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AN EXTENSION OF A RESULT ABOUT THE ORDER OF

CONVERGENCE

(COMMUNICATED BY HAJRUDIN FEJZIC)

DAN ŞTEFAN MARINESCU, MIHAI MONEA

Abstract. In this note, we analize the context in which the calculation of

limits of sequences is performed using the integration of product of Riemann
integrable functions. We will also study the degree of convergence of such
sequences.

1. INTRODUCTION

The integration is one of the most useful concept in introductory calculus. Its
development was started with Newton which considered this process like a reverse
of differentiation. Later, Leibniz and Riemann have seen the integration as ”sum-
mation of many quantities”. This approach led to the current definition of Riemann
integral (see e.g. [5], pag. 216).

To evaluate Riemann integral without derivative is not easy. Therefore, in this
article, we will analize the Riemann integral as a limit. First, we recall a classic
result(see e.g. [8], pag. 49).

Lemma 1.1. Let f : [a, b] → R be Riemann integrable. Then

lim
n→∞

b− a

n

n∑
k=1

f

(
a+

k

n
(b− a)

)
=

b∫
a

f (x)dx.

In [8], p. 49, Polya and Szego have formulated the problem of ”the degree of
approximation” (see problem 10) and gave an answer (p. 232) which is presented
in the next lemma.
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Submitted April 2, 2011. Accepted May 25, 2011.

25
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Lemma 1.2. Let f : [a, b] → R be continuously differentiable. Then

lim
n→∞

n

b− a

n

n∑
k=1

f

(
a+

k

n
(b− a)

)
−

b∫
a

f (x) dx

 = (b− a)
f (b)− f (a)

2
.

In this paper we want to extend these results for product of two functions. In
order to do this, we recall the next results about the product of two integrable
functions (see e.g. [9], theorem 7.9).

Theorem 1.3. If f, g : [a, b] → R are two Riemann integrable functions, then fg
is Riemann integrable.

Since the transformations x → x−a
b−a change the interval [a, b] into [0, 1], we will

present all our results for the functions defined on the interval [0, 1]. In this context,
by using theorem 1.3, lemmas 1.1 and 1.2 admit the following extensions:

Lemma 1.4. If f, g : [0, 1] → R are two Riemann integrable functions, then

lim
n→∞

1

n

n∑
k=1

f

(
k

n

)
g

(
k

n

)
=

1∫
0

f (x) g (x)dx.

Lemma 1.5. If f, g : [0, 1] → R are two continuously differentiable functions, then

lim
n→∞

n

 1

n

n∑
k=1

f

(
k

n

)
g

(
k

n

)
−

1∫
0

f (x) g (x) dx

 =
f (1) g (1)− f (0) g (0)

2
.

We will generalize these lemmas in the next section. The main result is the
proposition 3.1, which will be presented in section 3. This result will give more
information about the convergence’s order of a sequence, more general then the
one from lemma 1.5.

2. SEQUENCES WHOSE LIMITS ARE CALCULATED USING
RIEMANN INTEGRALS

First, we formulate the next lemma to establish a general framework for the
main results of this note.

Lemma 2.1. Let f, g : [0, 1] → R be two Riemann integrable functions. For any
n ∈ N∗ and k ∈ {1, 2, ..., n}, we denote Ik =

[
k−1
n , k

n

]
. We define Ak = sup

x∈Ik

f (x),

ak = inf
x∈Ik

f (x), Bk = sup
x∈Ik

g (x) and bk = inf
x∈Ik

g (x) . We consider the sequences

xn =
1

n

n∑
k=1

akbk
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and

yn =
1

n

n∑
k=1

AkBk.

Then:
a) lim

n→∞
(yn − xn) = 0;

b) lim
n→∞

xn = lim
n→∞

yn =
1∫
0

f (x) g (x)dx.

Proof. As the functions are Riemann integrable, we obtain from Darboux’s crite-

rion, that lim
n→∞

1
n

n∑
k=1

(Ak − ak) = 0 and lim
n→∞

1
n

n∑
k=1

(Bk − bk) = 0.

a) First, we assume that the functions f and g are nonnegative. Then

0 6 yn − xn =
1

n

n∑
k=1

(AkBk − akbk)

=
1

n

n∑
k=1

(Ak − ak)Bk +
1

n

n∑
k=1

(Bk − bk) ak

6 sup
x∈[0,1]

g (x) · 1
n

n∑
k=1

(Ak − ak) + sup
x∈[0,1]

f (x) · 1
n

n∑
k=1

(Bk − bk).

But f, g are integrable, so they are bounded. Then, we obtain

lim
n→∞

(
sup

x∈[0,1]

g (x) · 1
n

n∑
k=1

(Ak − ak) + sup
x∈[0,1]

f (x) · 1
n

n∑
k=1

(Bk − bk)

)
= 0

and lim
n→∞

(yn − xn) = 0.

In the absence of the nonnegative assumption, we note a = inf
x∈[0, 1]

f (x) and,

respectively b = inf
x∈[0, 1]

g (x). Consider the functions F : [0, 1] → R, F (x) =

f (x) − a and, G : [0, 1] → R, G (x) = g (x) − b, which are nonnegative functions.
Then :

lim
n→∞

(yn − xn) = lim
n→∞

1

n

n∑
k=1

(AkBk − akbk)

= lim
n→∞

(
1

n

n∑
k=1

((Ak − a) (Bk − b)− (ak − a) (bk − b)) +
1

n

n∑
k=1

a (Bk − bk) +
1

n

n∑
k=1

b (Ak − ak)

)
= 0,

because

lim
n→∞

1

n

n∑
k=1

((Ak − a) (Bk − b)− (ak − a) (bk − b)) = 0,

in accordance with previous calculations for the functions F , respectively G.
b) If f, g are nonnegative, then for any interval I ⊂ [0, 1], the following inequal-

ities are satisfied:

sup
x∈I

(f (x) g (x)) 6 sup
x∈I

f (x) · sup
x∈I

g (x)

and

inf
x∈I

f (x) g (x) > inf
x∈I

f (x) · inf
x∈I

g (x) .
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This implies that

xn 6
1∫

0

f (x)g (x) dx 6 yn,

for all n ∈ N∗, as any Riemann sum attached to the function fg lies between xn

and yn. So, we obtain

0 6 yn −
1∫

0

f (x)g (x) dx 6 yn − xn

which means that

lim
n→∞

yn =

1∫
0

f (x) g (x)dx.

Similarly

0 6
1∫

0

f (x)g (x) dx− xn 6 yn − xn

and we obtain

lim
n→∞

xn =

1∫
0

f (x) g (x)dx.

If f, g are not necessarily nonnegative, we obtain the same result by applying
the same reasoning for functions F and G, defined at the previous point.

�

The result from 2.1 help us to prove the next lemma. We should mention that
this result was presented by Bényi and Niţu in [3] but without a solution.

Lemma 2.2. Let f, g : [0, 1] → R be two Riemann integrable functions. For any
k ∈ {1, 2, 3, ..., n} and for any αk, βk ∈

[
k−1
n , k

n

]
, the sequence

zn =
1

n

n∑
k=1

f (αk) g (βk)

converges to
1∫
0

f (x)g (x) dx.

Proof. We have two cases. First, we assume that the functions f and g are non-
negative. We choose the sequences xn and yn from lemma 2.1. Obviously we have

xn 6 zn 6 yn

and the conclusion follows.
In the absence of the nonnegative assumption, we note a = inf

x∈[0, 1]
f (x) and,

respectively b = inf
x∈[0, 1]

g (x). Similar with the proof of lemma 2.1., we consider the
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functions F : [0, 1] → R, F (x) = f (x) − a and G : [0, 1] → R, G (x) = g (x) − b,
which are nonnegative functions. Then

lim
n→∞

1

n

n∑
k=1

f (αk) g (βk) = lim
n→∞

1

n

n∑
k=1

(F (αk) + a) (G (βk) + b)

= lim
n→∞

(
1

n

n∑
k=1

F (αk)G (βk) +
b

n

n∑
k=1

F (αk) +
a

n

n∑
k=1

G (βk) + ab

)

=

1∫
0

F (x)G (x) dx+ b

1∫
0

F (x) dx+ a

1∫
0

G (x) dx+ ab

=

1∫
0

(F (x) + a) (G (x) + b) dx =

1∫
0

f (x) g (x) dx

which conclude the proof. �

A similar result could be found in [10], where Spivak has posed the same problem
(see problem 1, p.263) but for continuous functions . Evidently, our result is more
general.

A consequence of lemma 2.2 is the following result from [3].

Corollary 2.3.(Bényi, Niţu) Let f : [0, 1] → R be a Riemann integrable func-
tions.Then

lim
n→∞

1

n

n∑
k=1

f

(
k − 1

n

)
f

(
k

n

)
=

1∫
0

f2 (x) dx.

Proof. We apply 2.2 for g = f and the sequences αn = k−1
n and βn = k

n . �

3. THE ORDER OF CONVERGENCE

Lemma 2.2 gives us an answer about the limits of sequences of the type

1

n

n∑
k=1

f (ak) g (bk),

but we want to know more details about these limits. We would like to study
their order of convergence and we can deliver a good estimation in the case of the
sequence

1

n

n∑
k=1

f

(
k − α

n

)
g

(
k − β

n

)
,

with α, β ∈ [0, 1]. The results are included in next proposition.
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Proposition 3.1. Let f, g : [0, 1] → R be two continuously differentiable functions.
Let define α, β ∈ [0, 1] and the sequence

an =

1∫
0

f (x)g (x) dx− 1

n

n∑
k=1

f

(
k − α

n

)
g

(
k − β

n

)
,

for all n ∈ N∗. Then:

lim
n→∞

nan =
1

2
(f (0) g (0)− f (1) g (1)) + α

1∫
0

f ′ (x) g (x) dx+ β

1∫
0

f (x) g′ (x) dx.

Proof. After some algebra we have

nan = n

1∫
0

f (x)g (x) dx−
n∑

k=1

f

(
k − α

n

)
g

(
k − β

n

)

= n

 1∫
0

f (x) g (x) dx− 1

n

n∑
k=1

f

(
k

n

)
g

(
k

n

)+
n∑

k=1

f

(
k

n

)(
g

(
k

n

)
− g

(
k − β

n

))

+
n∑

k=1

g

(
k − β

n

)(
f

(
k

n

)
− f

(
k − α

n

))
.

But

lim
n→∞

n

 1∫
0

f (x)g (x) dx− 1

n

n∑
k=1

f

(
k

n

)
g

(
k

n

) =
f (0) g (0)− f (1) g (1)

2
.

However, for any k ∈ {1, 2, 3.., n} and any interval
[
k−β
n , k

n

]
, we apply mean value

theorem for the function g and we find ck ∈
(
k−1
n , k

n

)
which verifies the relation

g

(
k

n

)
− g

(
k − β

n

)
= g′ (ck)

β

n
.

So
n∑

k=1

f

(
k

n

)(
g

(
k

n

)
− g

(
k − β

n

))
=

β

n

n∑
k=1

f

(
k

n

)
g′ (ck).

From 2.2, we obtain

lim
n→∞

(
β

n

n∑
k=1

f

(
k

n

)
g′ (ck)

)
= β

1∫
0

f (x)g′ (x) dx.

Similarly, for the function f on the interval
[
k−α
n , k

n

]
, applying mean value the-

orem, we find bk ∈
(
k−1
n , k

n

)
so that

f

(
k

n

)
− f

(
k − α

n

)
= f ′ (bk)

α

n
.

Then
n∑

k=1

g

(
k − β

n

)(
f

(
k

n

)
− f

(
k − α

n

))
=

α

n

n∑
k=1

f ′ (bk) g

(
k − β

n

)
.
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Applying Lemma 2.2. we find that

lim
n→∞

(
α

n

n∑
k=1

f ′ (bk) g

(
k − β

n

))
= α

1∫
0

f ′ (x) g (x) dx.

Finally, we obtain

lim
n→∞

nan =
1

2
(f (0) g (0)− f (1) g (1)) + α

1∫
0

f ′ (x) g (x) dx+ β

1∫
0

f (x) g′ (x) dx.

�

If we choose the particular values for the numbers α and β from proposition 3.1,
we obtain some results as:

For α = 0 and β = 1 , we obtain

lim
n→∞

n

 1∫
0

f (x)g (x) dx− 1

n

n∑
k=1

f

(
k

n

)
g

(
k − 1

n

)
=

1

2
(f (0) g (0)− f (1) g (1)) +

1∫
0

f (x) g′ (x) dx;

For α = 1
2 and β = 1, we obtain

lim
n→∞

n

 1∫
0

f (x)g (x) dx− 1

n

n∑
k=1

f

(
2k − 1

2n

)
g

(
k − 1

n

)
=

1

2
(f(0)g(0)− f(1)g(1)) +

1

2

1∫
0

f ′ (x) g (x) dx+

1∫
0

f (x) g′ (x) dx.

Using the formula of integration by parts, we obtain

lim
n→∞

n

 1∫
0

f (x)g (x) dx− 1

n

n∑
k=1

f

(
2k − 1

2n

)
g

(
k − 1

n

) =
1

2

1∫
0

f (x) g′ (x) dx.

If we choose g(x) = 1 we obtain the next result, which represent the theorem 1
from [4].

Corollary 3.2. (Chiţescu) Let f : [0, 1] → R be a continuously differentiable
functions. Let define α ∈ [0, 1] and the sequence

an =

1∫
0

f (x)dx− 1

n

n∑
k=1

f

(
k − α

n

)
,

for all n ∈ N∗. Then:

lim
n→∞

nan =

(
α− 1

2

)
[f(1)− f(0)] .
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Proof. We apply 3.1 for g(x) = 1. �

4. APPLICATIONS

At the end of this note, we present three applications whose solutions are ob-
tained using the results from the previous paragraph. The first problem reads

Problem 1. Let the sequence

an =
n∑

k=1

k2 − k

n3 + kn2
,

for any n ∈ N∗. Show that lim
n→∞

an = ln 2− 1
2 and evaluate lim

n→∞
n
(
ln 2− 1

2 − an
)
.

Solutions: By using Lema 2.2 for the functions f, g : [0, 1] → R, f (x) = x
1+x ,

g (x) = x, we have

k2 − k

n3 + kn2
=

1

n
· k (k − 1)

n (n+ k)
=

1

n
·

k
n

1 + k
n

· k − 1

n
,

so

lim
n→∞

an = lim
n→∞

1

n

n∑
k=1

k
n

1 + k
n

· k − 1

n
=

1∫
0

x · x

1 + x
dx,

But

1∫
0

x2

1 + x
dx =

1∫
0

(
x− 1 +

1

1 + x

)
dx =

x2

2

∣∣∣∣∣ 10 − x

∣∣∣∣∣ 10 + ln (1 + x)

∣∣∣∣∣ 10 = ln 2− 1

2
.

From Prop. 3.1, we obtain

lim
n→∞

n

(
ln 2− 1

2
− an

)

= lim
n→∞

n

 1∫
0

f (x)g (x) dx− 1

n

n∑
k=1

f

(
k

n

)
g

(
k − 1

n

)
=

1

2
(f (0) g (0)− f (1) g (1)) +

1∫
0

f (x) g′ (x) dx

= −1

4
+

1∫
0

x

1 + x
dx = −1

4
+

1∫
0

(
1− 1

1 + x

)
dx = −1

4
+x

∣∣∣∣∣ 10−ln (x+ 1)

∣∣∣∣∣ 10 =
3

4
−ln 2.

Problem 2. Let n ∈ N, n > 2 and the function f : [0, n] → R, f (x) =
√
xe−

[x]
n .

We note Vn, the volume of the solid obtained by rotating the graph of f about x
axis. Find lim

n→∞
Vn

n2 .
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Solution: As Vn = π
n∫
0

f2 (x) dx = π
n∫
0

xe−
2[x]
n dx, we evaluate first

n∫
0

xe−
2[x]
n dx.

We have

n∫
0

xe−
2[x]
n dx =

n∑
k=1

k∫
k−1

xe−
2[x]
n dx =

n∑
k=1

e−
2(k−1)

n

k∫
k−1

xdx =

n∑
k=1

2k − 1

2
e−

2(k−1)
n .

Then

lim
n→∞

Vn

n2
= π lim

n→∞

1

n

n∑
k=1

2k − 1

2n
e−

2(k−1)
n =

1∫
0

xe−2xdx.

But

1∫
0

xe−2xdx = −xe−2x

2

∣∣∣∣∣ 10 +
1

2

1∫
0

e−2xdx = −xe−2x

2

∣∣∣∣∣ 10 − e−2x

4

∣∣∣∣∣ 10 =
1− 3e−2

4
,

so

lim
n→∞

Vn

n2
= π

1− 3e−2

4
.

Problem 3. (Pr. 11535 from AMM 9/2010) Let f be a continuously differentiable

function on [0, 1]. Let A = f (1) and let B =
1∫
0

x−1/2f (x) dx. Evaluate

lim
n→∞

n

 1∫
0

f (x) dx−
n∑

k=1

(
k2

n2
− (k − 1)

2

n2

)
f

(
(k − 1)

2

n2

)
in terms of A and B.

Solution: We perform the change of variables x = y2, so we have
1∫
0

f (x) dx =

1∫
0

2yf
(
y2
)
dt and

1∫
0

x−1/2f (x) dx =
1∫
0

2f
(
y2
)
dt. Using the notation g (y) = 2f

(
y2
)
,

the hypothesis becomes g (1) = 2A and
1∫
0

g (y) dy = B.

Then, we compute

lim
n→∞

n

 1∫
0

f (x) dx−
n∑

k=1

(
k2

n2
− (k − 1)

2

n2

)
f

(
(k − 1)

2

n2

)

= lim
n→∞

n

 1∫
0

yg (y) dy − 1

n

n∑
k=1

2k − 1

2n
g

(
k − 1

n

)

=
1

2

1∫
0

yg′ (y) dy
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from proposition 3.1. But

1∫
0

yg′ (y) dy = yg (y)
∣∣∣1
0
−

1∫
0

g (y) dy = g (1)−
1∫

0

g (y) dy = 2A−B.

Finally we obtain that the limit value is A− B
2 .

References

[1] V. Arsinte, Probleme de Calcul Integral, Ed. Univ. Bucureşti, 1995.
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no.10. pag. 476 - 481.
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pag. 338 - 340.
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