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ON POSITIVE SOLUTION FOR A CLASS OF NONLINEAR
ELLIPTIC SYSTEMS WITH INDEFINITE WEIGHTS

(COMMUNICATED BY VICENTIU RADULESCU)

G.A. AFROUZI, S. KHADEMLOO, M. MIRZAPOUR

ABSTRACT. We establish the existence of a nontrivial solution of system:
—Apu = X a(z)ululP~2 + Ne(@)ulu|* "o/t + f in Q
—Aqv = p b(z)v|v|?72 + Ne(z) [u|* o]~ + ¢ in Q
(u,0) € WP (2) x Wy ()
under some restrictions on \, u, X, o, 3, f and g. We show this result by a local
minimization.

1. INTRODUCTION

The purpose of this paper is to investigate the existence of a solution of the
system:

—Apu =\ a(@)u|ulP~2 + Ne(x)u|u|* |+ f in Q

—Agv = p b(z)v|v|972 + Ne(z)|ul* oL +g  inQ (L.1)

(u,0) € Wy (82) x Wy (92)
where 2 C R"™ is a bounded domain, n > 3, 1 < p,g < n, a > =1, f >
—1, A, and X' are positive parameters, functions a(z),b(x) and c(z) € C(Q) are
smooth functions with change sign on Q. For all p > 1 Apu is the p-Laplacian de-
fined by Apu = div(|VulP~2Vu) and W, P () is the closure of C§°(Q) with respect
to the norm |lulj1, = ||Vul|p, where ||.||, represent the norm of Lebesgue space
LP(Q). Let p’ be the conjugate to p, Wy "' (Q) is the dual space to Wy (Q) and

we denote by ||.||=1,, its norm. We denote by < z*,x >x- x the natural duality
pairing between X and X*.

For all p > 1, S, = inf{ ||Vu|?; ||u|g =1 u e W,P(Q)} is the best Sobolev
constant of immersion W1?(Q) < LP" (Q) and we set p* = a5 ifn >p, p*=ooif
n=np.
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Recently many authors have studied the existence of solutions for such problems
(see [2], [16], [T0] and their references). The problem

—Apu=uu[* P+ in Q
—Agv = |ul*How)f~t+g  inQ
u=v=0 on 09

where © is a bounded domain, f € Dy '*'(Q),g € Dy "% () has been discussed by
chabrowski [7] with p = ¢ and O‘p—tl + Bqtl = 1, in [I5] for p # ¢ on bounded domain
and in a recent paper [4] on arbitrary domains with lack of compactness. In this
paper, we use the technique of J. Velin [I5].

Let us define X = W, P(Q) x Wy %Q) equipped with the norm ||(u,v)||x =
maz(||Vullp , |Vvllg) and (X, |.]]) is a reflexive and separable Banach Space.

Definition 1.1 (Weak Solution). We say that (u,v) € X is a weak solution of

(L.1) if:
/ |VulP~2Vu.Vw, dx
Q

:)\/a(x)u|u|”_2w1da:+)\’/c(x)u|u|°‘_1|v|ﬁ+1w1dx+/ fwidz,
Q Q Q

/ | V|92 V. Vwsda
Q

:,u/ b(x)v|v\q_2w2dx+)\’/ c(x)|u|a+1v|v|ﬁ_1w2dw+/gwgdaz.
Q Q Q

for all (wy,wq) € X.

Definition 1.2. We say that J satisfies the Palais-Smale condition (PS), if every
sequence {(Um,vm)} C X such that J(wm,vy,) is bounded and J' (wp,, vm) — 0 in
X* as m — oo is relatively compact in X.

It is well known if J is bounded below and J has a minimizer on X, then this
minimizer is a critical point of J. However, the Euler function J(u,v), associated
with the problem , is not bounded below on the whole space X, but is bounded
on an appropriate subset, and has a minimizer on this set (if it exists) gives rise to

solution to (|L.1J).
Clearly, the critical points of J are the weak solutions of problem (1.1)).

We set for all » > 0,t > 0 :

1 1 _ (r+1)(t—1)
Tt a+B8+2 b(r’t)_)\’(a+5+2)(a+ﬁ+1)’
:a+ﬁ+2—t 1

d(rt) = —— .
? ? a+1 B+1
a+p+1 et
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and
e1 = (a+1)d(6,7) [c(p) - %} [b(a’p) mirclo(s,,”,s,;)} =
2 = (5 + (0, et - ] [HRL 2L )

where 6, are fixed numbers such that
1 1
0<0<[pe(p)?, 0<vy<][ge(g)]s.
The associated Euler-Lagrange functional to system (1.1) J : X — R is defined by

aﬁ_lP(u)—i—%Q(U)—)\’R(u,v)—(a—l—l) < fiu>—(B+1)<g,v>

(1.2)

where P(a) = [Vul}; =X [ a@uPds, Q) =[[Voly—u [ ba)loftdz,
Q Q

J(u,v) =

R(u,v):/c(x)|u|a+1|v|ﬂ+1dx.
Q

Consider the Nehari manifold associated to problem (1.1)) given by
A= {(U, U) € X\{(Oa 0)}7 < J/(’U,, U)a (U, U) X X= 0} (13)
We define m; = inf(, )en J(u, v).

Consequently, for every (u,v) in A, (1.2) becomes

Jia(u,v) = (@ +Dap)[Vulf + (8 + Da(g)[Vol[§ = Aa(p)(a +1) /Q a(@)|ul?dx

—u(B+1)alq) /Q b(x)|v|dx — (e + 1)a(l) < fyu>—(B+1a(l) < g,v >. (1.4)

2. RESULTS

Theorem 2.1. Suppose that [ € W(;l’pl (Q) and g € W(fl’q/(ﬂ) and Q is a suffi-
ciently reqular bounded open set in R", and :
at+l B+1
@ TP
p q

(€ 0<|fll-1p + llgll-1.q < min (1, €2,1),
there exists a pair (u*,v*) € A for the problem (I.1). Moreover, (u*,v*) satisfies
the property J(u*,v*) < 0.

1 (b) maz (p,q) <o+ S +2

Lemma 2.2. Suppose a+ B+2 > max(p,q). There exists a sequence (U, vm) € A
such that

1
inf  J(u,v) < J(Upm,vm) < inf J(u,v)+ — , 2.1
ot (u,v) < J(tUm,vm) oot (w,v) + — (2.1)
and X
(A (s o) x+ < — (2.2)

m
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Proof. We claim that J is bounded below on A. Let (u,v) be an arbitrary element
in A. Using successively the Holder’s inequality and the Young inequality on the
terms < f,u > and < g,v >, we can write

Ja(w0) > (@ + Dla@) [ Vull} - 67 Vulls] + (8 + Dla(@) | Vull] — 77| Vul{]
=07 a1 =7 la (W) gll-1.0)7

This inequality follows from a(x), b(x) are sign chaining functions and we can choose
(u,v) € X with these properties that supp v C Q1 = {x € Q;a(x) < 0} and
supp v C Qg = {x € Q; b(x) < 0}.

Since the real numbers § and v being arbitrary, a suitable choose of 6 and v assure
that J is bounded below on A. The Ekeland variational principle ensures the
existence of such sequence. ([l

Now, consider the function I defined on X by
I(u,v) = < J(u,v),(u,v) >

= (a+1)||Vu||§+(5+1)||Vv||gf)\(a+1)/g)a(x)|u|pdx

(B 1) / b()|oltdz — N(a+  +2) / (@) [uf T o de
Q Q
—(a+) < fu>—-(B+1)<g,v>. (2.3)

We shall show that each minimizing sequence contains a Palais-Smale sequence
when f, g satisfied in

0 <[[fll-1p + llgll-1,¢ < min (1, €2,1) . (2.4)

We want to establish that J'(um,, v,) — 0 in X* as m — oc.

Lemma 2.3. The critical value of J on A, my = inf(y v)en J(u,v), has the follow-
ing property:

a+1 B+1, &
. =o'y ]

Proof. Let uy be the unique solution of the Dirichlet problem

/
||f||]il,p/a -

mi < min [—

u=~0 on 00

and let vg be the unique solution of the problem

{ —Ayu=f inQ

—Agv=g 1in
v=20 on 08

It is clear that (uf,0) ,(0,v,) are two elements of A and we have

1 1
my < J(uf,0) = (o + 1)[1;||Vuf||§* <fup>] = —(a+1)(1- E)HVUflli

a+1
= T [Vugll?,
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1 1
m1 < J(0,vg) = (B+ 1)[5||va||3— <gv > = —(B+1(1- g)IIvaIIZ
6+1

Similarly to proof of J. Velin [15, Lemma 4.2 ], we can show that

A7, = IVurlE,
lgll%y,q = V0112,

Then
o Jr 1

B+1
VAP s = gl

my < min | —
Thus, the Lemma is proved. ([l

Lemma 2.4. Under the condition (2.4), we have < I'(u,v), (u,v) ># 0 for all
(u,v) € A.

Proof. Suppose there exists some (@,?9) in A such that I’(4,9) = 0. Then, from
)

Lemma 4.5 in [15], @ and © are not equal to zero. So (i, ?) satisfies the obvious
relations

(a+ DI} —)\/ Dafda] + (8 + 1) /b J[o|7da]

—X(a+ﬁ+2)/ c(x)|a|* o)A de—(a+1) < f,4> —(B+1) < g,0 >=0, (2.5)
Q

pla+ DIal?, - A /Q a(z)[afPda] + q(8 + D[Io)L, — p /Q b(a)|0]4da]

f)\’(a+5+2)2/ c(x)|a|* 5P de—(a+1) < f,4 > —(B+1) < g,0 >= 0. (2.6)
Q

Combining (2.5) and (2.6), we obtain

(v — Do+ [all?, — A / D)afPdz] + (¢ — 1)(5 + 1) / b(a)|otde)

_ x(a+5+2)(a+ﬁ+1)/ o(@) |+ (5] da (2.7)
Q

Then (2.7) implies that there exists L > 0 depending only to «, 8, p, ¢, n, Sp, Sq,
such that

L<laflrp or L <[o]

Using successively the Holder's inequality, the Young inequality and the Sobolev
inequalities

1 1
Sp llullpr < flullip  and  Sifjollg < [[vll1q,
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we have
[ i it ae < | [ o)
Q
< / |u|a+1x@+1dl‘ p /|’U|ﬂ+1xﬁ+1daj> qtl
= CO|
. a+1>< 6+1><
R , Nl
=~ O * T
a+1 p+1
a+1 B+1, .~
= | T al: + == lolg]
p*
a+1 BJrl 1 s
< @l x —= 9L
S” Sy

Then after dividing (2.7) by N(a+ 8+ 2)(a+ ﬁ + 1), we obtain

oIl ~ A [ a@lilras] + b6 [l0lt, ~n [ belilraa]
1 1 1 1
co[a+ " l Lp ﬂt X = v qﬂ}
p* Spp q Sqq
Thus, on ©; and Qs we have
. R a+ 1 1 B+1 1 0
b, p)lallf, + (8,0, < o il + == x —= oL, |-
p* S P q Sa
p q

—~

To proceed further assume ||17||(11q < Ha||’1’*p analogously, by a suitable adaptation
of this case, the final result is similar under the assumption ||12||’1’p < ||17H‘fq ). So,

it follows that

at+l pf+1 co
ble,p)lally ), < (——+——) S, - (2.8)
P 9 min (Sp", S¢%)
AR
Setting L = [b(a’p) mmC(OS” » 54 )} """ we have
L < ldf[1,p. (2.9)

We return to the identities (2.5) and (2.6). Multiply (2.5) by (a+£+2) and subtract
(2.6)from (o + 8+ 2) x (2.5). After some simplifications, we obtain

(a+ De(p)llally , - /\/Q a(x)|a|Pdx] + (B + D)e(g)ll|o]l , — u/ﬁb(w)lﬁlqdm]

=(a+l)< fLa>+(B+1) <g,0>. (2.10)

Hence, using successively the Holder's inequality and the Young inequality and
properties of chaining sign functions a(z) and b(z) we have

(a+1)[elp) — & all7,, + w +1) [e(q) = 2] ||@||3’,q

<(a+1)—— /gp WAy + (B + D)oy 7 gl g (2.11)
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where v and p denote arbitrary positive real numbers such that
0<0<[pe(p)?  and  0<7y<[ge(q)]7,
From (2.11), we deduce

D / ’
(@ +D[el) = T]IalE, < (0t DIy + (B Dol (212
and
@+ D]e(@) ~ 1019, < (@ + D I+ (B4 D lgl? e (213)
q - pov e gyt

From (2.9) and (2.12) becomes

_f)ij(mp)min(Sf,Sf)}ﬁ<(a+1 B+1
P Topler o g

(a+1)|c(p) YA 1+

Co

’
g% 4)-

Or more simply,

* *

) [Hap) min (S, S4")

(o 1)d(0,7)[e(p) |77 < 1l + gl -1

p Co
(2.14)
With a similar argument, if we choose ||l , < [|o]|{ ,, we obtain
e
(Baq) min (Spp ) Sqq )

} R 4 I 1l s
(2.15)

(8 + 16, clo) - ][

Co

Consequently, we have
min (e1,2) < |[|fll-1p + gl -1.4-

This yields a contradiction with the assumption (2.4) and complete the proof. O

Proposition 2.5. Let (0,v) € R? such that 0 < 0 < [pc(p)]% ,0<y < [qc(q)]%.
Suppose that f € WL (Q\{0} and g € W19 (Q)\{0} satisfy the condition (8),
then there exists § > 0 such that | < I' (Um, V), (Um, Um) > | >3 > 0.

Proof. Assume, for the sake of contradiction, that there exists a subsequence of
{(m,vm)} such that | < I'(um, vm), (Um,Vm) > | tends to 0as m — 4o0. Then,
using the formula (2.3), we have

plact DIl = [ a@lunl?de] + o5+ 1) [lonll, ~ s [ bolonrde] -

(a+B+2)2N / () [ | T o [P e —(a41) < frum > —(B+1) < g, 0m >= 5,
Q

(2.16)
where s,, designate a real sequence tending to zero.

Moreover, as {(tm,vm)} C A, we have also

@+ ) [lunl, = [ a@unPda] + 3+ 1) ol =1 [ Halonlrda] -
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(a+5+2)k’/ (@) [t |* T 0[P e — (@ +1) < frttn > —(B+1) < g, v >= 0.
Q

(2.17)
Combining (2.16) and (2.17), we obtain

(= D@+ 1) fumllf, = A / af@) umlde] + (@ = 1)(8 + D) llom ] .~

u/ b(x)|vm|qu} :)\’(a+ﬁ+2)(a+ﬁ+l)/ () [t | T o |P P d2 + 5. (2.18)
Q Q

We argue as in the proof of the Lemma 2.5. Suppose HumH{p < ||vm||(11)*q. Similar
to (13), we obtain

a+l pB+1 Co *_
b8, a)lvmllt,, < (S + ol + 5, (219)
p q min (Sp” , 547 )
or, more simply,
min (S%, S%) s .
v 202 b(8,q) — | < ol (2.20)
co lom 1,4

We note that there exists a positive constant /K such that m < K. In fact,
suppose the contrary. Then, ||v,,||1,q tends to 0 and ||um,||1,, also. We conclude that
J (U, V) tends to 0. But from (5) we deduce that m; = 0, which is impossible
according to Lemma 2.3.

For m sufficiently large, we can assume

e < b(B,q).

loml1 4

From this, we obtain the inequality

p* a*

[b(B,Q) min (S," , Sq")
co

1
]q f - Asp < lom |1,qv

where A is a constant depending only to a, 3, p, ¢, p*, ¢*, Sp, Sy

We conclude the proof as in the closing stages of Lemma 2.4. We obtain for 0 <
1 1

0 < [pe(p)]? and 0 < v < [ge(g)] successively

*

P a* L
q

|7

b(a, p) min (Sp” , Sy

(o + 06, et - 7 A < [l +

Co
lol-1. + 5o
and
4. b(3,q) min (S,”, S4* _a
(8 + 10, )ietg) - THEDIE 2 S s iy +
191114 + Sm-
Letting m — oo, we get

o Oj][b(a,p) min (SP ) Sq )

P
75 < [l + 9l 10
’ @ ] £ =10 4+ llgll-1,q

(a+1)d(0,7)[c(p)
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and
(5,7 .5,
min (S," , 54 )] =4
ST < s+ gl

(B+1)d(9,7) [c(q) _ %q} [b(ﬁ,q)

Co
But this result contradicts the hypothesis (2.4) and the proof is complete. O
Lemma 2.6. Let {(um,vm)} be a minimizing sequence for my = inf(, yyen J(u,v).

Then, there exist u* € WyP(Q), v* € Wy U(Q) such that u,, — u* weakly in
WyP(Q) and vy, — v* weakly in Wy 9(Q).

Proof. We claim that {(um,vm)} is a bounded sequence of X. In fact, using (2.1)
and (2.2), we have

I (Umy V) = M1 + 0 (1) and J’(ummm) = 0 (|| (Urms V) || x)-
1
atB+2
= (a+ Da()[lunl?, - /Q a(2) m Pdz] + (8 + Da(g) [Jomll?., — /Q ()| ]

—(a+1Da(l) < fyum > =8+ 1Da(l) < g, vy, >
= m1 + 0m (| (wm, vm) || x) + 0 (1).

J(Umavm) - J/(umvvm)(umyvm)

Using successively the Holder's inequality, the Young inequality on the terms
< fium > and < g,v,, > and by Sobolev imbedding WP(Q) — LP(Q) and
Wha(Q) < L4(Q) we can write

(o 1) [a®) wml} , = 07 NI}, = Aa(®) lum ] + (8 + 1) ]a(a) lomll], -
v lomllf, = e a(@)om 1.,
< (a+ Da()o~? | fI7,, + B+ Da@)r 7 ||g|?, , +ma
+0m(||(uvaM)||X) + OM(1)~

Since the real numbers 6 and v being arbitrary, a suitable choose of 6 and v assure
that boundedness of the sequence {(tm, vm)}-

We deduce that {(um,vn)} is a bounded sequence of X. We may extract two
subsequences denote again by {u,} and {v,,} converging weakly in W,?(Q) and
Wol’q(Q), respectively. Let u* and v* be, respectively, the weak limits of {u,,} and
{om}. (ie:)

Up — u* weakly  WyP(Q),

U — v weakly W, Y(Q),

U — U a.e. in €,

Uy — UF a.e. in Q.
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3. PROOF OF THE THEOREM 2.1
Taking again the minimizing sequence {(unm,,Vm)}men C A. We now show that
J (U V) = 0 in X* as m — oco. Since I’(u,v) # 0 on A, we have
I (W, V) = J(A(um,vm) — A d (U, Uim),
for some A, € R. Since {(um,Vm)}men C A, we have
0 =< J (Um,Vm), (Um, V) >=< Jl’A(um,vm), (U, V) > —Am
< I (s V), (Ui, Vi) >

Using Proposition 2.5, we conclude A\, — 0 as m — oco. Thus J'(um, vm) — 0
in X*, we see that J/, (U, vm) — 0 and J (tpm, vy) — 0in Wy "P (Q). Consequently

—Aptm = A a(@) U |um P72 + Ne(@)uum | How P+ f + fn in Q
—AgUm = 11 b(2) V|03 |17 4+ N (@) |tn [T om [0 [P~ + g+ gm0 Q

with f,, — 0 strongly in W~ (Q)and g,, — 0 strongly in W =14 (Q). Since w,, =
AG(Z ) Uy [ty [P 2 AN () gy [t |20y | P € W22 (Q) and tyy, = pub(2) 0y |0y |22
AN ) |t |2 0 [0 [P~ € W14 (Q) are bounded in W17 (), W14 (Q) re-
spectively and in L (Q), we can apply Theorem 2.1 from [5]. We obtain the strongly
convergence of Vu,, to Vu* in L"(Q)" for every r < p.

Similarly, we can show the strongly convergence Vv, to Vo* in L*(Q)" for every

s<q.
From Remark 2.1.in [5] we have

V[P 2 Vi, — [Vu*P2Vu*  ae. in Q (3.1)

NVt [P~2 Vit — [Vu*[P~2Vu*  weakly in - (LF' ()" (3.2)

Proposition 3.1. The pair (u*,v*) obtained in Lemma 2.6 is solution of the prob-

lem .
Proof. Let ¢ € WyP(Q) and ¢ € Wy4(2). For every (u,v) in X, we define J|, and
‘]llv by
< J{u(’U/7’U),’¢ >,1’1:< Jl(’LL,’U), (¢70) >X,X*
and
< J\/v(uvv)vc >-11=< Jl(uvv)v (O,C) >X,X* -

Hence, taking u = ,,,v = v,,,, we have
-2
< Iy (tms V), > 10=< =Bty Y > 11 = / (@)t |t |2
Q

_AI/ c(x)lum‘a_lum‘vm|ﬁ+lwdx_ < fﬂﬂ >—1,1 - < fma¢ >—1,17
Q
and

< J‘,v(umavm)vé- >71,1:< _AqvmvC >71,1 _FL/Qb(‘r)vm|'Um|q_2<d‘r

—A’/ (@) [t |* T og [0 [P Cda— < 9, ¢ >_11 — < gmy ¢ >—11
Q
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passing to the limit on m from (3.2), we get

lim < Jj, (wm, vm), ¥ >—1,1

m—+00
=< A Y > 7>\/ alz)u P de - /\// c(@)lu | ur o P yda
—<fiv>_11 ’ “
and
i< Ty (i, vm), € > -1

=< A0 > _)‘// b(z)v* [v*]7*Cdw — )\// (@) [u* | vt [P Ypda
Q Q
- <y, C >71,1 .
Thus from (2.1), (2.2) we deduce for every ¥ in Wy** ()
< ALY 2o 7)\/ ale)u”fu Py X/ c(@)|u* > Tt o P pd
Q Q
< fip>_11=0
also, for every ( in Wol’q (Q)
<= ¢ =X [ b et =X [ el s
Q Q
-<g,(>-11=0
Therefore, (u*,v*) is weak solution of (|1.1)).
On the other hand, we get
(a) < J’(u*,v*), (U*7’U*) >_1,1=0,
(b) J(u*,v*) =m1 <0

The result (a) shows that (u*,v*) € A. Since (u*,v*) is the solution of (L.I]), (a) is
obtained obviously by taking (¢, () = (u*,v*).

Now, we establish (b). Since my = inf(,, ,yea J(u,v), (@) implies that m; < J(u*,v*).
On the other hand, because J(tp, vm) < mi + %, the weak semicontinuity of J|5
ensures that J(u*,v*) < liminf,, 4o J(Um, Vm) < mi. Then

my = lm  J(tup,vm) = J(u*,v")
m——+oo
By virtue of Lemma 2.3, we obtain J(u*,v*) < 0. O

Proposition 3.2. There exist positive constants ni,ns such that for 0 < A <
m,0 < p < n9, the sequence {u,,} and {v,} converge strongly to u* and v* in
WyP(Q) and W, 9(Q), respectively.

Proof. Since lim,,— 100 J' (U, V) = J(u*,v*) and (u*,v*) € A, we write
i (@t D)l =3 [ @l Pdd + 5+ Da@llenl,

—,u/ b(x)|vm|%dx] — (e + 1)a(l) < foum > —(8+ 1Da(l) < g, v, >}
Q
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= G+ Da@)l’ 1, = A [ a@lPde] + 8-+ Da)llo’ I,
i [ @l [1da] — (a-+ Dal1) < fru” > ~(5 + Da(l) < g.0" >
Q

Because lim,, o0 < f, U >=< f,u* > and lim,, 100 < g, 0 >=< g,0" >,
we deduce

Jim e+ Da@)lnlf, = [ al@)lunPds) + 5+ Da@llonl,

—ujéb@ﬂwmﬁdﬂ}

— (a+ Da@)[lu"|? —A/’ )l Pda] + (8 + 1)alg)
e, /b J[o*|7da] (3.3)

Which implies that (t,, vm) — (u*,v*) strongly in X. Suppose the contrary.
Then, u,, being weakly convergent in VVO1 P(£2), we may assume that there exists f,
and 1, two measure such that |Vu,,|P converges weak * to p, and |u,,|”" converges
weak® to .

According to the concentration-compactness principle due to Lions [I3], there exists
an at most countable index set I', positive constants {v,,} , {ip,} (j € I') and
collection of points {x;}jer in Q such that, for all j € T

o= [+ 3 0, (3.4)
jer
> |VU ‘p + Z,up7 T (3 5)
jer
P Hop;

Integrating (3.5) over 2, we obtain

lim /|Vum|pdac>/|Vu Pdx+ Yy, ({2}). (3.7)

m——+oo
jer

Similarly, by the same arguments, we also obtain

lim /|w |qd:v>/|Vv %dz + > g, ({2}). (3.8)

m——+o0
ler

By Sobolev imbedding WP (Q) — LP(Q and W14(Q) < L9(Q) there exist positive
constants ¢’ and ¢” such that

@ pas < el and [ @onlrde < el
Q Q



ON POSITIVE SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEMS 13

then from (3.3) we get

Jim e+ Da@)lenlf, A [ al@)lunPds) + 6+ Da@llon

u / () o |da]}
> Tim {(a+ Da@)[unlf, A ¢ lunlf,) + (8 + Dal@)loml?,

= " [loml[ ]}
={(a+Dalp)(1 = A Numlf ), + (B + Dalg)(1 = p ") [Jomf ;}

Let n1 = L and no = 2. If we multiply (3.7) by (a + 1)a(p)(1 — Ac), (3.8) by
(8+ 1Da(q)(1 — puc”) we obtain

{(a+Dalp)(1 = A lumf , + (8 + Da(g)(1 = p ")llvmll 4}

> (a+ Da(p)(1 = A)[u"[I}, + (@ + Da(p)(L = A) Yy, ({2,})
Jer

+(8+ Da(g) (1 = ue")|omlf 4 + (B + Dal@)(L = pe”) Y~ ng ({z5})

ler
> (a+ Da@)[luf, - A/Q u*|Pda] + (8 + Da(g)[Ilv*1{,, — u/ﬂb(ff)lv*\qdﬂﬂ]

Ha+Da@)(1 = A) Y pp, ({5 }) + (B + Da(a)(L — uc”) Y g ({z5}).

jer leT
Then, from (3.3) we deduce

(a+Dap)(L =)Dy, ({z;}) + (B + Dala) (1 = p ") Y~ pg ({25}) <0

jer el

This is impossible and the proof is complete. (Il
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