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RANGE OF D(R) BY INTEGRAL TRANSFORMS ASSOCIATED

TO THE BESSEL-STRUVE OPERATOR

(COMMUNICATED BY SALAH MECHERI)

LOTFI KAMOUN, SELMA NEGZAOUI

Abstract. In this paper, we establish an inversion theorem of the Weyl in-

tegral transform associated with the Bessel-Struve operator lα , α > −1
2
. In

the case of half integers, we give a characterization of the range of D(R) by
Bessel-Struve transform and we prove a Schwartz-Paley-Wiener theorem on
E ′(R).

1. Introduction

In [8], Watson developed the discrete harmonic analysis associated with Bessel-
Struve kernel

Sα
λ (x) = jα(iλx)− ihα(iλx)

where jα and hα are respectively the normalized Bessel and Struve functions of
index α. Those functions are given as follows :

jα(z) = 2αΓ(α+ 1)z−αJα(z) = Γ(α+ 1)
+∞∑
n=0

(−1)n(z/2)2n

n!Γ(n+ α+ 1)

and

hα(z) = 2αΓ(α+ 1)z−αHα(z) = Γ(α+ 1)
+∞∑
n=0

(−1)n(z/2)2n+1

Γ(n+ 3
2 )Γ(n+ α+ 3

2 )

Watson considered ”generalised Schlömilch series” which is a kind of Fourier series

+∞∑
n=−∞

cn(f)S
α
−in(x)

where f is a suitable function and cn(f) ∈ C.
In this paper, we are interested with a kind of Fourier transform which was consid-
ered and studied by K. Trimèche in [4], called the Bessel-Struve transform, given
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by

Fα
BS(f)(λ) =

∫
R
f(x)Sα

−iλ(x) |x|2α+1 dx

K. Trimèche proved that this transform is related to the classical Fourier transform
F by the relation

∀ f ∈ D(R) , Fα
BS(f) = F ◦Wα(f)

where Wα is the Weyl integral transform given by

Wαf(y) =
2Γ(α+ 1)

√
π Γ(α+ 1

2 )

∫ +∞

|y|
(x2 − y2)α−

1
2 x f(sgn(y)x) dx , y ∈ R⋆

Furthermore, K.Trimèche [4], L. Kamoun and M. Sifi [1], looked to the Bessel-Struve
operator

lαu(x) =
d2u

dx2
(x) +

2α+ 1

x

[
du

dx
(x)− du

dx
(0)

]
which has Bessel-Struve kernel as eigenfunction. They considered the Intertwining
operator χα associated with Bessel-Struve operator on R, given by

χα(f)(x) =
2Γ(α+ 1)

√
πΓ(α+ 1

2 )

∫ 1

0

(1− t2)α−
1
2 f(xt) dt , f ∈ E(R).

It verifies the intertwining relation

lαχα = χα
d2

dx2

and the duality relation with Weyl transform∫
R
χαf(x) g(x)A(x) dx =

∫
R
f(x)Wαg(x)dx.

The outline of the content of this paper is as follows
In section 2: we give some properties of Bessel-Struve kernel and Bessel-Struve

transform.
In section 3: we deal with the Weyl integral transform associated to Bessel-Struve

operator. In the beginning, we consider the dual operator χ∗
α of the intertwining

operator χα. This operator is related with Weyl integral associated to Bessel-Struve
operator that we denote Wα by

∀ f ∈ D(R) , χ∗
α TAf = TWα(f)

where Tf designates the distribution defined by the function f .
Next, we note that, unlike the classical case, Weyl integral transform associated to
Bessel-Struve operator doesn’t save the space D(R) and we characterize the range of
D(R) byWα. For this purpose, we introduce the space K0 of infinitely differentiable
functions on R∗ having bounded support and verifying a limit condition on the right
and left of zero. The range of D(R) by Wα appears as the subspace of K0 which we
denote ∆α(R). Furthermore we give the expression of the inverse of Wα denoted
Vα|∆α(R).

In section 4 : We prove a Paley-Wiener type theorem of Bessel-Struve transform

in the case α =
1

2
. Finally, we prove an analogous of Schawartz-Paley-Wiener the-

orem associated to Bessel-Struve transform.

Throughout the paper, we denote :
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• R∗ = R\{0}
• N∗ = N\{0}

• d

dx2
=

1

2x

d

dx

2. Bessel-Struve transform

We consider the operator lα, α > −1

2
, defined on R by

lαu(x) =
d2u

dx2
(x) +

2α+ 1

x

[
du

dx
(x)− du

dx
(0)

]
, x ∈ R, (2.1)

with u is an infinitely differentiable function on R. This operator is called Bessel-
Struve operator.

For λ ∈ C, the differential equation : lαu(x) = λ2u(x)

u(0) = 1 , u′(0) =
λΓ(α+ 1)√
π Γ(α+ 3/2)

possesses a unique solution denoted Sα
λ . This eigenfunction, called the Bessel-Struve

kernel, is given by :

Sα
λ (x) = jα(iλx)− ihα(iλx) (2.2)

The kernel Sα
λ possesses the following integral representation :

∀x ∈ R, ∀λ ∈ C, Sα
λ (x) =

2Γ(α+ 1)
√
π Γ(α+ 1

2 )

∫ 1

0

(1− t2)α−
1
2 eλxtdt (2.3)

We denote by L1
α(R) , the space of measurable functions f on R, such that

∥f∥1 , α =

∫
R
|f(x)| dµα(x) < +∞ ,

where

dµα(x) = A(x) dx and A(x) = |x|2α+1 .

Definition 2.1. The Bessel-Struve transform is defined on L1
α(R) by

∀λ ∈ R, Fα
B,S(f)(λ) =

∫
R
f(x)Sα

−iλ(x) dµα(x) (2.4)

Proposition 2.1. The kernel Sα
λ has a unique analytic extension to C × C. It

satisfies the following properties :

(i): ∀λ ∈ C, ∀z ∈ C, Sα
−iλ(z) = Sα

−iz(λ)
(ii): ∀λ ∈ C, ∀z ∈ C, Sα

−λ(z) = Sα
λ (−z)

(iii): ∀n ∈ N, ∀λ ∈ R, ∀x ∈ R,
∣∣∣∣ dndxnSα

iλ(x)

∣∣∣∣ ≤ |λ|n

(iv): ∀x ∈ R∗, lim
λ→+∞

Sα
−iλ(x) = 0

Proof. The relation (2.2) implies directly (i) and (ii).
Applying the derivative theorem to the relation (2.3), we obtain (iii).
From the asymptotic expansion of Jα and Hα (see [8, p.199,p.333]), and using
relation (2.2), we get (iv). �
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Proposition 2.2. (K. Trimèche [4]) Let f be a function in L1
α(R) then Fα

B,S(f)

belongs to C0(R),
where C0(R) is the space of continuous functions having 0 as limit in the infinity.
Furthermore,

∥Fα
B,S(f)∥∞ ≤ ∥f∥1,α (2.5)

3. Weyl integral transform

One can find an overview on the Weyl integral transform associated to Hankel
transform in K. Trimèche’s book [6]. Also, K. Trimèche investigates the Weyl
integral transform in the framework of Chébli-Trimèche operator in [5] and Dunkl
operator in [7]. In this section, we deal with Weyl integral transform associated
with Bessel-Struve operator introduced by K. Trimèche in [4] . In particular, we
build the range of D(R) by this integral transform and we give the expression of its
inverse.

3.1. Bessel-Struve intertwining operator and its dual. E(R) designates the
space of infinitely differentiable functions on R .
The Bessel-Struve intertwining operator on R denoted χα, introduced by K. Trimèche
in [4] is defined by:

χα(f)(x) =
2Γ(α+ 1)

√
πΓ(α+ 1

2 )

∫ 1

0

(1− t2)α−
1
2 f(xt) dt , f ∈ E(R) (3.1)

L. Kamoun and M. Sifi proved an inversion theorem of χα on E(R), [1, Theorem 1]

Remark 3.1. We have

∀x ∈ R , ∀λ ∈ C , Sα
λ (x) = χα(e

λ .)(x) (3.2)

Definition 3.1. The operator χ∗
α is defined on E ′(R) by

< χ∗
α(T ), f >=< T, χαf > , f ∈ E(R) (3.3)

Proposition 3.1. χ∗
α is an isomorphism from E ′(R) into itself.

Proof. Since χα is an isomorphism from E(R) into itself, we deduce the result
by duality. �
Proposition 3.2. ( K. Trimèche [4]) For f ∈ D(R), the distribution χ∗

αTAf is
defined by the function Wαf having the following expression

Wαf(y) =
2Γ(α+ 1)

√
π Γ(α+ 1

2 )

∫ +∞

|y|
(x2 − y2)α−

1
2 x f(sgn(y)x) dx , y ∈ R⋆ (3.4)

called Weyl integral associated to Bessel-Struve operator.

Remark 3.2. Let f ∈ E(R) and g ∈ D(R). The operator χα and Wα are related
by the following relation∫

R
χαf(x) g(x)A(x) dx =

∫
R
f(x)Wαg(x)dx (3.5)

Proposition 3.3. ( K. Trimèche [4]) We have

∀f ∈ D(R) , Fα
B,S(f) = F ◦Wα(f) (3.6)

where F is the classical Fourier transform defined on L1(R) by

F(g)(λ) =

∫
R
g(x)e−iλxdx
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3.2. The range of D(R) by Weyl integral transform. The Weyl Integral trans-
form associated with Bessel-Struve operator doesn’t save the space D(R). In fact
for the function given by

f(x) =

{
x e

−1

1−x2 if |x| < 1
0 else

, x ∈ R,

we remark that Wαf is not continuous on 0.
In sequel, for a > 0, we denote by Da(R) the subspace of D(R) of functions with
support included in [−a, a].

Lemma 3.1. Let a > 0 and f ∈ Da(R). Then Wαf is infinitely differentiable on
R⋆ and supp (Wαf) is included in [−a, a]. Furthermore, for all x ∈ R⋆ and n ∈ N,

(Wαf)
(n)(x) =

n∑
k=0

cα (sgn(x))k

xn

∫ +∞

|x|
(y2 − x2)α−

1
2 yk+1f (k)(y sgn(x)) dy (3.7)

where

cα =
2Γ(α+ 1)Ck

nΓ(2α+ 2)
√
π Γ(α+ 1

2 ) Γ(2α+ 2− n+ k)
.

Proof. Let f ∈ Da(R). By change of variable Wαf can be written

Wαf(x) =
2Γ(α+ 1)

√
π Γ(α+ 1

2 )
|x|2α+1

∫ +∞

1

(t2 − 1)α−
1
2 t f(tx) dt , x ∈ R⋆ (3.8)

We denote

ψ(x) =
2Γ(α+ 1)

√
π Γ(α+ 1

2 )

∫ a
|x|

1

(t2 − 1)α−
1
2 t f(tx) dt , x ∈ R∗.

Then,
Wαf(x) = A(x)ψ(x)

It’s clear that supp (ψ) ⊆ [−a, a]. From derivative theorem and a change of variable,
one obtains

ψ(k)(x) = |x|−2α−k−1 2Γ(α+ 1)
√
πΓ(α+ 1

2 )

∫ a

|x|
(y2−x2)α− 1

2 yk+1 f (k)(sgn(x)y) dy, x ∈ R∗.

Therefore, using Leibniz formula, we get

Wαf)
(n)(x) =

aα
xn

n∑
k=0

Ck
n(sgn(x))

kΓ(2α+ 2)

Γ(2α+ 2− n+ k)

∫ a

|x|
(y2−x2)α− 1

2 yk+1f (k)(y sgn(x)) dy

where

aα =
2Γ(α+ 1)

√
π Γ(α+ 1

2 )
.

�

We designate by K0 the space of functions f infinitely differentiable on R∗ with
bounded support and verifying for all n ∈ N,

lim
y→0
y>0

ynf (n)(y) and lim
y→0
y<0

ynf (n)(y)

exist.
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Corollary 3.1. Let f be a function in D(R), we have Wαf belongs to K0.

Proof. The result is a consequence from lemma 3.1. �

Lemma 3.2. Let g ∈ E(R∗), m and p are two integers nonnegative , we have

∀x ∈ R∗,

(
d

dx2

)p

(xm g(x)) =

p∑
i=0

βp
i x

m−2p+i g(i)(x) (3.9)

where βp
i are constants depending on i, p and m.

Proof. We will proceed by induction. The relation (3.9) is true for p = 0.
Suppose that (3.9) is true at the order p ≥ 0 then

(
d

dx2
)p+1(xm g(x)) =

d

dx2
(

p∑
i=0

βp
i x

m−2p+i g(i)(x))

=

p+1∑
i=0

βp+1
i xm+i−2(p+1) g(i)(x)

where

βp+1
p+1 =

1

2
βp
p , β

p+1
0 =

1

2
βp
0(m− 2p)

and

∀1 ≤ i ≤ p , βp+1
i =

1

2
(m+ i− 2p)βp

i +
1

2
βp
i−1

�
We need the following proposition to provide the main results, of this section, which
are theorem 3.1 and theorem 3.2.

Proposition 3.4. Let f be a function in K0. Then the distribution (χ∗
α)

−1Tf is
defined by the function denoted AVαf , where Vαf has the following expression

(i): If α = k + 1
2 , k ∈ N

Vαf(x) = (−1)k+1 22k+1k!

(2k + 1)!

(
d

dx2

)k+1

(f(x)) , x ∈ R⋆

(ii): If α = k + r, k ∈ N , −1
2 < r < 1

2 ,

Vαf(x) = c1

∫ +∞

|x|
(y2 − x2)−r− 1

2

(
d

dy2

)k+1

(f)(sgn(x)y) y dy , x ∈ R⋆

where c1 =
(−1)k+12

√
π

Γ(α+ 1)Γ( 12 − r)

Proof. Let g ∈ E(R) then we have
< (χ⋆

α)
−1 Tf , g >=< (χ−1

α )⋆ Tf , g >=< Tf , χ
−1
α g >

First case α = k +
1

2
, k ∈ N :

Invoking (ii) of [1, Theorem 1], we can write

< (χ⋆
α)

−1 Tf , g >=
22k+1 k!

(2k + 1)!
(I1 + I2)

where

I1 =

∫ ∞

0

f(x)x

(
d

dx2

)k+1

(x2k+1 g(x)) dx
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and

I2 =

∫ 0

−∞
f(x)x

(
d

dx2

)k+1

(x2k+1 g(x)) dx

By integration by parts we have, according to relation (3.9) for p = k andm = 2k+1

I1 = −
∫ +∞

0

(
d

dx2

)
f(x)

(
d

dx2

)k

(x2k+1 g(x))x dx

After k integrations by parts, using relation (3.9) and the fact that f ∈ K0, we
find that

I1 = (−1)k+1

∫ +∞

0

(
d

dx2

)k+1

f(x) g(x)x2k+2 dx

As the same we establish that

I2 = (−1)k+1

∫ 0

−∞

(
d

dx2

)k+1

f(x) g(x)x2k+2 dx

Consequently,

< (χ⋆
α)

−1 Tf , g >=
22k+1 k!

(2k + 1)!
(−1)k+1

∫
R

(
d

dx2

)k+1

f(x) g(x)x2k+2 dx

Which proves the wanted result for α = k +
1

2
.

Second case α = k + r , k ∈ N ,
−1

2
< r <

1

2
By virtue of (i) of [1, Theorem 1] and a change of variable, we can write

χ−1
α g(x) =

2
√
πx

Γ(α+ 1)Γ( 12 − r)

(
d

dx2

)k+1

(x2k+1 h(x))

where

h(x) =

∫ 1

0

(1− u2)−r− 1
2 g(xu)u2α+1 du

It’s clear that h ∈ E(R), we proceed in a similar way as in the first case, we just
replace the function g by the function h and we obtain

< (χ⋆
α)

−1 Tf , g >= c1

∫
R

(
d

dx2

)k+1

f(x)h(x)x2k+2 dx

Next, by a change of variable, we have

< (χ⋆
α)

−1 Tf , g >=
2
√
π (−1)k+1

Γ(α+ 1)Γ( 12 − r)
(J1 + J2)

where

J1 =

∫ +∞

0

x(
d

dx2
)k+1f(x)

(∫ x

0

(x2 − t2)−r− 1
2 g(t) |t|2α+1 dt

)
dx

and

J2 =

∫ 0

−∞
x(

d

dx2
)k+1f(x)

(∫ x

0

(x2 − t2)−r− 1
2 g(t) |t|2α+1 dt

)
dx

Applying Fubini’s theorem in J1 and J2, we obtain

J1 =

∫ +∞

0

(∫ +∞

t

(x2 − t2)−r− 1
2x(

d

dx2
)k+1f(x) dx

)
g(t) |t|2α+1 dt
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and

J2 = −
∫ 0

−∞

(∫ t

−∞
(x2 − t2)−r− 1

2 x(
d

dx2
)k+1f(x) dx

)
g(t) |t|2α+1 dt

making a change of variable in J2 and using Chasles relation , we get
< (χ⋆

α)
−1 Tf , g >=

c1

∫
R

(∫ +∞

|t|
(x2 − t2)−r− 1

2x(
d

dx2
)k+1f(sgn(t)x) dx

)
g(t) |t|2α+1 dt

Which proves the wanted result. �

Remark 3.3. From proposition 3.4 we deduce that the operators Vα and χ−1
α are

related by the following relation∫
R
Vαf(x) g(x)A(x) dx =

∫
R
f(x)χ−1

α g(x) dx (3.10)

for all f ∈ K0 and g ∈ E(R).

Lemma 3.3. Let f be in D(R). We have Wα(f) ∈ K0 and Vα(Wα(f)) = f

Proof. Using lemma 3.1, relations (3.10) and (3.5), we obtain for all g ∈ E(R),
f ∈ D(R) ∫

R
Vα(Wαf)(x) g(x)A(x) dx =

∫
R
f(x) g(x)A(x) dx

Thus

Vα(Wα(f))(x)A(x) = f(x)A(x) a.e x ∈ R
Since f A and Vα ◦Wα(f)A are both continuous functions on R⋆ we have
Vα◦Wα(f)(x) = f(x) for all x in R⋆ therefore Vα◦Wα(f)(x) = f(x) for all x in R. �

For α = k +
1

2
, k ∈ N, we denote by ∆a,k+ 1

2
(R) the subspace of K0 of

functions f infinitely differentiable on R∗ with support included in [−a, a] verifying
the following condition :

(
d

dx2
)k+1f can be extended to a function belonging to D(R).

This space is provided with the topology defined by the semi norms ρn where

ρn(f) = sup
0≤p≤n
x∈[−a,a]

∣∣∣∣(( d

dx2
)k+1f

)(p)
(x)

∣∣∣∣ , n ∈ N

We consider , for k ∈ N, the space

∆k+ 1
2
(R) =

∪
a≥0

∆a,k+ 1
2
(R)

endowed with the inductive limit topology.

Lemma 3.4. For all f in Da(R) we have

(i): ∀x ∈ R∗, [W 1
2
f ]′(x) = −x f(x)

(ii): ∀α > 1
2 , ∀ x ∈ R∗, [Wαf ]

′(x) = −2αxWα−1f(x)



112 L. KAMOUN, S. NEGZAOUI

Proof. We get (i) of lemma 3.4 using relation (3.4) and derivation theorem.

Now, we take α >
1

2
, by lemma 3.1 supp(Wαf) ⊂ [−a, a].

Let φ ∈ D( (0,+∞) ) then we have

< [Wαf ]
′, φ >= − < Wαf, φ

′ >

= −aα
∫ a

0

∫ a

y

(x2 − y2)α−
1
2x f(x) dx φ′(y) dy

Using Fubini’s theorem, an integration by parts and relation (3.4), we obtain

< [Wαf ]
′, φ >= −2α

∫ a

0

yWα−1f(y)φ(y) dy =< −2yWα−1f, φ >

This proves that the derivative of the distributionWαf is the distribution defined by
the function −2αxWα−1 on (0,+∞). The theorem III in [3, p.54] allows us to say
that the derivative on (0,+∞) of the function Wαf is the function −2αxWα−1f .
In the same way we obtain that the derivative on (−∞, 0) of the function Wαf is
the function −2αxWα−1f and (ii) of lemma 3.4 yields. �

Theorem 3.1. The operator Wk+ 1
2
is a topological isomorphism from Da(R) into

∆a,k+ 1
2
(R) and its inverse is Vk+ 1

2 |∆a,k+1
2
(R).

Proof. We will proceed by induction.
According to (i) of lemma 3.4 we have W 1

2
(Da(R)) ⊂ ∆a, 12

(R). Let f be a function

in Da(R) then according to (ii) of lemma 3.4, the induction hypothesis and lemma
3.1 we conclude that Wk+ 1

2
f ∈ ∆a,k+ 1

2
(R).

In the other hand, using proposition 3.4 and the fact that g ∈ ∆a,k+ 1
2
(R), we get

Wk+ 1
2
(Vk+ 1

2
)(g) = g.

From proposition 3.4 and lemma 3.3, we have

ρn(Wk+ 1
2
f) = C sup

0≤p≤n
x∈[−a,a]

|f (p)(x)|

which proves that Wk+ 1
2
is a topological isomorphism from Da(R) into Da,k+ 1

2
(R)

and its inverse is given by Vk+ 1
2 |∆a,k+1

2
(R). �

For k ∈ N we take α = k + r , r ∈]−1
2 ,

1
2 [.

We denote by ∆a,k+r(R) the subspace of K0 of functions f infinitely differen-
tiable on R∗ with support included in [−a, a] verifying the following condition :

(
d

dx2
)k+1

(∫ +∞

1

(t2 − 1)−r− 1
2 f(xt) t−2k−1dt

)
can be extended to a function be-

longing to |x|2r−1 D(R)
This space is provided with the topology defined by the semi norms qn where

qn(f) = sup
0≤p≤n
x∈[−a,a]

∣∣∣∣Dp

(
|x|−2r+1(

d

dx2
)k+1

(∫ +∞

1

(t2 − 1)−r− 1
2 f(xt) t−2k−1dt

))∣∣∣∣
We consider, for k ∈ N, the space

∆k+r(R) =
∪
a≥0

∆a,k+r(R)
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endowed with the inductive limit topology.

Lemma 3.5. We have for all f in ∆k+r(R),
Vk+r(f) ∈ D(R) and Wk+r(Vk+r(f)) = f

Proof. Let f ∈ ∆k+r(R), using lemma 3.2 and the linearity of integral sign, we
obtain

Vk+r(f)(y) == |y|−2r+1(
d

dy2
)k+1

(∫ +∞

1

(t2 − 1)−r− 1
2 f(yt) t−2k−1dt

)
Then Vk+r(f) ∈ D(R). From relations (3.5) and (3.10), we have, for all g ∈ E(R),∫

R
Wk+r(Vk+r(f))(x) g(x) dx =

∫
R
f(x) g(x) dx

Therefore

Wk+r(Vk+r(f))(x) = f(x) , a.e. x ∈ R
Since Wk+r(Vk+r(f)) and f are both continuous functions on R∗, we get

∀ x ∈ R∗ , Wk+r(Vk+r(f))(x) = f(x)

�
Theorem 3.2. Wk+r is a topological isomorphism from Da(R) into ∆a,k+r(R) and
its inverse is Vk+r|∆a,k+r(R)

Proof. Let f ∈ Da(R), proposition 3.1 and lemma 3.3, allows us to prove that
Wk+r(f) ∈ ∆a,k+r(R).
Furthermore, from lemma 3.5, lemma 3.3 and the fact that

qn(Wk+r(f)) = Cpn(f)

one can deduce thatWk+r is a topological isomorphism from Da(R) into ∆a,k+r(R)
and Vk+r|∆a,k+r(R) is its inverse. �
The following theorem is a consequence from theorem 3.1 and theorem 3.2 .

Theorem 3.3. Wα is a topological isomorphism from D(R) into ∆α(R) and its
inverse is given by Vα|∆α(R)

4. Paley Wiener type theorem associated to Bessel-Struve
transform

In this section we shall try to characterize the range of D(R) by Bessel-Struve
transform.

4.1. Range of D(R) by Bessel-Struve transform for half integers. Let a > 0,
Ha designates the space of entire functions f verifying :

∀n ∈ N , ∃ cn > 0 ; ∀z ∈ C , (1 + |z|2)n|f(z)|e−a Im(z) < cn

and

H =
∪
a>0

Ha

We introduce the space Λa, 12
the space of entire functions g verifying

∃h ∈ Ha ∀ z ∈ C∗ g(z) =
h′(z)− h′(0)

z
(4.1)
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and we denote Λ 1
2
=
∪
a>0

Λa, 12

Theorem 4.1. We have

F
1
2

BS(D(R)) = Λ 1
2

Proof. Let f ∈ D(R). From relation (3.6) and by integration by parts, we have

−izF
1
2

BS(f)(z) = −c+ F(xf)(z)

where

c = lim
x→0
x>0

W 1
2
f(x)− lim

x→0
x<0

W 1
2
f(x)

Since F(x f)(z) = i[F(f)]′(z), we get c = i[F(f)]′(0), for z = 0 .
Therefore

F
1
2

BS(f)(z) =
[F(−f)]′(z)− [F(−f)]′(0)

z
which proves that

F
1
2

BS(D(R)) ⊂ Λ 1
2

Now let g be an entire function verifying relation (4.1). From classical Paley-Wiener
theorem and relation (4.1), we have

∃ f ∈ Da(R) such that
[F(f)]′(z)− [F(f)]′(0)

z
= g(z)

Therefore, for λ ̸= 0

g(λ) = − i

λ
(F(t f)(λ)−F(t f)(0))

=

∫
R
f(t)(

− sin(λ t)

λ t
+ i

1− cos(λ t)

λ t
)t2 dt

= −
∫
R
f(t)S 1

2
(−i λ t) t2 dt

= F
1
2

BS(−f)(λ) �
By induction, we can build the range of D(R) by Fk+ 1

2

B,S from theorem 4.1 and
the following proposition.

Proposition 4.1. For α >
1

2
, the following assertions are equivalent

(i): g = Fα
BS(f)where f ∈ Da(R)

(ii): g is extented to an entire function g̃ verifying

∃ h ∈ Fα−1
BS (Da(R)) ; ∀ z ∈ C g̃(z) = 2α

h′(z)− h′(0)

z
(4.2)

Proof. Let f ∈ D(R) and z ∈ C. We proceed in a similar way as in theorem 4.1
and we obtain

izFα
BS(f)(z)− c = F([Wαf ]

′)(z)

where

c = lim
x→0
x>0

Wαf(x)− lim
x→0
x<0

Wαf(x)

Furthermore, using (ii) of lemma 3.4 and analysity theorem, we get

F([Wαf ]
′)(z) = −2i α[F(Wα−1f)]

′(z).
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From relation (3.6) and the fact that c = [Fα
BS(f)]

′(0), we conclude that Fα
BS(f)

verifies relation (4.2).
Now let g be an entire function verifying relation (4.2).
Then

∃ f ∈ Da(R) such that
2α([Fα−1

BS (f)]′(z)− [Fα−1
BS (f)]′(0))

z
= g(z)

Finally, from relation (3.6) and by integration by parts we get

g(z) = iFα
BS(f)(z)

�

4.2. Schwartz Paley Wiener theorem. In this subsection we will prove a Paley
Wiener theorem in distributions space with bounded support.

Definition 4.1. The Fourier Bessel-Struve Transformis defined on E ′(R) by

∀T ∈ E ′(R) , Fα
B,S(T )(λ) =< T, Sα

−iλ > (4.3)

Proposition 4.2. For all T ∈ E ′(R) ,

Fα
B,S(T ) = F ◦ χ⋆

α(T ) (4.4)

Proof. We get the result using relations (4.3), (3.2) and (3.3). �

Lemma 4.1. Let T ∈ E ′(R) , then

supp(T ) ⊆ [−b, b] ⇐⇒ supp(χ⋆
α(T )) ⊆ [−b, b]

Proof. Let T ∈ E ′(R) such that supp(T ) included in [−b, b] . For φ ∈ D(R)
with support in [−b, b]c we have χαφ have the support included in [−b, b]c therefore
from relation (3.3),we get that χ⋆

α(T ) have the support in [−b, b]
Now we consider a distribution T such that supp (χ⋆

α(T )) included in [−b, b]. For
φ ∈ D(R) with support in [−b, b]c we have

< T,φ >=< (χ−1
α )⋆ ◦ χ⋆

α(T ), φ >=< χ⋆
α(T ), χ

−1
α φ >

Using [1, Theorem 1] supp (χ−1
α φ) included in [−b, b] so < T,φ >= 0 which com-

pletes the proof. �

Theorem 4.2. Let b > 0 and f ∈ E(R).There is an equivalence between the two
following assertions

(1) There exists a distribution T ∈ E ′(R) with support included in [−b, b] such
that f = FB,S(T )

(2) f is extended to an analytic function f̃ on C such that

∃m ∈ N , ∃c > 0 , ∀z ∈ C |f̃(z)| ≤ c (1 + |z|2)m
2 eb(Im(z)) (4.5)

Proof. The theorem is a consequence from Lemma 4.1, proposition 4.2, the
classical Paley-Wiener Schwartz (one can see [2]) and proposition 3.1. �
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