and
§(2) < oq(2) +92¢ (2) +n (3.21)
then ;
aJ;‘;p f(z)+TJs>"pf(z)
( ECoE < q(2) (3.22)

and q 1is the best dominant of (3.22).

Taking ¢(z) = iigi (-1 < B < A<1) and using (3.6), the condition (3.22) re-
duces to

"}< L~ |B| (3.23)

0: — Re —
max{ TSI =1 Bl

hence, putting § = o« = 1 and 7 = 0 in Theorem 3, we obtain the following
corollary.

Corollary 9. Letf( ) ( ) —-1<B<A<1landleto € C withmax{0; —Reoc} <
1- | |

5] Suppose that Je21el2) ;A 0 (2€U) and let p € C*. If
210/ (2) (14, 12) ., (A-B):
< + > [0+”<(J§’{.’Zf(z>)p>}+”<011§z+(‘f‘+3’32+n, (3.24)
then

Pl (2)
s—1,b 1+ Az
( zP ) = 1+Bz

and }igz is the best dominant of (3.24).

142

Putting s=0,A=1-p(peN),d=7=1,a=0and ¢q(z) = in Theorem

3, we obtain the following corollary.

Corollary 10. Let f(z) € A(p) such that f(z £ 0 for all z € U and let p € C*. If

z H z ! z
(42) -[o+u( e )} < oHE 4 g2 4, (3.25)
then p
(f(z)) < 1tz
zP 11—z
and ® is the best dominant of (3.25).

-z
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Remark 4. Forp =1, Corollary 7 reduces to the result obtained by Aouf and Bul-
boaca [3, Corollary 3.7] and the recent result of El-Ashwah and Aouf [9, Corollary

8].
4. SUPERORDINATION AND SANDWICH RESULTS

Theorem 11. Let g(z) be convez in U, with ¢(0) =1 and

p ' Re (55) >0. (4-1)
bf(Z)

Let f(2) € A(p) and suppose that € H[q(0),1] N Q. If the function
IR () —y (T2 1)
(24 ) rea (L
is univalent in U, and

JNE L F(2) —y [(I2EFR)
q(z)-i—lﬁ_&?%l(‘ L Z)M,ﬂ( w0 ) (4.2)

Then

and q is the best subordinant of (4.2).
Proof. Define a function g(z) by
T0wf(2)
9(z) = =5— (2 €U).

From the assumption of the theorem, the function g is analytic in U and differen-
tiating logarithmically with respect to z the above definition, we obtain

2 () _ A EE)
9(z) T IMPF(2) p- (4.3)

After some computations and using the identity (1.10), from (4.3), we obtain

Jh f(z) — Jh f(z) Y (Z)
Y s—1,b P Y s,b zg
7p (zl’) + 71; ( zP ( ) + (b+p)

and now, by using Lemma 4 we get the desired result. i

Taking ¢(z) = iig‘z (-1 < B < A<1) in Theorem 4, we obtain the following
corollary.

Corollary 12. Let q(z) be convex in U, with q(0) = 1 and [ “1Re <b+p>} > 0.
b f(Z)

Let f(z) € A(p) and suppose that € H[q(0),1] N Q. If the function
IR () — [ Ten f(2)
() o ()
is univalent in U, and

1+Az (A=B)z I3 L f(2) —y (TP F(2)
5t por OB < 2 ( D + &2 o - (4.4)

Then

1+ Az < Ji’ff(z)
1+Bz zP
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and }j_g'z (=1 < B < A<1) is the best subordinant of (4.4).

By applying Lemma 3, we obtain the following result.
Theorem 13. Let q(z) be convezr in U, with q(0) = 1, let u,6 € C* and let

a,7,0,m € C, with o +7 # 0 and Re§ > 0. Let f(z) € A(p) and suppose that
f satisfies the next conditions:

2P F(2)+TI0P f(2)

a2 #0 (z€U)
and
(SO ¢ o)1) n 0
If the function § given by (3.20) is univalent in U and
0q(2) + 024 () + 1 < §(2) (4.5)
then

NP ()T I NP f(2 "
q(z) < ( JS’l"’(fé+)T+)Z;7JS’b 4 )>

and q is the best subordinant of (4.5).

Combining Theorem 1 and Theorem 4, we get the following sandwich theorem.
Theorem 14. Let g1 and g3 be two convex functions in U, with ¢1(0) = ¢g2(0) =1
and {pil Re (ﬁ)] > 0. Let f(z) € A(p) and suppose that JSA"I’;{(Z) € H[q(0),1]NnQ.

A,p A,p
If the function % (J‘““f(z)> + % (be(z)> is undvalent in U, and

zP zP

2q; (2 J?Lp f(2) — J?’pf() 2q0 (2
a(z) + 2l < 2 () + X ( =20 ) < ga(z) + B (46)

Then R
Jg ’pf
a(z) < 2B 0z

and q1 and go are, respectively, the best subordinant and dominant of (4.6).

Combining Theorem 3 and Theorem 5, we get the following sandwich theorem.

Theorem 15. Let g1 and g2 be two convex functions in U, with ¢1(0) = ¢2(0) = 1,
let 1,0 € C* and let o, 7,0, € C, with a+71 # 0 and Re § > 0. Let f(z) € A(p) sat-

o adME R AT INT F(2) o) @+ E() )
isfies “C T TS 0 @etnmm< e ) € Hlg(0),1]n
Q. If the function § given by (3.20) is univalent in U and

0q1(2) + 820, (2) + 1 < F(2) < 002(2) + 6205(2) + 17 (4.7)
then

aX?  FE i)\
0n(s) < ((“ELETEIO ) 2 )

and q1 and g2 are, respectively, the best subordinant and dominant of(4.7).

Remark 5. Specializing s, A and b, in the above results, we obtain the correspond-
ing results for the corresponding operators (1-5) defined in the introduction.
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