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NÖRLUND SPACE OF DOUBLE ENTIRE SEQUENCES

(COMMUNICATED BY HÜSEYIN BOR)

N.SUBRAMANIAN, K. CHANDRASEKHARA RAO AND N. GURUMOORTHY

Abstract. Let Γ2 denote the spaces of all double entire sequences. Let Λ2

denote the spaces of all double analytic sequences. This paper is devoted to
a study of the general properties of Nörlund space of double entire sequences
η
(
Γ2
π

)
, Γ2 and also study some of the properties of η

(
Γ2
π

)
and η

(
Λ2
π

)

1. Introduction

Let (xmn) be a double sequence of real or complex numbers. Then the series∑∞
m,n=1 xmnis called a double series. The double series

∑∞
m,n=1 xmnis said to be

convergent if and only if the double sequence (Smn)is convergent, where

Smn =
∑m,n

i,j=1 xij(m,n = 1, 2, 3, ...) (see[1]).

We denote w2 as the class of all complex double sequences (xmn). A sequence
x = (xmn)is said to be double analytic if

supmn |xmn|1/m+n
< ∞.

The vector space of all prime sense double analytic sequences are usually denoted
by Λ2. A sequence x = (xmn) is called double entire sequence if

|xmn| 1/m+n → 0 as m,n → ∞.

The vector space of all prime sense double entire sequences are usually denoted by
Γ2. The space Λ2 as well as Γ2 is a metric space with the metric

d(x, y) = supmn

{
|xmn − ymn|1/m+n

: m,n : 1, 2, 3, ...
}
, (1.1)

forallx = {xmn}andy = {ymn}inΓ2.

A sequence π = (πmn) is said to be double analytic rate if

supmn

∣∣∣xmn

πmn

∣∣∣1/m+n

< ∞.

The vector space of all prime sense double analytic rate sequences are usually
denoted by Λ2

π.
A sequence π = (πmn) is called double entire sequence rate if∣∣∣xmn

πmn

∣∣∣ 1/m+n → 0 as m,n → ∞.
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The vector space of all prime sense double entire rate sequences are usually denoted
by Γ2

π. The space Λ2
π as well as Γ2

π is a metric space with the metric

d(x, y) = supmn

{∣∣∣∣xmn − ymn

πmn

∣∣∣∣1/m+n

: m,n : 1, 2, 3, ...

}
, (1.2)

forallx = {xmn}andy = {ymn}inΓ2.

Let (Pm,n)
∞
m,n=0 be a sequence of non-negative real numbers with p00 > 0.

Consider the transformation

ymn = 1∑m
i=0

∑n
j=0 pij

∑m
i=0

∑n
j=0 pijxm−i, n−j

for m,n = 0, 1, 2, · · · . The set of all (xmn) for which (ymn) ∈ Γ2 is called the
Nörlund space of double entire sequence. The Nörlund space of double entire se-
quence is denoted by η

(
Γ2

)
. Similarly the set of all (xmn) for which (ymn) ∈ Λ2

is called the Nörlund space of double analytic sequence is denoted by η
(
Λ2

)
. We

write Pmn = p00 + · · ·+ pmn, for m,n = 0, 1, 2, · · · .

Let (Pm,n)
∞
m,n=0 be a sequence of non-negative real numbers with p00 > 0.

Consider the transformation

ymn = 1∑m
i=0

∑n
j=0 pij

∑m
i=0

∑n
j=0 pijxm−i, n−j

for m,n = 0, 1, 2, · · · . The set of all (xmn) for which (ymn) ∈ Γ2 is called the
Nörlund space of double entire sequence. The Nörlund space of double entire se-
quence is denoted by η

(
Γ2

)
. Similarly the set of all (xmn) for which (ymn) ∈ Λ2

is called the Nörlund space of double analytic sequence is denoted by η
(
Λ2

)
. We

write Pmn = p00 + · · ·+ pmn, for m,n = 0, 1, 2, · · · .

Let (Pm,n)
∞
m,n=0 be a sequence of non-negative real numbers with p00 > 0.

Consider the transformation

ymn = 1∑m
i=0

∑n
j=0 Pij

∑m
i=0

∑n
j=0 Pij

xm−i, n−j

πm−i,n−j

for m,n = 0, 1, 2, · · · . The set of all (xmn) for which (ymn) ∈ Γ2 is called the
Nörlund space of double entire rate sequence. The Nörlund space of double en-
tire rate sequence is denoted by η

(
Γ2
π

)
. Similarly the set of all (xmn) for which

(ymn) ∈ Λ2 is called the Nörlund space of double analytic rate sequence is denoted
by η

(
Λ2
π

)
. We write Pmn = p00 + · · ·+ pmn, for m,n = 0, 1, 2, · · · .

Absorbent is a neighbourhood of zero and σ
(
X, X

′
)
− is a subsequence of

schauder basis converges to weakly.

All absolutely convex absorbent closed subset of locally convex Topological Vec-
tor Space X is called barrel. X is called barreled space if each barrel is a neigh-
bourhood of zero.

A locally convex Topological Vector Space X is said to be semi reflexive if each

bounded closed set in X is σ
(
X, X

′
)
−compact.
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Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the se-

quence is defined by x[m,n] =
∑m,n

i,j=0xijδij for all m,n ∈ N, where

δmn =



0 0 ...0 0 ...
0 0 ...0 0 ...
.
.
.
0 0 ...1/π 0 ...
0 0 ...0 0 ...


with 1/π in the (m,n)th position and zero other wise. An FK-space(or a metric
space)X is said to have AK property if (δmn) is a Schauder basis for X. Or
equivalently x[m,n] → x. Consider the constant sequence π = (πmn) and it is
defined by

πmn =



π11 π12 ..., π1m ...
π21 π22 ..., π2m ...
.
.
.

πm1 πm2 ..., πmn ...
0 0 ...0 0 ...


We need the following inequality in the sequel of the paper:

Lemma 1: For a, b,≥ 0 and 0 < p < 1, we have

(a+ b)p ≤ ap + bp

2. Preliminaries

Let us define the following sets of double sequences:

Mu (t) :=
{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn < ∞

}
,

Cp (t) :=
{
(xmn) ∈ w2 : p− limm,n→∞ |xmn − L|tmn = 1for someL ∈ C

}
,

C0p (t) :=
{
(xmn) ∈ w2 : P − limm,n→∞ |xmn|tmn = 0

}
,

Lu (t) :=
{
(xmn) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xmn|tmn < ∞

}
,

Cbp (t) := Cp (t)
∩
Mu (t) and C0bp (t) = C0p (t)

∩
Mu (t);

where t = (tmn) is the sequence of positive reals tmn for all m,n ∈ N and p −
limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1 for
all m,n ∈ N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce to the sets
Mu, Cp, C0p,Lu, Cbp and C0bp, respectively. Now, we may summarize the knowledge
given in some document related to the double sequence spaces. Gökhan and Colak
[10,11] have proved that Mu (t) and Cp (t) , Cbp (t) are complete paranormed spaces
of double sequences and gave the α−, β−, γ− duals of the spacesMu (t) and Cbp (t) .
Quite recently, in her PhD thesis, Zelter [12] has essentially studied both the the-
ory of topological double sequence spaces and the theory of summability of double
sequences. Mursaleen and Edely [13] and Tripathy [8] have recently introduced the
statistical convergence and Cauchy for double sequences independently and given
the relation between statistical convergent and strongly Cesàro summable double
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sequences. Nextly, Mursaleen [14] and Mursaleen and Edely [15] have defined the
almost strong regularity of matrices for double sequences and applied these matri-
ces to establish a core theorem and introduced the M−core for double sequences
and determined those four dimensional matrices transforming every bounded dou-
ble sequences x = (xjk) into one whose core is a subset of the M−core of x. More
recently, Altay and Basar [16] have defined the spaces BS,BS (t) , CSp, CSbp, CSr

and BV of double sequences consisting of all double series whose sequence of partial
sums are in the spaces Mu,Mu (t) , Cp, Cbp, Cr and Lu, respectively, and also exam-
ined some properties of those sequence spaces and determined the α− duals of the
spaces BS,BV, CSbp and the β (ϑ)− duals of the spaces CSbp and CSr of double
series. Quite recently Basar and Sever [17] have introduced the Banach space Lq

of double sequences corresponding to the well-known space ℓq of single sequences
and examined some properties of the space Lq. Quite recently Subramanian and
Misra [18,19] have studied the space χ2

M (p, q, u) of double sequences and proved
some inclusion relations and also studied characterization and general properties
of gai sequences via double Orlicz space of χ2

M of χ2 establishing some inclusion
relations.

Some initial works on double sequence spaces is found in Bromwich[3]. Later
on it was investigated by Hardy[5], Moricz[6], Moricz and Rhoades[7], Basarir
and Solankan[2], Tripathy[8], Tripathy and Dutta ([26],[27]), Tripathy and Sarma
([28],[29],[30]), Colak and Turkmenoglu[4], Turkmenoglu[9], and many others.

3. Main Results

3.1. Proposition. η
(
Γ2
π

)
= Γ2

π

Proof: Let x = (xmn) ∈ η
(
Γ2
π

)
. Then y ∈ Γ2

π so that for every ϵ > 0, we have a
positive integer n0 such that∣∣∣p00(xmn/πmn)+···+pmn(x00/π00)

Pmn

∣∣∣ < ϵm+n for all m,n ≥ n0

Take p00 = 1; p11 = · · · = pmn = 0. We then have
∣∣∣xmn

πmn

∣∣∣ < ϵm+n, ∀m,n ≥ n0.

Therefore x = (xmn) ∈ Γ2
π. Hence

η
(
Γ2
π

)
⊂ Γ2

π (3.1)

On the other hand, let x = (xmn) ∈ Γ2
π. But for any given ϵ > 0, there exists a

positive integer n0 such that
∣∣∣xmn

πmn

∣∣∣ < ϵm+n, ∀m,n ≥ n0. We have∣∣∣ ymn

πmn

∣∣∣ ≤ ∣∣∣p00(xmn/πmn)+···+pmn(x00/π00)
Pmn

∣∣∣
≤ 1

Pmn

[
p00

∣∣∣xmn

πmn

∣∣∣+ · · ·+ pmn (|x00/π00|)
]

≤ 1
Pmn

[
p00ϵ

m+n + · · ·+ pmnϵ
0+0

]
≤ ϵm+n

Pmn
[p00 + · · ·+ pmn]

≤ ϵm+n

Pmn
Pmn = ϵm+n∀m,n ≥ n0.

Therefore (ymn) ∈ Γ2
π. Consequently x ∈ η

(
Γ2
π

)
. Hence

Γ2
π ⊂ η

(
Γ2
π

)
(3.2)
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From (3.1) and (3.2) we obtain η
(
Γ2
π

)
= Γ2

π. This completes the proof.

3.2. Proposition. η
(
Λ2
π

)
= Λ2

π

Proof: Let (xmn) ∈ Λ2
π. Then there exists a positive constant T such that∣∣∣xmn

πmn

∣∣∣ ≤ Tm+n for m,n = 0, 1, 2, · · · .∣∣∣ ymn

πmn

∣∣∣ ≤ p00T
m+n+···+pmnT

0+0

Pmn

≤ Tm+n

Pmn

[
p00 + · · ·+ pmn

Tm+n

]
≤ Tm+n

Pmn
[p00 + · · ·+ pmn]

≤ Tm+n

Pmn
Pmn = Tm+n, for m,n = 0, 1, 2, · · · .

Hence (ymn) ∈ Λ2
π. But then x = (xmn) ∈ η

(
Γ2
π

)
. Consequently

Λ2
π ⊂ η

(
Λ2
π

)
(3.3)

On the other hand let (xmn/πmn) ∈ η
(
Λ2
π

)
. Then (ymn/πmn) ∈ Λ2

π. Hence there

exists a positive constant T such that
∣∣∣ ymn

πmn

∣∣∣ < Tm+n for m,n = 0, 1, 2, · · · . This
in turn implies that ∣∣∣p00(xmn/πmn)+···+Pmn(x00/π00)

Pmn

∣∣∣ < Tm+n

Hence
1

Pmn
(|p00 (xmn/πmn) + · · ·+ pmn (x00/π00)|) < Tm+n

and thus ∣∣p00 (xmn/πmn

)
+ · · ·+ pmn (x00/π00)

∣∣ < PmnT
m+n.

Take p00 = 1; p11 = · · · = pmn = 0. Then it follows that Pmn = 1 and so
∣∣∣xmn

πmn

∣∣∣ <
Tm+n for all m,n. Consequently x = (xmn) ∈ Λ2

π. Hence

η
(
Λ2
π

)
⊂ Λ2

π (3.4)

From (3.3) and (3.4) we get η
(
Λ2
π

)
= Λ2

π. This completes the proof.

3.3. Proposition. Γ2
π is not a barreled space

Proof: Let

A =

{
x ∈ Γ2

π :
∣∣∣xmn

πmn

∣∣∣ 1
m+n ≤ 1

m+n , ∀m,n

}
.

Then A is an absolutely convex, closed absorbent in Γ2
π. But A is not a neighbour

hood of zero. Hence Γ2
π is not barreled.

3.4. Proposition. Γ2
π is not semi reflexive

Proof: Let
{
δ(mn)

}
∈ U be the unit closed ball in Γ2

π. Clearly no subsequence of{
δ(mn)

}
can converge weakly to any y ∈ Γ2

π. Hence Γ2
π is not semi reflexive.
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