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APPROXIMATION OF FUNCTIONS BY MATRIX-EULER

SUMMABILITY MEANS OF FOURIER SERIES IN

GENERALIZED HÖLDER METRIC

(COMMUNICATED BY HÜSEIN BOR)

SHYAM LAL AND SHIREEN

Abstract. In this paper, a new estimate for the degree of trignometric ap-

proximation of a function f ∈ H
(w)
r , (r ≥ 1) class by Matrix-Euler means

(∆.E1) of its Fourier Series has been determined.

1. Introduction

The degree of approximation of a function f belonging to Lipα class by Nörlund
summability method (N, pn) has been determined by several investigators like
Khan[6], Qureshi[7, 8], Chandra[11], Leindler[9], Stepants[2] and Lal[16]. Working
in quite different direction, Totik[17, 18], Mazhar[14], Totik and Mazhar[15] and
Chandra[12] have studied the approximation of functions in Hölder space H(w).
But till now no work seems to have done to obtain the degree of approximation of

functions f ∈ H(w)
r , (r ≥ 1), by Matrix-Euler (∆.E1) product summability means.

In an attempt to make an advance study in this direction, in this paper, a new

estimate for degree of trignometric approximation of a function f ∈ H(w)
r , (r ≥ 1)

space has been determined. It is important to note that H
(w)
r , (r ≥ 1), is a gen-

eralization of H(w), H(α),r and H(α) spaces. Some important applications of main
theorem has been investigated.

2. Definition and Notations

Let f(x) be a 2π periodic function, integrable in the Lebesgue sense over [o, 2π]

and belonging to H
(w)
r class. Let the Fourier series of f(x) is given by

f(x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) (1)
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with nth partial sums sn(f ;x).
Let

∑∞
n=0 un be an infinite series having nth partial sum sn =

∑n
ν=0 uν .

Let T = (an,k) be an infinite triangular matrix satisfying the condition of regularity
(Silverman-Töeplitz [10]) i.e.

(i).
∑n
k=0 an,k = 1 as n→∞ ,

(ii). an,k = 0 for k > n ,
(iii).

∑n
k=0 |an,k| ≤M , a finite constant.

The sequence-to-sequence transformation

t∆n =

n∑
k=0

an,ksk =

n∑
k=0

an,n−ksn−k

defines the sequence t∆n of triangular matrix means of the sequence {sn}, generated
by the sequence of coefficients (an,k).

If t∆n → s as n → ∞ then the series
∑∞
n=0 un is summable to s by triangular

matrix ∆- method (Zygmund[1], p.74).

Let E(1)
n =

1

2n

n∑
k=0

(
n

k

)
sk. If E

(1)
n → s as n → ∞, then

∑∞
n=0 un is said to be

summable to s by the Euler’s method, E1(Hardy[5]).
The triangular matrix ∆-transform of E1 transform defines the (∆.E1) transform
t∆En of the partial sums sn of the series

∑∞
n=0 un by

t∆En =

n∑
k=0

an,kE
1
k =

n∑
k=0

an,k
1

2k

k∑
ν=0

(
k

ν

)
sν .

If t∆En → s as n→∞,
∑∞
n=0 un is said to be summable (∆.E1) to s.

sn → s ⇒ E(1)
n =

1

2n

n∑
ν=0

(
n

ν

)
sν → s as n→∞, E1 method is regular,

⇒ t∆n (E(1)
n ) = t∆En → s as n→∞, ∆ method is regular,

⇒ (∆.E1) method is regular.

Some important particular cases of triangular matrix-Euler means (∆.E1) are

(i). (H, 1
n+1 ).(E1) means, when an,k = 1

(n−k+1) logn .

(ii). (N, pn).E1 means, when an,k = pn−k
Pn

, where Pn =
∑n
k=0 pk 6= 0.

(iii). (N, pn, qn).E1 means, when an,k = pn−kqk
Rn

,

where Rn =
∑n
k=0 pkqn−k 6= 0.

Let C2π denote the Banach space of all 2π-periodic and continuous functions
defined on [0, 2π] under the supremum norm.
For 0 < α ≤ 1, let

H(α) = {f ∈ C2π : |f(x+ t)− f(x)| = O(|t|α)}
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The space H(α) is a Banach space (Prössdorfff [13]) under the norm

‖f‖(α) = sup
0≤x≤2π

|f(x)|+ sup
x,t
t 6=0

|f(x+ t)− f(x)|
|t|α

, 0 < α ≤ 1

= ‖f‖∞ + sup
x,t
t6=0

|f(x+ t)− f(x)|
|t|α

, 0 < α ≤ 1.

The metric induced by the norm ‖‖(α) on H(α) is called the Hölder metric. Clearly

(H(α), ‖f‖(α)) is a Banach space which decreases as α increases, i.e.,

H(α) ⊆ H(β) ⊆ C2π, for 0 ≤ β < α ≤ 1,

and
‖f‖(β) ≤ (2π)α−β ‖f‖(α) .

In general,

sup
0≤x≤2π

|f(x)| 6= sup
x,t
t 6=0

|f(x+ t)− f(x)|
|t|α

, 0 < α ≤ 1.

We define the norm ‖‖r by

‖f‖r =


{

1
2π

∫ 2π

0
|f(x)|r dx

} 1
r

for 1 ≤ r <∞
ess sup

0<x<2π
|f(x)| for r =∞.

Let Lr[0, 2π] =

{
f : [0, 2π]→ R :

∫ 2π

0

|f(x)|r dx <∞
}
, r ≥ 1 , be the space of all

2π-periodic, integrable functions and for all t

H(α),r =

{
f ∈ Lr[0, 2π] :

(∫ 2π

0

|f(x+ t)− f(x)|r dx
) 1
r

= O (|t|α)

}
.

The space H(α),r, r ≥ 1, 0 < α ≤ 1 is a Banach space under the norm ‖‖(α),r:

‖f‖(α),r = ‖f‖r + sup
t 6=0

‖f(.+ t)− f(.)‖r
(|t|α)

.

‖f‖(0),r = ‖f‖r .

The metric induced by the norm ‖‖(α),r on H(α),r is called Hölder continuous with

degree r.
Easily, it can be obtained by

‖f‖(β),r ≤ (2π)α−β ‖f‖(α),r , 0 ≤ β < α ≤ 1, r ≥ 1.

Since f ∈ H(α),r if and only if ‖f‖(α),r <∞, we have

H(α),r ⊆ H(β),r ⊆ Lr[0, 2π], 0 ≤ β < α ≤ 1, r ≥ 1.

For f ∈ Lr[0, 2π], r ≥ 1, the integral modulus of continuity is defined by

wr(f, δ) = sup
0<t≤δ

{
1

2π

∫ 2π

0

|f(x+ t)− f(x)|r dx
} 1
r

, for f ∈ Lr[0, 2π] where
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1 ≤ r <∞ and if r =∞, then
w(f, δ) = w∞(f, δ) = sup

o<t≤δ
max
x
|f(x+ t)− f((x)| for f ∈ C2π.

It is known (Zygmund [1], p.45) that wr(f, δ)→ 0 as δ → 0.
Let w : [0, 2π] → R be an arbitrary function with w(t) > 0 for 0 < t ≤ 2π and
lim
t→0+

w(t) = w(0) = 0.

The class of function H(w) has been defind by Leindler [9] as

H(w) = {f ∈ C2π : |f(x+ t)− f(x)| = O(w (t))}

where w is a modulus of continuity, that is, w is a postive non-decreasing continuous
function with the property: w(0) = 0, w(t1 + t2) ≤ w(t1) + w(t2).

We define H(w)
r =

{
f ∈ Lr[0, 2π] : 1 ≤ r <∞, sup

t6=0

‖f(.+ t)− f(.)‖r
w (t)

<∞

}
and ‖f‖(w)

r = ‖f‖r+sup
t6=0

‖f(.+ t)− f(.)‖r
w (t)

, r ≥ 1. Clearly ‖‖(w)
r is a norm on H

(w)
r .

The completeness of the space H
(w)
r can be discussed considering the completeness

of Lr (r ≥ 1).

‖f‖(v)
r = ‖f‖r + sup

t 6=0

‖f(.+ t)− f(.)‖r
v (|t|)

, r ≥ 1. If w(t)
t tends to zero as t→ o+ then

f ′(x) exists and is zero everywhere and f is constant.

Let
(
w(t)
v(t)

)
be positive non decreasing.

Then ‖f‖(v)
r ≤ max

(
1, w(2π)

v(2π)

)
‖f‖(w)

r <∞. Thus,

H(w)
r ⊆ H(v)

r ⊆ Lr, r ≥ 1

Remarks.

(i). If we take w(t) = tα then H(w) reduces to H(α) class.

(ii). By taking w(t) = tα in H
(w)
r , it reduces to H(α),r.

(iii). If we take r →∞ then H
(w)
r class reduces to H(w).

The degree of approximation of a function f : R→ R by a trignometric polyno-
mial tn(x) = 1

2a0 +
∑∞
ν=1(aν cos νx+ bν sin νx) of order n is defined by (Zygmund

[1], p.114-115)

En(f) = min ‖tn − f‖r .

We write,

φ(x, t) = f(x+ t) + f(x− t)− 2f(x),∆an,k = an,k − an,k+1, 0 ≤ k ≤ n− 1.

K∆E
n =

1

2π

n∑
k=0

an,k
sin (n− k + 1)( t2 )cosn−k( t2 )

sin ( t2 )
.
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3. Theorem

In this paper, we prove the following theorem:

Theorem 3.1. Let A = (an,k) be a regular lower triangular infinite matrix such
that

n−1∑
k=0

|∆an,k| = O

(
1

n+ 1

)
, (n+ 1) |an,n| = O (1) . (2)

If f : [0, 2π] → R be a 2π-periodic, Lebesgue integrable and belonging to the gen-

eralized class H
(w)
r ,r ≥ 1; w,v be modulus of continuity and w(t)

v(t) be positive, non-

decreasing then the degree of approximation of f by triangular matrix-Euler means

t∆En =
∑n
k=0 an,k

1
2k

∑k
ν=0

(
k
ν

)
sν of its Fourier series (1) is given by

‖t∆En − f‖(v)
r = O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2v(t)
dt

)
. (3)

4. Lemmas

Following Lemmas are required to prove the theorems:

Lemma 4.1. For 0 < t ≤ (n+ 1)−1, K∆E
n (t) = O(n+ 1).

Proof. For 0 < t ≤ (n+ 1)−1, sin t
2 ≥

t
π , sinnt ≤ nt, |cos t| ≤ 1. We have

∣∣K∆E
n (t)

∣∣ =

∣∣∣∣∣ 1

2π

n∑
k=0

an,k
sin (n− k + 1)( t2 )cosn−k( t2 )

sin ( t2 )

∣∣∣∣∣
≤ 1

2π

n∑
k=0

|an,k|
(n− k + 1)( t2 )

∣∣cosn−k( t2 )
∣∣

( tπ )

≤ 1

4
(n+ 1)

n∑
k=0

|an,k|

≤ M

4
(n+ 1)

= O(n+ 1).

Lemma 4.2. For (n+ 1)−1 < t < π, K∆E
n (t) = O

(
1

(n+1)t2

)
.
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Proof. For (n+ 1)−1 < t < π, sin t
2 ≥

t
π , using Abel’s lemma, we get

∣∣K∆E
n (t)

∣∣ =

∣∣∣∣∣ 1

2π

n∑
k=0

an,k
sin (n− k + 1)( t2 )cosn−k( t2 )

sin ( t2 )

∣∣∣∣∣
≤ 1

2t

∣∣∣∣∣
n−1∑
k=0

(an,k − an,k+1)

k∑
ν=0

sin (n− ν + 1)

(
t

2

)
cosn−ν

(
t

2

)

+an,n

n∑
k=0

sin (n− k + 1)

(
t

2

)
cosn−k

(
t

2

)∣∣∣∣∣
≤ 1

2t

[
n−1∑
k=0

|∆an,k|
∣∣∣∣ sin (2n− k + 2)( t4 ) sin (n+ 1)( t4 )

sin ( t4 )

∣∣∣∣+ |an,n|

∣∣∣∣∣ sin (n+ 2)( t4 ) sin (n+ 1)
(
t
4

)
sin
(
t
4

) ∣∣∣∣∣
]

≤ π

t2

[
n−1∑
k=o

|∆an,k|+ |an,n|

]
max

0≤k≤n

∣∣∣∣sin (2n− k + 2)

(
t

2

)
sin(n+ 1)

(
t

2

)∣∣∣∣
=

π

t2

[
n−1∑
k=o

|∆an,k|+ |an,n|

]

=
π

t2

[
O

(
1

n+ 1

)
+O

(
1

n+ 1

)]
by (2)

= O

(
1

(n+ 1)t2

)
.

5. Proof of the Theorem3.1

Following Titchmarsh [4], sk(f ;x) of Fourier series (1) is given by

sk(f ;x)− f(x) =
1

2π

∫ π

0

φ(x, t)
sin
(
k + 1

2

)
t

sin
(
t
2

) dt, k = 0, 1, 2... .

Then

1

2n

n∑
k=0

(
n

k

)
(sk(f ;x)− f(x)) =

1

2π

∫ π

0

φ(x, t)
1

2n

n∑
k=0

(
n

k

)
sin
(
k + 1

2

)
t

sin
(
t
2

) dt

or E1
n(x)− f(x) =

1

2π

∫ π

0

φ(x, t)
1

2n sin ( t2 )

{
Im

n∑
k=0

(
n

k

)
ei(k+ 1

2 )t

}
dt

=
1

2π

∫ π

0

φ(x, t)
1

2n sin ( t2 )

{
Im

n∑
k=0

(
n

k

)
eiktei

t
2

}
dt

=
1

2π

∫ π

0

φ(x, t)
1

2n sin ( t2 )

{
Im
(
1 + eit

)n
.ei

t
2

}
dt

=
1

2π

∫ π

0

φ(x, t)
sin
{

(n+ 1) ( t2 )
}

cosn ( t2 )

sin ( t2 )
dt.
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Now

t∆En (x)− f(x) =
1

Pn

n∑
k=0

an,k
{
E1
n−k(x)− f(x)

}
=

1

2π

∫ π

0

φ(x, t)

n∑
k=0

an,k
sin
{

(n− k + 1)( t2 )
}

cosn−k ( t2 )

sin ( t2 )
dt.

Let

ln(x) = t∆En (x)− f(x) =

∫ π

0

φ(x, t)K∆E
n (t)dt.

Then

ln(x+ y)− ln(x) =

∫ π

0

(φ(x+ y, t)− φ(x, t))K∆E
n (t)dt.

By generalized Minkowski’s inequality (Chui[3], p.37), we get

‖ln(.+ y)− ln(.)‖r ≤
∫ π

0

‖φ(.+ y, t)− φ(., t)‖r
∣∣K∆E

n (t)
∣∣ dt

=

∫ 1
n+1

0

(
‖φ(.+ y, t)− φ(., t)‖r

∣∣K∆E
n (t)

∣∣) dt+

∫ π

1
n+1

(
‖φ(.+ y, t)− φ(., t)‖r

∣∣K∆E
n (t)

∣∣) dt
= I1 + I2. (4)

Clearly

|φ(x+ y, t)− φ(x, t)| ≤ |f(x+ y + t)− f(x+ y)|+ |f(x+ y − t)− f(x+ y)|
+|f(x+ t)− f(x)|+ |f(x− t)− f(x)|.

Applying Minkowski’s inequality, we have

‖φ(.+ y, t)− φ(., t)‖r ≤ ‖f(.+ y + t)− f(.+ y)‖r + ‖f(.+ y − t)− f(.+ y)‖r
+ ‖f(.+ t)− f(.)‖r + ‖f(.− t)− f(.)‖r

= O (w(t)) . (5)

Also

‖φ(.+ y, t)− φ(., t)‖r ≤ ‖f(.+ y + t)− f(.+ t)‖r + ‖f(.+ y − t)− f(.− t)‖r
+2 ‖f(.+ y)− f(.)‖r

= O (w(|y|)) . (6)

For v is positive, non decreasing, t ≤ |y|, we obtained

‖φ(.+ y, t)− φ(., t)‖r = O (w(t))

= O

(
v(t)

(
w(t)

v(t)

))
= O

(
v(|y|)

(
w(t)

v(t)

))
.
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Since w(t)
v(t) is positive, non-decreasing, if t ≥ |y|, then w(t)

v(t) ≥
w(|y|)
v(|y|) , so that

‖φ(.+ y, t)− φ(., t)‖r = O (w(|y|))

= O

(
v(|y|)

(
w(t)

v(t)

))
. (7)

Using lemma (4.1) and (7) we obtain

I1 =

∫ 1
n+1

0

‖φ(.+ y, t)− φ(., t)‖r
∣∣K∆E

n (t)
∣∣ dt

= O

(∫ 1
n+1

0

v(|y|)w(t)

v(t)
(n+ 1)dt

)

= O

(
(n+ 1)v(|y|)

∫ 1
n+1

0

w(t)

v(t)
dt

)

= O

(n+ 1)v(|y|)
w
(

1
n+1

)
v
(

1
n+1

) ∫ 1
n+1

0

dt


= O

v(|y|)
w
(

1
n+1

)
v
(

1
n+1

)
 . (8)

Also,using Lemma (4.2) and (7) we get

I2 =

∫ π

1
n+1

‖φ(.+ y, t)− φ(., t)‖r
∣∣K∆E

n (t)
∣∣ dt

= O

(∫ π

1
n+1

v(|y|)w(t)

v(t)

1

(n+ 1)t2
dt

)

= O

(
1

n+ 1

∫ π

1
n+1

v(|y|) w(t)

t2v(t)
dt

)
. (9)

By (4), (8) and (9), we have

‖ln(.+ y)− ln(.)‖r = O

v(|y|)
w
(

1
n+1

)
v
(

1
n+1

)


+O

(
1

n+ 1

∫ π

1
n+1

v(|y|) w(t)

t2v(t)
dt

)
.

Thus,

sup
y 6=0

‖ln(.+ y)− ln(.)‖r
v(|y|)

= O

w
(

1
n+1

)
v
(

1
n+1

)


+O

(
1

n+ 1

∫ π

1
n+1

w(t)

t2v(t)
dt

)
. (10)
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Clearly

|φ(x, t)| = |f(x+ t) + f(x− t)− 2f(x)|
≤ |f(x+ t)− f(x)|+ |f(x− t)− f(x)|

Applying Minkowski’s inequality, we have

‖φ(., t)‖r ≤ ‖f(.+ t)− f(.)‖r + ‖f(.− t)− f(.)‖r
= O (w(t)) . (11)

Using(11), Lemma (4.1),Lemma (4.2) we obtain

‖ln(.)‖r =
∥∥t∆En − f

∥∥
r
≤

(∫ 1
n+1

0

+

∫ π

1
n+1

)
‖φ(., t)‖r

∣∣K∆E
n (t)

∣∣ dt
=

∫ 1
n+1

0

‖φ(., t)‖r
∣∣(K∆E

n (t)
∣∣ dt+

∫ π

1
n+1

‖φ(., t)‖r
∣∣K∆E

n (t)
∣∣ dt

= O

(
(n+ 1)

∫ 1
n+1

0

w(t)dt

)
+O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2
dt

)

= O

(
w

(
1

(n+ 1)

))
+O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2
dt

)
. (12)

Now, By (10) and (12)

‖ln(.)‖(v)
r = ‖ln(.)‖r + sup

y 6=0

‖ln(.+ y)− ln(.)‖r
v(|y|)

= O

(
w

(
1

n+ 1

))
+O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2
dt

)

+O

w
(

1
n+1

)
v
(

1
n+1

)
+O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

v(t)t2
dt

)
.

Using the fact that w(t) = w(t)
v(t) .v(t) ≤ v(π)w(t)

v(t) , 0 < t ≤ π, we get

‖ln(.)‖(v)
r = O

w
(

1
n+1

)
v
(

1
n+1

)
+O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

v(t)t2
dt

)
. (13)

Since w and v are modulus of continuity such that w(t)
v(t) is positive, non decreasing,

therefore

1

n+ 1

∫ π

1
n+1

w(t)

v(t)t2
dt ≥

w
(

1
n+1

)
v
(

1
n+1

) ( 1

n+ 1

)∫ π

1
n+1

dt

t2
≥

w
(

1
n+1

)
2v
(

1
n+1

) .
Then

w
(

1
n+1

)
v
(

1
n+1

) = O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2v(t)
dt

)
. (14)
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By (13) and (14), we have∥∥t∆En − f
∥∥(v)

r
= O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2v(t)
dt

)
.

This completes the proof of theorem 3.1.

6. Applications

We obtain the following corollaries from the main Theorems.

Corollary 6.1. Let f ∈ H(α),r , r ≥ 1, 0 < α ≤ 1 then

∥∥t∆En − f
∥∥

(β),r
=

 O
(

1
(n+1)α−β

)
, 0 ≤ β < α < 1,

O
(
log(n+1)π

n+1

)
, β = 0, α = 1.

Proof. If we take w(t) = tα, v(t) = tβ in theorem 3.1.

Corollary 6.2. If we take an,k = 1
(n−k+1) logn , in theorem 3.1, then degree of

approximation of a function f ∈ H(w)
r by (H, 1

n+1 ).E1 means

tHEn =
1

log n

n∑
k=0

1

n− k + 1

1

2k

k∑
ν=0

(
k

ν

)
sν

of the fourier series (1) is given by∥∥tHEn − f
∥∥(v)

r
= O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2v(t)
dt

)
.

Corollary 6.3. If we take an,k = pn−k
Pn

, where Pn =
∑n
k=0 pk 6= 0 in theorem 3.1,

then degree of approximation of a function f ∈ H(w)
r by (N, pn).E1 means

tNEn =
1

Pn

n∑
k=0

pn−k
1

2k

k∑
ν=0

(
k

ν

)
sν

of the fourier series (1) is given by∥∥tNEn − f
∥∥(v)

r
= O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2v(t)
dt

)
.

Corollary 6.4. If we take an,k = pn−kqk
Rn

, where Rn =
∑n
k=0 pkqn−k 6= 0 in theorem

3.1, then degree of approximation of a function f ∈ H(w)
r by (N, p, q).E1 means

tNEn =
1

Rn

n∑
k=0

pn−kqk
1

2k

k∑
ν=0

(
k

ν

)
sν

of the fourier series (1) is given by∥∥tNEn − f
∥∥(v)

r
= O

(
1

(n+ 1)

∫ π

1
n+1

w(t)

t2v(t)
dt

)
.
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