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RANGE OF D(R) BY INTEGRAL TRANSFORMS ASSOCIATED
TO THE BESSEL-STRUVE OPERATOR

(COMMUNICATED BY SALAH MECHERI)

LOTFI KAMOUN, SELMA NEGZAOUI

ABSTRACT. In this paper, we establish an inversion theorem of the Weyl in-

tegral transform associated with the Bessel-Struve operator lo, o > _71 In

the case of half integers, we give a characterization of the range of D(R) by
Bessel-Struve transform and we prove a Schwartz-Paley-Wiener theorem on
&' (R).

1. INTRODUCTION

In [8], Watson developed the discrete harmonic analysis associated with Bessel-
Struve kernel
SY(x) = ja(idx) — ihg (iAx)
where j, and h, are respectively the normalized Bessel and Struve functions of
index «. Those functions are given as follows :
+oo n 2n
. - (=1)"(2/2)
o(2) =2°T Dz"%J,(2)=T 1
jn(®) = 2°T(a+ 12 ale) = Na+ 1) 3 e,
and
+oo 2n+1
- (=D)"(=/2)*""
ho(z) =2°T Dz7Hy(2) =T 1
(2) (a+1)z (2) (a+ );F(n+%)F(n+a+%)

Watson considered ”generalised Schlomilch series” which is a kind of Fourier series
+00
D el (@)
where f is a suitable function and ¢, (f) € C.
In this paper, we are interested with a kind of Fourier transform which was consid-
ered and studied by K. Trimeche in [4], called the Bessel-Struve transform, given
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by

Bs(NO) = [ @) S (@) a2 da
K. Trimeéche proved that this transform is related to the classical Fourier transform
F by the relation

VfeDR), Bs(f) =F o Wal(f)
where W,, is the Weyl integral transform given by

2l (o + 1) /+°°
|

Waf(y) = ———— (22 —y®)* 2z f(sgn(y)x) dz , y € R

valla+3) Jy
Furthermore, K.Trimeche [4], L. Kamoun and M. Sifi [1], looked to the Bessel-Struve
operator

d?u 200+ 1 {du du
x

tate) = T+ 225 [ 20 - 00)

which has Bessel-Struve kernel as eigenfunction. They considered the Intertwining
operator X, associated with Bessel-Struve operator on R, given by

Al +1) ! el
@) = e [ a, fee®,
Vil(a+3) Jo
It verifies the intertwining relation
d2
loz a = Xa7 5
X X da2

and the duality relation with Weyl transform

[ xf@ o)A@ dz = [ (o) Wag(a)da,
R R

The outline of the content of this paper is as follows

In section 2: we give some properties of Bessel-Struve kernel and Bessel-Struve
transform.

In section 3: we deal with the Weyl integral transform associated to Bessel-Struve
operator. In the beginning, we consider the dual operator x¥ of the intertwining
operator .. This operator is related with Weyl integral associated to Bessel-Struve
operator that we denote W, by

vV feDR), XaTar=Tw.)

where T designates the distribution defined by the function f.
Next, we note that, unlike the classical case, Weyl integral transform associated to
Bessel-Struve operator doesn’t save the space D(R) and we characterize the range of
D(R) by W,. For this purpose, we introduce the space Iy of infinitely differentiable
functions on R* having bounded support and verifying a limit condition on the right
and left of zero. The range of D(R) by W, appears as the subspace of Ky which we
denote A, (R). Furthermore we give the expression of the inverse of W, denoted
ValAa(®)-

In section 4 : We prove a Paley-Wiener type theorem of Bessel-Struve transform

1
in the case @ = =. Finally, we prove an analogous of Schawartz-Paley-Wiener the-

orem associated to Bessel-Struve transform.

Throughout the paper, we denote :
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o R* = R\{0}
o N* =N\{0}
d 1d

- — = ——
de? 2z dx
2. BESSEL-STRUVE TRANSFORM

1
We consider the operator I, o > —5 defined on R by

lou(z) =

du oy 20t [j;( )— d“(m] . zeR, 2.1)

d? x
with v is an infinitely differentiable function on R. This operator is called Bessel-
Struve operator.
For A\ € C, the differential equation :

lou(z) = Nu(x)

w(0) =1, o/(0) = M (a+1)

VaT(a+3/2)
possesses a unique solution denoted S§. This eigenfunction, called the Bessel-Struve
kernel, is given by :

SY(z) = ja(idz) — iha(iAx) (2.2)
The kernel S possesses the following integral representation :
Al'(a+1)

1
Vo eR, VAEC, S9(z)= ) / (1—t2)o—deMetgr  (2.3)
0

1
VT T(a+ 1

We denote by LL(R), the space of measurable functions f on R, such that

1,a=/\f(x)|dua(x) < too,
R

where
dpie(z) = A(z)dr  and  A(z) = |z|**H! .

Definition 2.1. The Bessel-Struve transform is defined on LY (R) by

VAER,  F(f /f o (@) djia() (2.4)

Proposition 2.1. The kernel S§ has a unique analytic extension to C x C. It
satisfies the following properties :

(i): VA€C, VzeC, SaM( z) = _ZZ(A)

(ii): VA€ C, Vz€C, “\(2) = 5% (—2)

(iii): Vn €N, VA € R, Vz € R, j— A@) | <A
x™

(iv): Vo € R¥, ,\ETOO S%\(x)=0

Proof. The relation (2.2) implies directly (i) and (ii).
Applying the derivative theorem to the relation (2.3), we obtain (iii).
From the asymptotic expansion of J, and H, (see [8, p.199,p.333]), and using
relation (2.2), we get (iv). O
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Proposition 2.2. (K. Triméche [4]) Let f be a function in Li,(R) then Fg s(f)
belongs to Co(R),

where Co(R) is the space of continuous functions having 0 as limit in the infinity.
Furthermore,

78,5 (oo < [ fll1,a (2.5)
3. WEYL INTEGRAL TRANSFORM

One can find an overview on the Weyl integral transform associated to Hankel
transform in K. Trimeche’s book [6]. Also, K. Trimeche investigates the Weyl
integral transform in the framework of Chébli-Trimeche operator in [5] and Dunkl
operator in [7]. In this section, we deal with Weyl integral transform associated
with Bessel-Struve operator introduced by K. Triméche in [4] . In particular, we
build the range of D(R) by this integral transform and we give the expression of its
inverse.

3.1. Bessel-Struve intertwining operator and its dual. £(R) designates the
space of infinitely differentiable functions on R.

The Bessel-Struve intertwining operator on R denoted ¥, introduced by K. Trimeche
in [4] is defined by:
o' (a+1) [* o 1
)@ = = [a-deipana, fee® @y
Vil(a+3) Jo

L. Kamoun and M. Sifi proved an inversion theorem of x, on £(R), [1, Theorem 1]
Remark 3.1. We have

VreR,VAeC, S¢(x) = xalet)(x) (3.2)
Definition 3.1. The operator x% is defined on E'(R) by
<Xa(D), f>=<T,xaf > , fEER) (3-3)

Proposition 3.1. x7, is an isomorphism from E'(R) into itself.

Proof. Since x, is an isomorphism from £(R) into itself, we deduce the result
by duality. O
Proposition 3.2. ( K. Trimeche [4]) For f € D(R), the distribution x:Tay is
defined by the function W, f having the following expression

A (a+1) [T o L .1
Wal) = oot [ @ = o foma)de, ye R (34)
Vrl(a+3) Jiy
called Weyl integral associated to Bessel-Struve operator.
Remark 3.2. Let f € ER) and g € D(R). The operator xo and W, are related
by the following relation

/ Xof (z) g(z)A(z) dx = / f(x) Wog(z)dx (3.5)
R R
Proposition 3.3. ( K. Triméche [4]) We have

Vfe€DR),  Fps(f) = FoWalf) (3.6)

where F is the classical Fourier transform defined on L*(R) by

Flo)) = / g(z)e PN de

R
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3.2. The range of D(R) by Weyl integral transform. The Weyl Integral trans-
form associated with Bessel-Struve operator doesn’t save the space D(R). In fact
for the function given by

i .
f(x)—{xewz st aer

0 else

we remark that W, f is not continuous on O.
In sequel, for a > 0, we denote by D,(R) the subspace of D(R) of functions with
support included in [—a, a].

Lemma 3.1. Let a > 0 and f € D,(R). Then W, f is infinitely differentiable on
R* and supp (W, f) is included in [—a,a]. Furthermore, for all x € R* and n € N,

(Wa )™ (2) Z Lantel) /+w<y2—x2>a B0y sgn(a)) dy  (3.7)
k=0 z
where

. 2T (o + 1) C*T(2a + 2)
*~ Jrl(a+ +H)IM2a+2-n+k)
Proof. Let f € Dq(R). By change of variable W,, f can be written

W, f(z) = 2+ 1) |2t /m(t?—na—%tf(m)dt zeR*  (3.8)
fI‘(a—i—%) 1 ’
We denote
_ QF(a+1) ﬁ 2 _ oz—% *
w<x>_ﬁr(a+;)/l (2 - 1)}t f(tz)dt , =c R
Then,

Wa f(x) = A(x) ¢ (x)
It’s clear that supp (v) C [—a, a]. From derivative theorem and a change of variable,
one obtains

F a
o) = oot D [ sty d 1 O ey, o <
2 xr

Therefore, using Leibniz formula, we get

o = CF(sgn(x))FT(2a +2) [*
W Y™ () = n —22)o 2y L) (4 gon(x
where (ot 1)

aa:m.

We designate by Ky the space of functions f infinitely differentiable on R* with
bounded support and verifying for all n € N,
li n p(n) 3 n £(n)
lim " f*™(y) and  lim " f(y)
y>0 y<0
exist.
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Corollary 3.1. Let f be a function in D(R), we have W, f belongs to K.
Proof. The result is a consequence from lemma 3.1. ([
Lemma 3.2. Let g € E(R*), m and p are two integers nonnegative, we have
d \? P o
V€ R, <¢ﬁ) @mg@»::Egﬂfﬂwﬂmﬂ¢0@) (3.9)
where B are constants depending on i, p and m.

Proof. We will proceed by induction. The relation (3.9) is true for p = 0.
Suppose that (3.9) is true at the order p > 0 then

d m d S m— i (7
(@)pﬂ(x g(z)) = @(Z Bl x t 9( )(35))
i=0
=D pr et g0 )

i=0

where
1 1

By =50, 85 = 565(m —2p)

and

. 1 . 1
V1i<i<p, 5?“25(7’14’1—217)554'55@{1

O
We need the following proposition to provide the main results, of this section, which
are theorem 3.1 and theorem 3.2.

Proposition 3.4. Let f be a function in Ko. Then the distribution (x5)'T} is
defined by the function denoted AV, f, where Vo f has the following expression

(): fa=k+3, keN

2k+1 k+1
Vo) = (-0 (1) U@, sew

(ii): fa=k+r keN, -4 <r<3,

+oo k+1
Vs =i [ <y2x2w%(d) (Hsgn(@)y)ydy, @ € B*

(C)2yE
Dla+1)I(5—7)

where ¢ =

Proof. Let g € £(R) then we have
<) g >=< () Trg>=<Trxs'g>
1
First casea:k;—&-§, keN:
Invoking (ii) of [1, Theorem 1], we can write
22k+1 k!
*x\—1
< Ty g>= — (I + I
X&) Tr.g (2k+1)!(1+ 2)

where

= [ s (dj)+ (1 g(2)) da
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and 0 d k+1
h= [ s@e () @)

By integration by parts we have, according to relation (3.9) for p = k and m = 2k+1

h=-|[ - (%) (dd)k (2 g(a) 2 i

After k integrations by parts, using relation (3.9) and the fact that f € Ky, we
find that

k+1
h= 0 [T () s e
0 dl'Q
As the same we establish that
k+1
I = (—=1)*! /O A f(@) g(x) 22 da
oo \ 22
Consequently,

1 22k+1 k! k+1 d hH 2k+2
<O g = e 0 [ () @) et e

1
Which proves the wanted result for a = k + 5

-1 1
Second case a=k+1r, ke N, 7<r<§

By virtue of (i) of [1, Theorem 1] and a change of variable, we can write

_ B 2y/mx d \"
) = iy () @)

where .
h(z) = / (1- uz)*“%g(xu) u?* T dy
0
It’s clear that h € £(R), we proceed in a similar way as in the first case, we just
replace the function g by the function A and we obtain

d k+1
<o Tres=a [ (1) f@ne
R X

Next, by a change of variable, we have

2/ (~1)FH!
Dla+1)I(5—7)

<(X5) ' Ty, g >= (J1+ J2)

where
—+oo xT
= [atgrw ([ @ et ) o
0 0
and o .
h= [ e @ ( [ @ =g dt) da
—00 0

Applying Fubini’s theorem in J; and Js, we obtain

+oo +oo
= [ e e ) de ) a0
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and

n=-[ OOO ( / ;W — 2y da( L fa dx) g(1) P dt

making a change of variable in Js and using Chasles relation , we get
<(xa) ' Tp9>=
Foo 1, d
o [ ([ =) b ) psgn(ta) do ) (o) o2
R [t] dl‘Q
Which proves the wanted result. (I

Remark 3.3. From proposition 3.4 we deduce that the operators V, and x;' are
related by the following relation

[ Vat@a@a@ iz = [ f)x; gl do (3.10)
R R

for all f € Ky and g € E(R).

Lemma 3.3. Let f be in D(R). We have Wo(f) € Ko and  Vo,(Wo(f)) = f

Proof. Using lemma 3.1, relations (3.10) and (3.5), we obtain for all g € £(R),
f € DR)

/Va(Waf)(x)g(x)A(w) dx :/f(w)g(ff)A(ﬂf) dx
R R
Thus

Va(Wa(f))(2) A(z) = f(z) A(z)  ae z€eR

Since f A and V,, o W, (f) A are both continuous functions on R* we have
VaoWo(f)(z) = f(z) for all z in R* therefore V, oW, (f)(x) = f(z) forall z in R. O

1
For a = k + 3 k € N, we denote by A, ;. 1(R) the subspace of Ko of
functions f infinitely differentiable on R* with support included in [—a, a] verifying

the following condition :

d

(@)kﬂf can be extended to a function belonging to D(R).

This space is provided with the topology defined by the semi norms p,, where

. AV TSIN G
pu(f) = 3 (7)) " (@) ,nEN
z€[—a,a]

We consider , for k € N, the space
Ak+%(R) = U Aa,k+§(R)
a>0
endowed with the inductive limit topology.
Lemma 3.4. For all f in D,(R) we have
@): Ve e R, [Wyf)(2) = —x f(a)
(ii): Va> 1, Vo e R, Wofl(z) = =2 0aWo_1f(x)
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Proof. We get (i) of lemma 3.4 using relation (3.4) and derivation theorem.
1
Now, we take o > 3 by lemma 3.1 supp(W,f) C [—a,al.
Let ¢ € D((0,+00)) then we have

< [Wa f]’,@ >= — < W, f7<9/ >
= —a, 2 2047% d / d
= —a /0 /y(m y) 5'3](33) I(p(y) Yy

Using Fubini’s theorem, an integration by parts and relation (3.4), we obtain

< Wafl' o >= —2a/0 YyWa_1f(y) e(y) dy =< 2y Wo_1f, ¢ >

This proves that the derivative of the distribution W, f is the distribution defined by
the function —2ax W,_1 on (0,400). The theorem III in [3, p.54] allows us to say
that the derivative on (0, +00) of the function W, f is the function —2aaW,_1 f.
In the same way we obtain that the derivative on (—o0,0) of the function W, f is
the function —2axW,_1 f and (ii) of lemma 3.4 yields. O

Theorem 3.1. The operator WkJr% is a topological isomorphism from D, (R) into
A, k1 (R) and its inverse is Vk+%‘Aa,k+%(R)'

Proof. We will proceed by induction.
According to (i) of lemma 3.4 we have W1 (Do(R)) C A, 1 (R). Let f be a function
in D, (R) then according to (ii) of lemma 3.4, the induction hypothesis and lemma
3.1 we conclude that Wy 1 f € A, 1 (R).

In the other hand, using proposition 3.4 and the fact that g € A, +%(R), we get
Wit (Vi 1)(9) = g-

From proposition 3.4 and lemma 3.3, we have
Wiy /) =C sup |fP ()]

0<p<n
z€[—a,a]
which proves that W), 1 is a topological isomorphism from Dq(R) into D, ;1 (R)
and its inverse is given by Vk+%|Aa,k+%(R)' O
For k € N we take o = k + 71, r €]t 1.
We denote by Ag r+r(R) the subspace of Ko of functions f infinitely differen-
tiable on R* with support included in [—a, a] verifying the following condition :
d +oo
(ﬁ)]chl (/ (t? — 1)_T_%f(xt) t_Qk_ldt) can be extended to a function be-
x 1
longing to |x|?*"~! D(R)
This space is provided with the topology defined by the semi norms ¢, where

o (la e ey ) )

We consider, for k € N, the space
Ak+r(R) = U Aa,k-i—r(R)

a>0

an(f) = sup
0<p<n
z€[—a,a]
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endowed with the inductive limit topology.
Lemma 3.5. We have for all f in Ak (R),
Vier(f) € DR) and Wi, (Ve () =

Proof. Let f € Ap4,(R), using lemma 3.2 and the linearity of integral sign, we
obtain

d e —r—1 —ok—
Vieer (D) ==y (35)" (/ (2 =172 fyt) e 1dt)
1
Then Viyr(f) € D(R). From relations (3.5) and (3.10), we have, for all g € £(R),

| WV (£)) gt o = [ 7o)

Therefore
Witr Virr () (2) = f(2) , ae z€R
Since Wit (Vir(f)) and f are both continuous functions on R*, we get

Ve R*, Wiar (Vi () () = f(2)
|

Theorem 3.2. W, is a topological isomorphism from Dy (R) into Ay g+, (R) and
its inverse 1S Viir|a, oyn(R)

Proof. Let f € D,(R), proposition 3.1 and lemma 3.3, allows us to prove that

Wk+r(f) € Aa,k+T(R)'
Furthermore, from lemma 3.5, lemma 3.3 and the fact that

Qn(Wk+r(f)> = Cpn(f)
one can deduce that Wy, is a topological isomorphism from D, (R) into A, g4+r(R)
and ViipA, .y, (r) I8 its inverse. [l
The following theorem is a consequence from theorem 3.1 and theorem 3.2 .

Theorem 3.3. W, is a topological isomorphism from D(R) into A,(R) and its
inverse 18 giwen by Vo a, ()

4. PALEY WIENER TYPE THEOREM ASSOCIATED TO BESSEL-STRUVE
TRANSFORM

In this section we shall try to characterize the range of D(R) by Bessel-Struve
transform.

4.1. Range of D(R) by Bessel-Struve transform for half integers. Let a > 0,
‘H, designates the space of entire functions f verifying :

YneN, Je¢, >0; V2 € C, (14 2" f(2)|e I < ¢,
and
H=|JHa
a>0

We introduce the space A, 1 the space of entire functions g verifying
pace A, 1

h'(z) — W' (0)

dheH,Vzel g(z) = (4.1)
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and we denote Ay = U Ags
a>0

Theorem 4.1. We have )
15(D®) = A,

Proof. Let f € D(R). From relation (3.6) and by integration by parts, we have
—iz Fps(f)(2) = —c+ F(xf)(2)

where
0= lim W, f(@) = lim W, /(z)
x>0 <0

S[‘i}Illce %7-"(:1: N(z) =14[F ()] (2), we get ¢ = i[F(f)]'(0), for z=0.
[F(=HI'(z) = [F(=/))(0)

z

1
Fas(N)z) =
which proves that
1
15(D®) € Ay
Now let g be an entire function verifying relation (4.1). From classical Paley-Wiener
theorem and relation (4.1), we have

3 € Dy(R) such that L) ZFHIO)

z

= g(2)
Therefore, for AZ£0
gA) = =S (FEHN) = F(t)(0))

/f —sin )\t) —|—i1 —c;)i()\t))tQ &t

/f(t)S ( iNt) 2 dt
R

1
=Fps(=1(N) O
By induction, we can build the range of D(R) by Ft B.S from theorem 4.1 and
the following proposition.

1
Proposition 4.1. For o > 2 the following assertions are equivalent

(i): g = Fgg(f) where f € Dy(R)
(ii): g is extented to an entire function g verifying
' (z) —h'(0
Jhe Fas' (Du(R); V2eC  §(z) = 2a M (4.2)
Proof. Let f € D(R) and z € C. We proceed in a similar way as in theorem 4.1
and we obtain
i2Fps(f)(2) — c = F((Waf])(2)
where
c= ili%Waf(x) — i%Waf(x)
x>0 <0
Furthermore, using (ii) of lemma 3.4 and analysity theorem, we get

F(Wafl)(z) = =2ia[F(Wa-1£)]'(2).
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From relation (3.6) and the fact that ¢ = [Fgg(f)]'(0), we conclude that Fgq(f)
verifies relation (4.2).

Now let g be an entire function verifying relation (4.2).

Then

3f € Dy(R) such that 22WBs (') = [Fi5 (DI'(0))

. = g(2)

Finally, from relation (3.6) and by integration by parts we get
9(z) = iFps(f)(2)
O
4.2. Schwartz Paley Wiener theorem. In this subsection we will prove a Paley
Wiener theorem in distributions space with bounded support.
Definition 4.1. The Fourier Bessel-Struve Transformis defined on E'(R) by
VT € &'R), Fgs(T)(A\) =<T,8%, > (4.3)
Proposition 4.2. For all T € £'(R),
5 .s(T) = Foxa(T) (4.4)
Proof. We get the result using relations (4.3), (3.2) and (3.3). O
Lemma 4.1. Let T € &'(R) , then
supp(T) C [=b,8] <= supp(x4(T)) C [~b, Y

Proof. Let T € &'(R) such that supp(T) included in [—b,b] . For ¢ € D(R)
with support in [—b, b]¢ we have x ¢ have the support included in [—b, b]¢ therefore
from relation (3.3),we get that x(T") have the support in [—b, b]

Now we consider a distribution T" such that supp (x5 (7)) included in [—b,b]. For
¢ € D(R) with support in [—b,b]° we have

<T,0>=<(xa") o Xa(T), 0 >=< x4a(T), x5 ¢ >

Using [1, Theorem 1] supp (x;'¢) included in [—~b,b] so < T,¢ >= 0 which com-
pletes the proof. ([

Theorem 4.2. Let b > 0 and f € E(R).There is an equivalence between the two
following assertions

(1) There exists a distribution T € E'(R) with support included in [—b,b] such
that f = Fp s(T) i
(2) f is extended to an analytic function f on C such that

ImeN, 3c>0,V2€C |f(2)] < c(1+][z)F bUm) (4.5)

Proof. The theorem is a consequence from Lemma 4.1, proposition 4.2, the
classical Paley-Wiener Schwartz (one can see [2]) and proposition 3.1. O
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