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STABILITY OF A QUARTIC AND ORTHOGONALLY QUARTIC
FUNCTIONAL EQUATION

(COMMUNICATED BY IOANNIS STAVROULAKIS)

M. ARUNKUMAR, K. RAVI AND M.J. RASSIAS

ABSTRACT. In this paper, the authors investigate the generalized Hyers-Ulam-

Aoki-Rassias stability of a quartic functional equation

g2z +y+2)+9Rr+y—2)+92x —y+2)+g(—2z+y+z)+ 16g(y) + 169(2)

=8[g(z+y)+9(z—y) +9(z+2) +g(z—2)]+2[g(y + 2) + 9(y — 2)] + 329(z).

(1)

The above equation (1) is modified and its Hyers-Ulam-Aoki-Rassias stability

for the following quartic functional equation

fRr+y+2)+fQRr4+y—2)+fQz—y+2)+ f(—2x+y+2)+ f(2y) + f(22)

=8[fz+y)+ flz—y) + flz+2)+ fle—2)]+20f(y+2) + fly — 2)] + 32f(z)
(2)

for all z,y,z € X with x L y,y L z and z L z is discussed in orthogonality
space in the sense of Ratz.

1. INTRODUCTION AND PRELIMINARIES

In 1940, S.M. Ulam [30] posed the stability problem. In 1941, D.H. Hyers [12]
gave a partial answer to the question of Ulam. In 1950, Aoki [5] generalized the
Hyers theorem for additive mappings. In 1978, Th.M. Rassias [22] proved a further
generalization of Hyers theorem for linear mappings by considering an unbounded
Cauchy difference for sum of powers of norms € (||z||” + ||y||P).

The result of Th.M. Rassias influenced the development stability theory and now
it is called the Hyers-Ulam-Rassias stability for functional equations. Following the
spirit of the innovative approach of Th.M. Rassias, a similar stability theorem
was proved by J.M. Rassias [19, 20] in which he replaced the term ||z||? + ||y|/?
by [|z|[P||y||P (product of norms). Later this stability result is called the Ulam-
Gavruta-Rassias stability of functional equations (see [27]).
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All the above stability results are further generalized by P. Gavruta [9] in 1994
considering the control function as function of variables ¢(x,y) and he proved the
following theorem.

Theorem 1.1. [9] Let (G,+) be an Abelian group, (X,|| - ||) be a Banach space
and ¢ : G x G — [0,00) be a mapping such that

O(z,y) = i 27Fp(2%x, 2%y) < 0. (1.1)
k=0

If a function f: G — E satisfies the inequality
1f(z+y) = f(@) = FW)l < oz, y) (1.2)

for any x,y € G, then there exists a unique additive function T : G — E such that
1
I () = T(@)ll < 52(z,2) (1.3)

for all x in G. If moreover f(tx) is continuous in t for each fized x € G, then T is

linear.

This result is called Generalized Hyers - Ulam - Aoki - Rassias stability of func-
tional equation f(x +y) = f(z)+ f(y). Very recently J.M. Rassias [27] introduced
a new concept on stability called JMRassias Mixed type product-sum of powers
of norms stability. This stability result is called JMRassias stability for functional
equations.

The functional equation

flx+y)+ flz—y) =2f(x) +2f(y) (1.4)

is said to be quadratic functional equation because the quadratic function f(x) =
ax? is a solution of the functional equation (1.4). It is well known that a function
f is a solution of (1.4) if and only if there exists a unique symmetric biadditive
function B such that f(z) = B(x,z) for all z (see [16]). The biadditive function B
is given by

Blay)= ;[ @ ty)+ (-]

In Section 2, authors investigate the general solution and the generalized Hyers-
Ulam-Aoki-Rassias stability of a quartic functional equation (1). Also in Section 3,
the Hyers-Ulam-Aoki-Rassias stability of the modified orthogonally quartic func-
tional equation (2) for all z,y,z € X with 2 L y,y L z and z L x in the sense of
Ratz is discussed.

2. GENERAL SOLUTION AND STABILITY OF THE FUNCTIONAL
EQUATION (2.3)

The quartic functional equation

f(x+2y) + flz —2y) + 6f(x) =4[f(z +y) + flz —y) +6f(y)] (2.1)

was first introduced by J.M. Rassias [21], who solved its Ulam stability problem.
Later P.K. Sahoo and J.K. Chung [28], S.H. Lee et al., [17] remodified J.M. Rassias’s
equation and obtained its general solution.
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The general solution of the generalized quartic functional equation

flaz+by)+ f(ax—by) = (ab)?[f(z+y)+ f(z—y)|+2(6* —a®)[p* f (y)—a® f (2)] (2.2)

for all z,y € R,a # b, and a,b # 0,%+1 using Fréchet functional equation was
discussed in [29]. Very recently the generalized Hyers-Ulam-Aoki-Rassias stability
for a 3 dimensional quartic functional equation

g2z +y+2)+g92r+y—2)+9QR2x—y+2)+g(—2x+y+2)+ 16g(y) + 16g(2)

=89z +y) +g(x —y) +g(x+2)+g(x—2)]+2[g(y + 2) + g(y — 2)] + 32{1(@"))
2.3

in fuzzy normed space was discussed by M. Arunkumar [7].
2.1. GENERAL SOLUTION OF THE FUNCTIONAL EQUATION (2.3).

In this section, the authors discussed the general solution of the functional equation
(2.3) by considering X and Y are real vector spaces.

Theorem 2.1. If g : X — Y salisfies the functional equation (2.3) then there
erists a a unique symmetric multi - additive function @ : X x X x X x X = Y
such that g(z) = Q(z,z,z,z) for allz € X. .

Proof. Letting x =y = z =0 in (2.3), we get f(0) = 0. Replacing (x,y) by (0,0),
we obtain

9(=2) = g(2) (2.4)
for all z € X. Again replacing (y, z) by (0,0) and (z,0) respectively, we get

g(2z) = 16g(x) and  g(3z) = 81g(x) (2.5)
for all x € X. In general for any positive integer n, we obtain

g(na) = n* g(z)
for all z € X. Letting z = 0 in (2.3) and using (2.4), (2.5), we arrive

92z +y) + g2z —y) = 4g(z +y) + g(& — y)] + 24g(x) — 69(y) (2.6)
for all z,y,z € X. By Theorem 2.1 of [17], there exist a unique symmetric multi -
additive function @ : X x X x X x X — Y such that g(z) = Q(z,z,z,z) for all
rzeX. (]
2.2. GENERALIZED HYERS - ULAM - AOKI - RASSIAS STABILITY

OF THE FUNCTIONL EQUATION (2.3).

In this section, let X be a normed space and Y be a Banach space. Define a
difference operator Dg: X x X x X — Y by

Dg(z,y,2) =gz +y+2)+9R2x+y—2)+9R2r—y+2)+g(—2x+y+2)
+16g(y) + 16g(z) — 8[g(x +y) + g(x — y) + g(x + 2) + g(= — 2)]
—2[g(y +2) + g(y — 2)] — 32¢9(x)

for all z,y,z € X and investigate its generalized Hyers - Ulam - Aoki - Rassias
stability of the functional equation (2.3).
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Theorem 2.2. Let j € {—1,1}. Let a: X3 — [0,00) be a function such that

.« (él"jac7 4riy, 4”jz) 4”33: ,Amd gy, 4”32)
nh—{go 44ny =0 and Z 44nj

converges (2.7)

forallz,y,z € X and let g: X — Y be a function satisfies the inequality

|Dg (z,y,2)|| < a(z,y,2) (2.8)

for all x,y,z € X. Then there exists a unique quartic function Q : X — 'Y such
that

1 & 4’“330
lg(z) - Q@I < 57 Z i (2.9)
k=0

where

B4k z) = a4k, 4Ty, 449 2) 4+ 4o (4P 2, 0,0)
for all x € X. The mapping Q(z) is defined by
9(4"x)

Q) = nll)n;o T (2.10)
forallx € X.
Proof. Assume j = 1. Replacing (z,y, z) by (z,z,z) in (2.8), we get
lg(4x) —169(22)[| < a (z,z, x) (2.11)
for all x € X. Again replacing (z,vy, z) by (z,0,0) in (2.8), we obtain
[49(2z) — 64g(x)[| < a(x,0,0) (2.12)
for all x € X. From (2.11) and (2.12), we arrive
lg(4x) — 256g(x)[| = ||lg(4x) — 169(2z) + 169(2z) — 256g(z) |
< |lg(4x) — 169(22)|| + 4 [|4g(22) — G4g()]|
<oa(z,z,z)+4a(x,0,0) (2.13)
for all x € X. Hence from (2.13), we get
g(4z) 1
H o —g(x)‘ §44[ a(z,z,z) + 4a(z,0,0)) (2.14)
for all x € X. Hence it follows from (2.14), we obtain
B(x)
- %
where
B(z) = a(z,z,x) + 4a(z,0,0)
for all z € X. Now replacing by 4z and dividing by 4% in (2.15), we get
g(4%z) g(dx)|| _ B(4x)
foee) _ottn) ot o
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for all x € X. From (2.15) and (2.16), we arrive

g(4%x) g(#x)  g(x)| , | 9(42)
1 B(4x)
< 4j [ﬁ(I) + 44 (2'17)
for all x € X . In general for any positive integer n , we get
1 = B(4ha)
|20y < & 526 ae)
k=0
1 B(4Fa)
= 44 Z 44k
k=0
g(4"z)
for all z € X. In order to prove the convergence of the sequence 1in , replace
x by 4™z and divided by 4*™ in (2.18), for any m,n > 0 , we arrive
g(4ntmay) 4m 1 4nqm
o) _ o) ‘g< v )
44(n+m) 44m 44m 44n
1 ﬁ 4k+m
— 44 44( T g4(k+m)
—0 as m— o0 (2.19)
g(d4"z) ] . : .
for all x € X. Hence the sequence Lin is Cauchy sequence. Since Y is

complete, there exists a mapping @) : X — Y such that

g(4"x)

Q(z) = lim

n—oo

Letting n — oo in (2.18) we see that (2.9) holds for all € X. To prove @ satisfies
(2.3), replacing (x,vy,2) by (4"x,4"y,4"2) and divided by 4" in (2.8), we arrive

4% gd"2x4+y+2)+g@d"2r+y—2))+ 94" 2z —y+2)) + g(4"(—2x + y + 2))

+169(4"y) + 169(4"2) — 8[g(4" (z + y)) + g(4"(z —y)) + (4" (z + 2)) + g(4" (2 — 2))]

n n n 1 n n n
—20g(4"(y + 2)) + 94" (y - 2))] ~ B29(4"2)|| < ra(4"z, 4"y, 4"2)
for all z,y,z € X. Letting n — oo and in the above inequality we see that

Qr+y+2)+QRr+y—2)+Q2x —y+2)+Q(—2x +y+2) +16Q(y) + 16Q(z)
=8[Q(z+y) +Q(z —y) + Qz + 2) + Qz — 2)] + 2[Q(y + 2) + Qy — 2)] + 32Q(x)
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Hence @ satisfies (2.3) for all z,y, z € X. To prove @ is unique, let R(z) be another
quartic mapping satisfying (2.3) and (2.9), we arrive

1Q(z) = R(2)|| = 4% 1Q(4"z) — R(4" )|

1
< g QM ) — g(4"2)| + [lg(4"x) — R(4"x)(|}
2 = B4kt
= 44 44(k+n)

—0 as n— o0

for all x € X. Hence @ is unique.
For j = —1, we can prove the similar stability result. This completes the proof
of the theorem. O

The following corollary is a immediate consequence of Theorems 3.1 concerning
the stability of (2.3).

Corollary 2.3. Let A and s be nonnegative real numbers. If a function g: X —Y
satisfies the inequality

A
A ° ® 3 ) <4 >4,’
1Dy (g2 < 4 3Ll A od o d
X [l 1211 s<iors>,
Myl + {ll2l + llll? + 12} ) s < 4 or s > &

(2.20)

for all x,y,z € X. Then there exists a unique quartic function Q : X — Y such
that

A

255° .

TAl|||

41— 4]

[f(z) = Q)] < Allz| 2 (2.21)

43— 435]

8A|||[**

44 — 433

forallz € X.

3. STABILITY OF ORTHOGONALLY QUARTIC FUNCTIONAL
EQUATION (2)

Now, we introduce some basic concepts of orthogonality and orthogonality
normed spaces.

Definition 3.1. [11] A vector space X is called an orthogonality vector space if
there is a relation x 1 y on X such that

(i)x L0, 0Lz forall x € X;
(ii) if z L y and =,y # 0, then z,y are linearly independent;



STABILITY OF A QUARTIC AND ORTHOGONALLY QUARTIC... 19

(i) z L y, ax L by for all a,b € R;
(iv) if P is a two-dimensional subspace of X ; then

(a) for every x € P there exists 0 # y € P such that z L y ;

(b) there exists vectors z,y # 0 such that z L y and z +y L x —y.
Any vector space can be made into an orthogonality vector space if we define
x 1 0,0 L x for all x and for non zero vector =, y define z L y iff x, y are linearly
independent. The relation L is called symmetric if x 1 y implies that y L = for all
x, y € X. The pair (z, L) is called an orthogonality space. It becomes orthogonality

normed space when the orthogonality space is equipped with a norm.

The orthogonal Cauchy functional equation

fx+y)=f2)+ fly),z Ly (3.1)
in which L is an abstract orthogonally was first investigated by S. Gudder and
D. Strawther [11]. R. Ger and J. Sikorska discussed the orthogonal stability of the
equation (3.1) in [10].
Definition 3.2. Let X be an orthogonality space and Y be a real Banach space.
A mapping f : X — Y is called orthogonally quadratic if it satisfies the so called
orthogonally Euler-Lagrange quadratic functional equation

flety) + fl@—y) =2f(x) +2f(y) (3-2)
for all z,y € X with L y. The orthogonality Hilbert space for the orthogonally
quadratic functional equation (3.2) was first investigated by F. Vajzovic [31].

C.G. Park [18] proved the orthogonality quartic functional equation (2.1) where
L is the orthogonality in the sense of Ratz [26].

Here after, let (A4, L) denote an orthogonality normed space with norm || - || 4
and (B, | - ||g) is a Banach space. We define

Df(z,y,2)=fRex+y+2)+fRx+y—2)+fRx—y+2)+ f(—2c+y+2)
+ f(2y) + f(22) = 8[f(z +y) + flz —y) + flz +2) + f(z — 2)]
=2[fly+2)+ fly—2)] —32f(2)
for all z,y,z € X with x L y,y 1 z and z L = in the sense of Ratz.

3.1. HYERS - ULAM - AOKI - RASSIAS STABILITY OF MODIFIED
ORTHOGONALLY QUARTIC FUNCTIONAL EQUATION (2).

In this section, we present the Hyers - Ulam - Aoki - Rassias stability of the
functional equation (2) involving sum of powers of norms.
Theorem 3.3. Let u and s(s < 4) be nonnegative real numbers. Let f : A — B be
a mapping fulfilling

1D f (2,9, 2) g < nlll=lll + lylls + 1205} (3.3)

for all z,y,z € A, with x L y,y L z and z L x. Then there exists a unique
orthogonally quartic mapping Q : A — B such that

1) = QW5 < 5755 vl (3.4)
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for ally € A. The function Q(y) is defined by

Q(y) = lim 1)

(3.5)
forally € A.

Proof. Replacing (x,y,z) by (0,0,0) in (3.3), we get f(0) = 0. Setting (z,y, z) by
(0,9,0) in (3.3), we obtain

1£2y) = 16fW)ll 5 < wellylly (3.6)
for all y € A. Since y L 0, we have

&

f(y)H Lyl (3.7)

=16

for all y € A. Now replacing y by 2y and dividing by 16 in (3.7) and summing
resulting inequality with (3.7), we arrive

|

- f(y)

< & {2l (5.5)

for all y € A. In general, using induction on a positive integer n, we obtain that

162

f 1 n—1 9s k
[ -] <552 () s (39)
0o k
% 2°
< —
<552 (35) ot

for all y € A. In order to prove the convergence of the sequence {f(2"y)/16"},
replace y by 2™y and divide by 16™ in (3.9), for any n,m > 0, we obtain

Hf (2"2my)  f(2™y) Hf (2"2™y)

16("+m) 16™

- f(2"y)

3:16m
1w 25\ "

<77§ S 2™y ||%

=167 16 k_0<16> 127yl

oo s\ k+m
P 2 s
k=0

B

IN

As s < 4, the right hand side of (3.10) tends to 0 as m — oo for all y € A. Thus
{f(2"y)/16™} is a Cauchy sequence. Since B is complete, there exists a mapping
Q@ : A — B such that

Q(y) = lim

n—oo

f(2"y)
A
o VY€

In order to prove @ is unique and it satisfies the (2), the proof is similar to that of
Theorem 3.1. This completes the proof of the theorem. O
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Theorem 3.4. Let p and s(s > 4) be nonnegative real numbers. Let f : A — B be
a mapping satisfying (3.3) for all x,y,z € A, with x L y,y L z and z L x. Then
there exists a unique orthogonally quartic mapping Q : A— B such that

15 @) = Qs < 52z vl (311)
for ally € A. The function Q(y) is defined by
Qy) = lim 16" (5-) (3.12)

forally € A.
Proof. Replacing y by % in (3.6), the rest of the proof is similar to that of Theorem
4.1. O

3.2. JMRASSIAS STABILITY OF (2).
In this section, we investigate the JMRassias mixed type product - sum of
powers of norms stability of the functional equation (2).

Theorem 3.5. Let f: A — B be a mapping satisfying the inequality
s s s 3s 3s 3s
1D 1 @2 < g (el Dol el + { el =+ Il + 105 }) (3.13)

forall x,y,z € A, with z L y,y L z and z L x where u and s are constants with,
w,s >0 and s < %. Then the limit

QW) = lim f(2"y)

n—oo  16™
exists for ally € A and Q : A — B is the unique orthogonally quartic mapping
such that

(3.14)

1£@) = QW5 < 535 Iyl (3.15)
for ally € A.

Proof. Letting (z,y,2) by (0,0,0) in (3.13), we get f(0) = 0. Again substituting
(z,y,2) by (0,y,0) in (3.13), we obtain

‘f@

for all y € A. Now replacing y by 2y and dividing by 16 in (3.16) and summing

- 3-16
H =716 ||’UH ( )
resulting inequality with (3.16), we arrive

f(2%)
162

- f )

1 235
—91 1
) < {2y (317)

for all y € A. Using induction on a positive integer n, we obtain that

f(2"y) poe (2
e —f(y)‘BSme_o( ) o (3.18)
H - 238 g 3s
<f5>- (%) it
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for all y € A. In order to prove the convergence of the sequence {f(2"y)/16"},
replace y by 2™y and divide by 16™ in (3.18), for any n,m > 0, we obtain

f(2namy)  f(2m 1 gnomy .
. A Ly
16("+m) 6™ ||,  16m 167 5

< ﬂn_l 238 frm || ||35

=16 16 Ylla
k=0
> 1

<L (3.19)

3
16 2~ ya—smirm Wi
k=0

As s < %, the right hand side of (3.19) tends to 0 as m — oo for all y € A. Thus
{f(2"y)/16™} is a Cauchy sequence. Since B is complete, there exists a mapping
Q@ : A — B such that

- f(2"y)
= lim ———=—= V¥ E.
Qy) = lim — y e
Letting n — oo in (3.18), we arrive the formula (3.15) for all y € A. To show that
@ is unique and it satisfies (2), the rest of the proof is similar to that of Theorem

3.1 ]

Theorem 3.6. Let f : A — B be a mapping satisfying the inequality (3.13) for all
z,y,z€ A, withx Ly,y Lz and z L x, where u and s are constants with u,s > 0
and s > %. Then the limit

_ n Y
Qy) = lim 16" f (57) (3.20)
exists for ally € A and Q : A — B s the unique quartic mapping such that

for ally € A.

Proof. Replacing y by ¥ in (3.16), the proof is similar to that of Theorem 5.1. [
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