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GROWTH AND FIXED-POINTS OF MEROMORPHIC
SOLUTIONS OF HIGHER-ORDER NONHOMOGENEOUS

LINEAR DIFFERENTIAL EQUATIONS

(COMMUNICATED BY VICENTIU RADULESCU)

JUNFENG XU

Abstract. In this paper, we investigate the growth and fixed points of mero-

morphic solutions of higher order nonhomogeneous linear differential equations

with meromorphic coefficients and their derivatives. Our results extend greatly
the previous results due to J. Wang and I.Laine, B. Beläıdi and A. Farissi.

1. Introduction and main results

In this paper, we shall assume that the reader is familiar with the fundamental
results and the standard notation of the Nevanlinna value distribution theory of
meromorphic functions (see [21, 25]). The term “meromorphic function” will mean
meromorphic in the whole complex plane C. In addition, we will use notations
ρ(f) to denote the order of growth of a meromorphic function f(z), λ(f) to denote
the exponents of convergence of the zero-sequence of a meromorphic function f(z),
λ(f) to denote the exponents of convergence of the sequence of distinct zeros of
f(z).

In order to give some estimates of fixed points, we recall the following defini-
tions(see [4, 14]).

Definition 1.1. Let z1, z2, · · · , (|zj | = rj , 0 ≤ r1 ≤ r2 ≤ · · · ) be the sequence
of distinct fixed points of transcendental meromorphic function f . Then τ(f), the
exponent of convergence of the sequence of distinct fixed points of f , is defined by

τ(f) = inf{τ > 0 |
∞∑
j=1

|zj |−τ < +∞}.

It is evident that τ(f) = lim
r→∞

logN(r, 1
f−z )

log r and τ(f) = λ(f − z).
For the second order linear differential equation

f ′′ + e−zf ′ +B(z)f = 0, (1.1)
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where B(z) is an entire function of finite order, it is well known that each solution f
of (1.1) is an entire function. If f1 and f2 are any two linearly independent solutions
of (1.1), then at least one of f1, f2 must have infinite order([20]). Hence, “most”
solutions of (1.1) will have infinite order.

Thus a natural question is: what condition on B(z) will guarantee that every
solution f 6≡ 0 of (1.1) will have infinite order? Frei, Ozawa, Amemiya and Langley,
and Gundersen studied the question. For the case that B(z) is a transcendental
entire function, Gundersen [10] proved that if ρ(B) 6= 1, then for every solution
f 6≡ 0 of (1.1) has infinite order.

For the above question, there are many results for second order linear differential
equations (see for example [1, 3, 7, 9, 12, 22]). In 2002, Chen considered the problem
and obtained the following result in [3].
Theorem A. Let a, b be nonzero complex numbers and a 6= b, Q(z) 6≡ 0 be a
nonconstant polynomial or Q(z) = h(z)ebz, where h(z) is a nonzero polynomial.
Then every solution f 6≡ 0 of the equation

f ′′ + ebzf ′ +Q(z)f = 0

has infinite order.
In 2005, Chen[5] investigated the more general equation with meromorphic co-

efficients, and obtained the following result.
Theorem B. Let Aj(z)( 6≡ 0)(j = 0, 1) be meromorphic functions with σ(Aj) < 1,
a, b be nonzero complex numbers and arg a 6= arg b or a = cb(0 < c < 1). Then
every solution f 6≡ 0 of the equation

f ′′ +A1(z)eazf ′ +A0(z)ebzf = 0 (1.2)

has infinite order.
In 2009, the author and H.X. Yi [24] improved the above result and obtained

the following:
Theorem C. Suppose that Aj 6≡ 0(j = 0, 1, · · · , k − 1) be meromorphic func-
tions with σ(Aj) < 1(j = 0, 1, · · · , k − 1). Let a0, a1, · · · , ak−1 be nonzero complex
constants such that for (i) arg aj = arg a0 and aj = cja0 (0 < cj < 1) or (ii)
arg aj 6= arg a0 (j = 0, 1, · · · , k − 1). Then for k ≥ 2, every transcendental mero-
morphic solution f( 6≡ 0) of the equation

f (k) +Ak−1e
ak−1zf (k−1) + · · ·+A1e

a1zf ′ +A0e
a0zf = 0. (1.3)

has infinite order.
Consider the second-order nonhomogeneous linear differential equation

f ′′ +A1(z)eazf ′ +A0(z)ebzf = F, (1.4)

where a, b are complex constants and Aj(z) 6≡ 0(j = 0, 1) are entire functions with
max{ρ(Aj)(j = 0, 1), ρ(F ) < 1}. In [16], J. Wang and I. Laine have investigated
the growth of solutions of (1.4) and obtained the following.
Theorem D. Let Aj(z) 6≡ 0(j−0, 1) and F (z) be entire functions with max{ρ(Aj)(j =
0, 1), ρ(F )} < 1, and let a, b be complex constants that satisfy ab 6= 0 and a 6= b.
Then every nontrivial solution f of equation (1.4) is of infinite order.

Remark. Recently, Belaidi and Farissi[2] proved Theorem D by a differential method
and pointed out the solution f of equation (1.4) satisfies λ̄(f) = λ(f) = ρ(f) =∞.
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In this paper, we will consider the higher nonhomogeneous linear differential
equation

f (k) +Ak−1e
ak−1zf (k−1) + · · ·+A1e

a1zf ′ +A0e
a0zf = F (1.5)

where Aj 6≡ 0(j = 0, 1, · · · , k − 1) and F 6≡ 0 be meromorphic functions with
max{ρ(Aj)(j = 0, 1, · · · , k − 1), ρ(F )} < 1. We first prove the following result.

Theorem 1.1. Suppose that Aj 6≡ 0(j = 0, 1, · · · , k−1) and F 6≡ 0 be meromorphic
functions with max{ρ(Aj)(j = 0, 1, · · · , k − 1), ρ(F )} < 1. Let a0, a1, · · · , ak−1

be nonzero complex constants such that for (i) arg aj = arg a0 and aj = cja0

(0 < cj < 1) or (ii) arg aj 6= arg a0 (j = 0, 1, · · · , k − 1). Then for k ≥ 2, every
transcendental meromorphic solution f(6≡ 0) of the equation (1.5) has infinite order
and satisfies λ̄(f) = λ(f) = ρ(f) =∞.

Remark. In [16], Wang and Laine consider the case of Aj 6≡ 0(j = 0, 1, · · · , k−1)
and F 6≡ 0 be entire functions. Obviously, Theorem 1.1 improves Theorem D and
Theorem 1.3 in [16] greatly. In fact, if ajz(j = 0, 1, · · · , k−1) is replace by Pj(z) =
ajnz

n + · · ·+ aj0(j = 0, 1, · · · , k − 1) and ρ(F ) < 1 is replace by ρ(F ) < n, we can
obtain the similar result by the same method.

Since the beginning of the last four decades, a substantial number of research
articles have been written to describe the fixed points of general transcendental
meromorphic functions(see [27]). However, there are few studies on the fixed points
of solutions of the general differential equation. In [4], Z. X. Chen first studied the
problems on the fixed points of solutions of second order linear differential equations
with entire coefficients. The author and Yi[24] extended some results in [5] to the
case of higher order homogeneous linear differential equations with meromorphic
coefficients.

The second main purpose of this paper is to study the fixed points of solution
of the higher nonhomogeneous linear differential equation.
Theorem E. Let Aj(z), aj , cj satisfy the additional hypotheses of Theorem 1.1. If
f 6≡ 0 is any meromorphic solution of the equation (1.3), then f, f ′, f ′′ all have
infinitely fixed points and satisfy

τ̄(f) = τ̄(f ′) = τ̄(f ′′) =∞.

Theorem 1.2. Let Aj(z), aj , cj satisfy the additional hypotheses of Theorem 1.1.
If f 6≡ 0 is any meromorphic solution of the equation (1.5), then f, f ′, f ′′ all have
infinitely fixed points and satisfy

τ̄(f) = τ̄(f ′) = τ̄(f ′′) =∞.

2. Lemmas

The linear measure of a set E ⊂ [0,+∞) is defined as m(E) =
∫ +∞

0
χE(t) dt. The

logarithmic measure of a set E ⊂ [1,+∞) is defined by lm(E) =
∫ +∞

1
χE(t)/t dt,

where χE(t) is the characteristic function of E. The upper and lower densities of
E are

densE = lim sup
r→+∞

m(E ∩ [0, r])
r

, densE = lim inf
r→+∞

m(E ∩ [0, r])
r

.
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The following lemma, due to Gross [13], is important in the factorization and
uniqueness theory of meromorphic functions, playing an important role in this paper
as well.

Lemma 2.1 ([13, 26]). Suppose that f1(z), f2(z), · · · , fn(z)(n ≥ 2) are meromor-
phic functions and g1(z), g2(z), · · · , gn(z) are entire functions satisfying the follow-
ing conditions:

(i)
n∑
j=1

fj(z)egj(z) ≡ 0.

(ii) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n.
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj) = o{T (r, egh−gk)} (r →∞, r 6∈ E).

Then fj(z) ≡ 0 (j = 1, 2, · · · , n).

We only need the following special form in Lemma 2.

Lemma 2.2 ([24]). Suppose that f1(z), f2(z), · · · , fn(z)(n ≥ 2) are meromorphic
functions and g1(z), g2(z), · · · , gn(z) are entire functions satisfying the following
conditions:

(i)
n∑
j=1

fj(z)egj(z) ≡ fn+1.

(ii) If 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ n, the order of fj is less than the order of egk(z).
If n ≥ 2, 1 ≤ j ≤ n + 1, 1 ≤ h < k ≤ n, and the order of fj(z) is less than the
order of egh−gk .

Then fj(z) ≡ 0 (j = 1, 2, · · · , n+ 1).

Lemma 2.3 ([11]). Let f be a transcendental meromorphic function of finite order
σ. Let ε > 0 be a constant, and k and j be integers satisfying k > j ≥ 0. Then the
following two statements hold:

(a) There exists a set E1 ⊂ (1,∞) which has finite logarithmic measure, such
that for all z satisfying |z| 6∈ E1

⋃
[0, 1], we have

|f
(k)(z)
f (j)(z)

| ≤ |z|(k−j)(σ−1+ε). (2.1)

(b) There exists a set E2 ⊂ [0, 2π) which has linear measure zero, such that if
θ ∈ [0, 2π) − E2, then there is a constant R = R(θ) > 0 such that (2.1)
holds for all z satisfying arg z = θ and R ≤ |z|.

Lemma 2.4. Let f(z) = g(z)/d(z), where g(z) is transcendental entire, and let
d(z) be the canonical product (or polynomial) formed with the non-zero poles of
f(z). Then we have

f (n) =
1
d

[
g(i) +Bi,i−1g

(k−1) + · · ·+Bi,1g
′ +Bi,0g

]
,

f (n)

f
=
[g(i)

g
+Bi,i−1

g(k−1)

g
+ · · ·+Bi,1

g′

g
+Bi,0

]
,

where Bi,j are defined as a sum of a finite number of terms of the type∑
(j1···ji)

Cjj1···ji(
d′

d
)j1 · · · (d

(i)

d
)ji ,

Cjj1···ji are constants, and j + j1 + 2j2 + · · ·+ iji = n.
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Using mathematical induction, we can easily prove the lemma.

Lemma 2.5 ([3]). Let g(z) be a meormorphic function with σ(g) = β <∞. Then
for any given ε > 0, there exists a set E ⊂ [0, 2π) that has linear measure zero,
such that if ψ ∈ [0, 2π)\E, then there is a constant R = R(ψ) > 1 such that, for all
z satisfying arg z = ψ and |z| = r > R, we have

exp{−rβ+ε} ≤ |g(z)| ≤ exp{rβ+ε}.

Lemma 2.6 ([15]). Consider g(z) = A(z)eaz where A(z)( 6≡ 0) is a meromorphic
funciton with σ(A) = α < 1, a is a complex constant, a = |a|eiϕ(ϕ ∈ [0, 2π)). Set
E0 = {θ ∈ [0, 2π) : cos(ϕ + θ) = 0}, then E0 is a finite set. Then for any given
ε(0 < ε < 1−α), there is a set E1 ∈ [0, 2π) that has linear measure zero, if z = reiθ,
θ\(E0

⋃
E1), then we have when r is sufficiently large:

(i) If cos(ϕ+ θ) > 0, then

exp{(1− ε)rδ(az, θ))} ≤ |g(z)| ≤ exp{(1 + ε)rδ(az, θ))};

(ii) If cos(ϕ+ θ) < 0, then

exp{(1 + ε)rδ(az, θ))} ≤ |g(z)| ≤ exp{(1− ε)rδ(az, θ))};

where δ(az, θ) = |a| cos(ϕ+ θ).

Lemma 2.7 ([8]). Let A0, A1, . . . , Ak−1,F 6≡ 0 are finite order meromorphic func-
tion. If f(z) is an infinite order meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F,

then f satisfies λ(f) = λ(f) = σ(f) =∞.

Lemma 2.8. Suppose that Aj 6≡ 0(j = 0, 1, · · · , k − 1) and F 6≡ 0 be meromorphic
functions with max{ρ(Aj)(j = 0, 1, · · · , k − 1), ρ(F )} < 1. Let a0, a1, · · · , ak−1

be nonzero complex constants such that for (i) arg aj = arg a0 and aj = cja0

(0 < cj < 1) or (ii) arg aj 6= arg a0 (j = 0, 1, · · · , k − 1). We denote

Lf = f (k) +Ak−1e
ak−1zf (k−1) + · · ·+A1e

a1zf ′ +A0e
a0zf (2.2)

If f 6≡ 0 is a finite-order entire function of (1.5), then ρ(Lf ) ≥ 1.

Proof. We suppose that ρ(Lf ) < 1 and then we obtain a contradiction.
(i) If ρ(f) < 1, Then ρ(Ajf (j)) < 1(j = 1, 2, · · · , k). Equation (7) has the form

Ak−1f
(k−1)eak−1z + · · ·+A1f

′ea1z +A0fe
a0z = Lf − f (k).

By Lemma 2.7, we can obtain a contradiction.
(ii) If ρ(f) ≥ 1, we rewrite (2.2) into

Lf
f

=
f (k)

f
+Ak−1e

ak−1z
f (k−1)

f
+ · · ·+A1e

a1z
f ′

f
+A0e

a0z (2.3)

From the equation (1.5), we know that the poles of f(z) can occur only at the
poles of Aj(z)(j = 0, 1, · · · , k − 1), F (z). Let f = g/d, d be the canonical product
formed with the nonzero poles of f(z), with ρ(d) = β ≤ α = max{ρ(Aj) : j =
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0, 1, · · · , k − 1, ρ(F )} < 1, g be an entire function and 1 ≤ ρ(g) = ρ(f) = ρ < ∞.
Substituting f = g/d into (2.3), by Lemma 2.4 we can get

g(k)

g
+
g(k−1)

g

[
Ak−1e

ak−1z +Bk,k−1

]
+ · · ·+

g′

g

[
A1e

a1z +
k−1∑
i=2

Aie
aizBi,1 +Bk,1

]
+
[
A0e

a0z +
k−1∑
i=1

Aie
aizBi,1 +Bk,0

]
=
dLf
g
.

(2.4)
By Lemma 2.3, for any given ε(0 < 3ε < min{1 − α, 1−c

6 }, c = max{cj , 1 ≤ j ≤
k − 1}), there exists a set E ∈ [0, 2π) that has linear measure zero, such that if
θ ∈ [0, 2π)\E, then there is a constant R0 = R0(θ) > 1, such that for all z satisfying
arg z = θ and |z| ≥ R0, we have

g(j)(z)
g(z)

≤ |z|k(ρ−1+ε), (j = 1, 2, · · · , k) (2.5)

and
d(j)(z)
d(z)

≤ |z|k(β−1+ε), (j = 1, 2, · · · , k). (2.6)

Set ρ(Lf ) = β < 1. Then, for any given ε(0 < ε < n− β), we have for sufficiently
large r

|Lf | ≤ exp{rβ+ε}. (2.7)
From Wiman-Valiron theory(see [23] ), we know that there exists a set E with
finite logarithmic measure such that for a point z satisfying |z| = r 6∈ E and
|g(z)| = M(r, g), we have

vg(r) < [logµg(r)]2, (2.8)
where µg(r) is a maximum term of g. By Cauchy’s inequality, we have µg(r) ≤
M(r, g). This and (2.8) yield

vg(r) < [log |g(r)|]2, (r 6∈ E).

By f is transcendental function we know that vg(r) → ∞. Then for sufficiently
large |z| = r we have |g(z)| = M(r, g) ≥ 1, then

|dLf
g
| ≤ |dLf | ≤ exp{rβ+ε}. (2.9)

Setting z = reiθ, then

Re{ajz} = δ(ajz, θ)r, Re{a0z} = δ(a0z, θ)r. (2.10)

Case 1 Suppose first that arg aj 6= arg a0 (j = 1, 2, · · · , k − 1). In view of Lemma
2.6 and (2.10), it is easy to see for the above ε there is a ray arg z = θ such
that θ ∈ [0, 2π)\(E1

⋃
E2

⋃
E0)(where E2 and E0 are defined as in Lemma 2.6,

E1

⋃
E2

⋃
E0 is of linear measure zero) satisfying δ(ajz, θ) < 0, cjδ(a0z, θ) > 0,

and for a sufficiently large r, we have

|A0(reiθ)ea0re
iθ

f(reiθ)| ≥ exp{(1− ε)δ(a0z, θ)r}, (2.11)

|Aj(reiθ)eajre
iθ

| ≤ exp{(1− ε)δ(ajz, θ)r} (j = 1, · · · , k − 1), (2.12)
By (2.6),(2.11) and (2.12), we have∣∣Ak−1e

ak−1z +Bk,k−1

∣∣ ≤ exp{(1− ε)δ(ajz, θ)r}+Mrk(β−1+ε), · · · , (2.13)
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∣∣A1e
a1z +

k−1∑
i=2

Aie
aizBi,1 +Bk,1

∣∣ ≤ exp{(1− ε)δ(ajz, θ)r}+Mrk(β−1+ε), (2.14)

and

∣∣A0e
a0z +

k−1∑
i=1

Aie
aizBi,1 +Bk,0

∣∣ ≥ exp{(1− ε)δ(a0z, θ)r}(1− o(1)), (2.15)

where M > 0 is a constant, it can be different in different occurrences.
By (2.4), (2.5) and (2.13)-(2.15), we have

exp{(1− ε)δ(a0z, θ)r}(1− o(1)) ≤
∣∣A0e

a0z +
k−1∑
i=1

Aie
aizBi,1 +Bk,0

∣∣
≤
∣∣∣∣g(k)(z)
g(z)

∣∣∣∣+
∣∣∣∣g(k−1)(z)

g(z)
(
Ak−1e

ak−1z +Bk,k−1

)∣∣∣∣+ · · ·

+
∣∣∣∣g′(z)g(z)

(
A1e

a1z +
k−1∑
i=2

Aie
aizBi,1 +Bk,1

)∣∣∣∣+ |dLf
g
|

≤ rk(σ−1+ε) + r(k−1)(σ−1+ε)
[

exp{(1− ε)δ(ajz, θ)rj}+Mrk(β−1+ε)
]

+ · · ·

+ r(σ−1+ε)
[

exp{(1− ε)δ(ajz, θ)rj}+Mrk(β−1+ε)
]

+ exp{rβ+ε}

≤ rM + exp{rβ+ε}.

This is a contradiction with β + ε < 1. Hence ρ(Lf ) ≥ 1.
Case 2 Suppose that arg aj = arg a0, and aj = cja0(0 < cj < 1); then

δ(ajz, θ) = cjδ(a0z, θ), Re{ajz} = cjRe{a0z}. Using the same argument as above,
we know that (2.5), (2.6) hold. Moreover, there is a ray arg z = θ satisfying
δ(ajz, θ) = cjδ(a0z, θ) > 0, then for a sufficiently large r, we have (2.11) and

|Aj(reiθ)eajre
iθ

| ≤ exp{(1 + ε)cjδr(a0z, θ)} (j = 1, · · · , k − 1), (2.16)

By (2.6),(2.11) and (2.16), we have

∣∣Ak−1e
ak−1z +Bk,k−1

∣∣ ≤ exp{(1 + ε)ck−1δ(a0z, θ)r}, · · · , (2.17)

∣∣A1e
a1z +

k−1∑
i=2

Aie
aizBi,1 +Bk,1

∣∣ ≤ exp{(1 + ε)ciδ(a0z, θ)r}, (2.18)

and

∣∣A0e
a0z +

k−1∑
i=1

Aie
aizBi,1 +Bk,0

∣∣ ≥ exp{(1− ε)δ(a0z, θ)r}(1− o(1)). (2.19)
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By (2.4), (2.5) and (2.17)-(2.19), we have

exp{(1− ε)δ(a0z, θ)r}(1− o(1)) ≤
∣∣A0e

a0z +
k−1∑
i=1

Aie
aizBi,1 +Bk,0

∣∣
≤
∣∣∣∣g(k)(z)
g(z)

∣∣∣∣+
∣∣∣∣g(k−1)(z)

g(z)
(
Ak−1e

ak−1z +Bk,k−1

)∣∣∣∣+ · · ·

+
∣∣∣∣g′(z)g(z)

(
A1e

a1z +
k−1∑
i=2

Aie
aizBi,1 +Bk,1

)∣∣∣∣+ |dLf
g
|

≤ rk(σ−1+ε) + r(k−1)(σ−1+ε) exp{(1 + ε)ck−1δ(a0z, θ)r}(1 + o(1)) + · · ·

+ r(σ−1+ε) exp{(1 + ε)ciδ(a0z, θ)r}(1 + o(1)) + exp{rβ+ε}

≤Mrk(σ−1+ε) exp{(1 + ε)cδ(a0z, θ)r}(1 + o(1)).

From this and 3ε < 1−c
6 , we get

exp{1− c
2

rδ(a0z, θ)} ≤Mrk(σ−1+ε).

It is a contradiction. Hence ρ(Lf ) ≥ 1. The proof of Lemma 2.8 is completed.
�

3. Proof of Theorem 1.1

Assume that f( 6≡ 0) is a meromorphic funciton of (1.5). We first prove that f
is of infinite order. We suppose the contrary ρ(f) < ∞. By Lemma 2.8, we have
n ≤ ρ(Lf ) = ρ(F ) < n and this is a contradiction. Hence every solution f of
equation (1.5) is of infinite order. By Lemma 2.7, every solution f of equation (1.5)
satisfies λ̄(f) = λ(f) = ρ(f) =∞. The proof of Theorem 1.1 is completed. �

4. Proof of Theorem 1.2

Assume f(6≡ 0) is a meromorphic funciton of (1.5); then ρ(f) =∞ by Theorem
1.1. Set g0(z) = f(z) − z, then z is a fixed point of f(z) if and only if g0(z) = 0.
g0(z) is a meromorphic funciton and ρ(g0) = ρ(f) = ∞. Substituting f = g0 + z
into (1.5), we have

g
(k)
0 +Ak−1e

ak−1zg
(k−1)
0 +· · ·+A1e

a1zg′0+A0e
a0zg0 = −A1e

a1z−zA0e
a0z+F. (4.1)

We can rewrite (4.1) as the following form:

g
(k)
0 + h0,k−1g

(k−1)
0 + · · ·+ h0,1g

′
0 + h0,0g0 = −h0,1 − zh0,0 + F.

Obviously, h0 = −[h1,0 + zh0,0] = −A1e
a1z − zA0e

a0z 6≡ −F . Otherwise, it contra-
dicts with Lemma 2.2. Therefore, −h0,1 − zh0,0 + F 6≡ 0. Here we just consider
the meromorphic solutions of infinite order satisfying g0 = f − z, by Lemma 2.7 we
know that λ̄(g0) = τ̄(f) =∞ holds.

Now we consider the fixed points of f ′(z).
Let g1(z) = f ′ − z, then z is a fixed point of f ′(z) if and only if g1(z) = 0. g1(z)

is a meromorphic function and ρ(g1) = ρ(f ′) = ρ(f) = ∞. Differentiating both
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sides of the equation (1.5), we have

f (k+1) +Ak−1e
ak−1zf (k) + [(Ak−1e

ak−1z)′ +Ak−2e
ak−2z]f (k−1)

+ · · ·+ [(A3e
a3z)′ +A2e

a2z]f ′′′ + [(A2e
a2z)′ +A1e

a1z]f ′′

+ [(A1e
a1z)′ +A0e

a0z]f ′ + (A0e
a0z)′f = F ′.

(4.2)

By (1.5), we have

f = − 1
A0ea0z

[
f (k) +Ak−1e

ak−1zf (k−1) + · · ·+A2e
a2zf ′′ +A1e

a1zf ′ − F
]
. (4.3)

Substituting (4.3) into (4.2), we have

f (k+1) + [Ak−1e
ak−1z − (A0e

a0z)′

A0ea0z
]f (k) + [(Ak−1e

ak−1z)′ +Ak−2e
ak−2z−

(A0e
a0z)′

A0ea0z
Ak−1e

ak−1z]f (k−1) + · · ·+ [(A3e
a3z)′ +A2e

a2z − (A0e
a0z)′

A0ea0z
A3e

a3z]f ′′′

+ [(A2e
a2z)′ +A1e

a1z − (A0e
a0z)′

A0ea0z
A2e

a2z]f ′′

+ [(A1e
a1z)′ +A0e

a0z − (A0e
a0z)′

A0ea0z
A1e

a1z]f ′ = − (A0e
a0z)′

A0ea0z
F + F ′.

(4.4)
We can denote the equation by the following form:

f (k+1) + h1,k−1f
(k) + h1,k−2f

(k−1) + · · ·+ h1,2f
′′′ + h1,1f

′′ + h1,0f
′ = H1, (4.5)

where h1,j(j = 0, 1, · · · , k−1) is the meromorphic functions defined by the equation
(4.4) and H1 = − (A0e

a0z)′

A0ea0z
F +F ′ = −(A

′
0

A0
+a0)F +F ′ with ρ(H1) < 1. Substituting

f ′ = g1 + z, f ′′ = g′1 + 1, f (j+1) = g
(j)
1 , (2 ≤ j ≤ k) into (4.5), we get

g
(k)
1 + h1,k−1g

(k−1)
1 + · · ·+ h1,1g

′ + h1,0g1 = h1, (4.6)

where

h1 =− (h1,1 + zh1,0) +H1

=−
[(
A′2 + a2A2 −

A′0
A0

A2 + a0A2

)
ea2z +

(
A1 + zA′1 + za1A1−

zA1
A′0
A0
− za0A1

)
ea1z + zA0e

a0z

]
+H1.

We claim h1 6≡ 0. Since a2, a1, a0 are different each other, if h1 ≡ 0 by Lemma 2.2,
we conclude that A0 ≡ 0, a contradiction. Therefore, h1 6≡ 0. Applying Lemma 2.7
to (4.6) above, we obtain λ̄(g1) = λ̄(f ′ − z) = τ̄(f ′) = σ(g1) = σ(f) =∞.

Now we prove that τ̄(f ′′) = λ̄(f ′′− z) =∞. Set g2(z) = f ′′− z. Using the same
argument as above, we need to prove only that λ̄(g2) =∞.

We differentiate both sides of (4.5), and obtain

f (k+2) + h1,k−1f
(k+1) + [h′1,k−1 + h1,k−2]f (k) + · · ·

+ [h′1,1 + h1,0]f ′′ + h′1,0f
′ = H ′1.

(4.7)
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By (4.5) and (4.7), we have

f (k+2) + [h1,k−1 −
h′1,0
h1,0

]f (k+1) + [h′1,k−1 + h1,k−2 −
h′1,0
h1,0

h1,k−1]f (k) + · · ·

+ [h′1,2 + h1,1 −
h′1,0
h1,0

h1,2]f ′′′ + [h′1,1 + h1,0 −
h′1,0
h1,0

h1,1]f ′′ =
h′1,0
h1,0

H1 +H ′1.

(4.8)

We can write (4.7) to the following form

f (k+2) + h2,k−1f
(k+1) + h2,k−2f

(k) + · · ·+ h2,1f
′′′ + h2,0f

′′ = H2, (4.9)

where h2,j are meromorphic functions with ρ(h2,j) ≤ 1(j = 0, 1, · · · , k − 1), and

h2,1 = h′1,2 + h1,1 −
h′1,0
h1,0

h1,2,

h2,0 = h′1,1 + h1,0 −
h′1,0
h1,0

h1,1,

(4.10)

where

h1,2 = (A3e
a1z)′ +A2e

a0z − (A0e
a0z)′

A0ea0z
A3e

a3z,

h1,1 = (A2e
a1z)′ +A1e

a0z − (A0e
a0z)′

A0ea0z
A2e

a2z,

h1,0 = (A1e
a1z)′ +A0e

a0z − (A0e
a0z)′

A0ea0z
A1e

a1z,

=
[
A′1 + (a1 − a0 −

A′0
A0

)A1

]
ea1z +A0e

a0z

H2 =
h′1,0
h1,0

H1 +H ′1.

(4.11)

Substituting f ′′ = g2 + z, f ′′′ = g′2 + 1, f (j+2) = g
(j)
2 , (2 ≤ j ≤ k) into (4.9), we

get

g
(k)
2 + h2,k−1g

(k−1)
2 + · · ·+ h2,1g

′
2 + h2,0g2 = −(h2,1 + zh2,0) +H2. (4.12)

We claim H2−h2,1− zh2,0 6≡ 0. By (4.10), (4.11) we know H2−h2,1− zh2,0 can
write into the following form

h2 = H2 − h2,1 − zh2,0 =
h′1,0H1 +H ′1h1,0 − h2,1h1,0 − zh2,0h1,0

h1,0
=
ϕ(z)
h1,0

,

where ϕ(z) = −zh2
1,0 − zh′1,0h1,1 − zh1,0h

′
1,1 − h′1,0h1,2 − h1,1h1,0 − h′1,2h1,0 +

h1,0′H
′
1 + h′1,0H1 = −zA2

0e
2a0z +

∑
γ∈Λ

Dγe
γz, where Dγ are meromorphic functions

in A1, A2, A3, F and their derivatives, whose order less than 1. The index set Λ
denotes the sums of ai, aj(0 ≤ i, j ≤ 3), except for 2a0. Obviously, the differ-
ences of every sum are not the constant which satisfies the condition (ii) and (iii)
in Lemma 2.1. Similarly with the above, if ϕ ≡ 0, by Lemma 2.1, there must
be A0 ≡ 0, it is a contradiction. Then applying Lemma 2.2 to (4.12), we have
λ̄(g2) = λ̄(f ′′ − z) = τ̄(f ′′) =∞.

This proves the theorem. �
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