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A NOTE ON Ψ-BOUNDED SOLUTIONS FOR

NON-HOMOGENEOUS MATRIX DIFFERENCE EQUATIONS

(COMMUNICATED BY AGACIK ZAFER)

G.SURESH KUMAR1, T.SRINIVASA RAO1 AND M.S.N.MURTY2,∗

Abstract. This paper deals with obtaing necessary and sufficient conditions
for the existence of at least one Ψ-bounded solution for the non-homogeneous
matrix difference equation X(n+1) = A(n)X(n)B(n)+F (n), where F (n) is a
Ψ-bounded matrix valued function on Z+. Finally, we prove a result relating

to the asymptotic behavior of the Ψ-bounded solutions of this equation on Z+.

1. Introduction

The theory of difference equations is a lot richer than the corresponding theory
of differential equations. Many authors have studied several problems related to
difference equations, such as existence and uniqueness theorem [11], transmission
of information [6], signal processing, oscillation [16], control and dynamic systems
[10, 14]. The application of theory of difference equations is already extended to
various fields such as numerical analysis, finite element techniques, control theory
and computer science [1, 2, 8]. This paper deals with the linear matrix difference
equation

X(n+ 1) = A(n)X(n)B(n) + F (n), (1.1)

where A(n), B(n), and F (n) are m×m matrix-valued functions on
Z+ = {1, 2, . . .}.

The Ψ-bounded solutions for system of difference equations were developed by
Han and Hong [9], Diamandescu [3, 5]. The existence and uniqueness of solutions
of matrix difference equation (1.1) was studied by Murty, Anand and Lakshmi
[11]. Murty and Suresh Kumar [12, 13] and Dimandescu [4] obtained results on
Ψ-bounded solutions for matrix Lyapunov systems. Recently in [15], we obtained
a necessary and sufficient condition for the existence of Ψ-bounded solution of the
matrix difference equation (1.1), provided F (n) is Ψ-summable in Z.

The aim of this paper is to provide a necessary and sufficient condition for the
existence of Ψ-bounded solution of the non homogeneous matrix difference equation
(1.1) via Ψ-bounded sequences. The introduction of the matrix function Ψ permits
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to obtain a mixed asymptotic behavior of the components of the solutions. Here,
Ψ is a matrix-valued function. This paper include the results of Diamandescu[5] as
a particular case when B = I, X and F are column vectors.

2. Preliminaries

In this section we present some basic definitions, notations and results which are
useful for later discussion.

Let Rm be the Euclidean m-space. For u = (u1, u2, u3, . . . , um)T ∈ Rm, let
∥u∥ = max{|u1|, |u2|, |u3|, . . . , |um|} be the norm of u. Let Rm×m be the linear
space of all m ×m real valued matrices. For an m ×m real matrix A = [aij ], we
use the matrix norm |A| = sup∥u∥≤1 ∥Au∥.

Let Ψk : Z+ → R − {0} (R − {0} is the set of all nonzero real numbers),
k = 1, 2, . . .m, and let

Ψ = diag[Ψ1,Ψ2, . . . ,Ψm].

Then the matrix Ψ(n) is an invertible square matrix of order m, for all n ∈ Z+.

Definition 2.1. A matrix function X(n) is said to be Ψ-bounded solution of (1.1)
if X(n) satisfies the equation (1.1) and also Ψ(n)X(n) is bounded for all n ∈ Z+.

Definition 2.2. [7] Let A ∈ Rm×n and B ∈ Rp×q, then the Kronecker product of
A and B is written as A⊗B and is defined to be the partitioned matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . .

am1B am2B . . . amnB


which is an mp× nq matrix and in Rmp×nq.

Definition 2.3. [7] Let A = [aij ] ∈ Rm×n, then the vectorization operator
V ec : Rm×n → Rmn is defined as

Â = V ecA =


A.1

A.2

.

.
A.n

 , where A.j =


a1j
a2j
.
.

amj

 , (1 ≤ j ≤ n) .

Lemma 2.1. The vectorization operator V ec : Rm×m → Rm2

, is a linear and one-
to-one operator. In addition, V ec and V ec−1 are continuous operators.

Proof. The fact that the vectorization operator is linear and one-to-one is immedi-
ate. Now, forA = [aij ] ∈ Rm×m, we have

∥V ec(A)∥ = max
1≤i,j≤m

{|aij |} ≤ max
1≤i≤m


m∑
j=1

|aij |

 = |A| .

Thus, the vectorization operator is continuous and ∥V ec∥ ≤ 1.
In addition, for A = Im (identity m×m matrix) we have∥V ec(Im)∥ = 1 = |Im|

and then ∥V ec∥ = 1.
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Obviously, the inverse of the vectorization operator, V ec−1 : Rm2 → Rm×m, is
defined by

V ec−1(u) =


u1 um+1 . . . um2−m+1

u2 um+2 . . . um2−m+2

. . . . . .

. . . . . .

. . . . . .
um u2m . . . um2

 ,

where u = (u1, u2, u3, ....., um2)T ∈ Rm2

. We have

∣∣V ec−1(u)
∣∣ = max

1≤i≤m


m−1∑
j=0

|umj+i|

 ≤ m max
1≤i≤m

{|ui|} = m ∥u∥.

Thus, V ec−1 is a continuous operator. Also, if we take u = V ecA in the above
inequality, then the following inequality holds

|A| ≤ m∥V ecA∥,
for every A ∈ Rm×m. �

Regarding properties and rules for Kronecker product of matrices we refer to [7].

Now by applying the Vec operator to the linear nonhomogeneous matrix differ-
ence equation (1.1) and using Kronecker product properties, we have

X̂(n+ 1) = G(n)X̂(n) + F̂ (n), (2.1)

where G(n) = BT (n)⊗A(n) is a m2×m2 matrix and F̂ (n) = V ecF (n) is a column
matrix of order m2. The equation (2.1) is called the Kronecker product difference
equation associated with (1.1).
The corresponding homogeneous difference equation of (2.1) is

X̂(n+ 1) = G(n)X̂(n). (2.2)

Definition 2.4. [3] A function ϕ : Z+ → Rm is said to be Ψ- bounded on Z+ if
Ψ(n)ϕ(n) is bounded on Z+ (i.e., there exists L > 0 such that ∥Ψ(n)ϕ(n)∥ ≤ L, for
all n ∈ Z+).

Extend this definition for matrix functions.

Definition 2.5. A matrix function F : Z+ → Rm×m is said to be Ψ-bounded on
Z+ if the matrix function ΨF is bounded on Z+ (i.e., there exists L > 0 such that
|Ψ(n)F (n)| ≤ L, for all n ∈ Z+).

Now we shall assume that A(n) and B(n) are invertable m×m matrices on Z+

and F (n) is a Ψ-bounded matrix function on Z+.
The following lemmas play a vital role in the proof of main result.

Lemma 2.2. The matrix function F : Z+ → Rm×m is Ψ-bounded on Z+ if and
only if the vector function V ecF (n) is Im ⊗Ψ-bounded on Z+.

Proof. From the proof of Lemma 2.1, it follows that

1

m
|A| ≤ ∥V ecA∥Rm2 ≤ |A|

for every A ∈ Rm×m.
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Put A = Ψ(n)F (n) in the above inequality, we have

1

m
|Ψ(n)F (n)| ≤ ∥(Im ⊗Ψ(n)).V ecF (n)∥Rm2 ≤ |Ψ(n)F (n)| , (2.3)

n ∈ Z+, for all matrix functions F (n).
Suppose that F (n) is Ψ-bounded on Z+. From (2.3)

∥(Im ⊗Ψ(n)).V ecF (n)∥Rm2 ≤ |Ψ(n)F (n)| ,

From Definitions 2.4 and 2.5, F̂ (n) is Im ⊗Ψ-bounded on Z+.

Conversely, suppose that F̂ (n) is Im ⊗Ψ-bounded on Z+. Again from (2.3), we
have

|Ψ(n)F (n)| ≤ m ∥(Im ⊗Ψ(n)).V ecF (n)∥Rm2 .

From, Definitions 2.4 and 2.5, F (n) is Ψ-bounded on Z+. Now the proof is complete.
�

Lemma 2.3. Let Y (n) and Z(n) be the fundamental matrices for the matrix dif-
ference equations

X(n+ 1) = A(n)X(n), n ∈ Z+ (2.4)

and

X(n+ 1) = BT (n)X(n), n ∈ Z+ (2.5)

respectively. Then the matrix Z(n)⊗ Y (n) is a fundamental matrix of (2.2).

Proof. Consider

Z(n+ 1)⊗ Y (n+ 1) = BT (n)Z(n)⊗A(n)Y (n)

= (BT (n)⊗A(n))(Z(n)⊗ Y (n))

= G(n)(Z(n)⊗ Y (n)),

for all n ∈ Z+.
On the other hand, the matrix Z(n)⊗Y (n) is an invertible matrix for all n ∈ Z+

(because Z(n) and Y (n) are invertible matrices for all n ∈ Z+). �

Let X1 denote the subspace of Rn×n consisting of all matrices which are values
of Ψ-bounded solution of X(n + 1) = A(n)X(n)B(n) on Z+ at n = 1 and let X2

an arbitrary fixed subspace of Rn×n, supplementary to X1. Let P1, P2 denote the
corresponding projections of Rn×n onto X1, X2 respectively.

Then X1 denote the subspace of Rn2

consisting of all vectors which are values
of In ⊗ Ψ-bounded solution of (2.2) on Z+ at n = 1 and X2 a fixed subspace of

Rn2

, supplementary to X1. Let Q1, Q2 denote the corresponding projections of

Rn2

onto X1, X2 respectively.

Theorem 2.1. Let Y (n) and Z(n) be the fundamental matrices for the systems
(2.4) and (2.5). If

X̂(n) =
n−1∑
k=1

(Z(n)⊗ Y (n))Q1(Z
−1(k + 1)⊗ Y −1(k + 1))F̂ (k)

−
∞∑
k=1

(Z(n)⊗ Y (n))Q2(Z
−1(k + 1)⊗ Y −1(k + 1))F̂ (k) (2.6)

is convergent, then it is a solution of (2.1) on Z+.
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Proof. It is easily seen that X̂(n) is the solution of (2.1) on Z+. �

The following theorems are useful in the proofs of our main results.

Theorem 2.2. [5] The equation

x(n+ 1) = A(n)x(n) + f(n) (2.7)

has at least one Ψ-bounded solution on N = {1, 2, . . .} for every Ψ-bounded sequence
f on N if and only if there is a positive constant K such that, for all n ∈ N ,

n−1∑
k=1

|Ψ(n)Y (n)P1Y
−1(k + 1)Ψ−1(k)|+

∞∑
k=n

|Ψ(n)Y (n)P2Y
−1(k + 1)Ψ−1(k)| ≤ K.

(2.8)

Theorem 2.3. [5] Suppose that:

(1) The fundamental matrix Y (n) of x(n+1) = A(n)x(n) satisfies the inequality
(2.8), for all n ≥ 1, where K is positive constant.

(2) The matrix Ψ satisfies the condition |Ψ(n)Ψ−1(n+ 1)| ≤ T , for all n ∈ N ,
where T is positive constant.

(3) The Ψ-bounded function f : N → Rm is such that lim
n→∞

∥Ψ(n)f(n)∥ = 0.

Then, every Ψ-bounded solution x(n) of (2.7) satisfies

lim
n→∞

∥Ψ(n)x(n)∥ = 0.

3. Main results

Our first theorem is as follows.

Theorem 3.1. Let A(n) and B(n) be bounded matrices on Z+, then (1.1) has at
least one Ψ-bounded solution on Z+ for every Ψ-bounded matrix function F : Z+ →
Rm×m on Z+ if and only if there exists a positive constant K such that

n−1∑
k=1

|(Z(n)⊗Ψ(n)Y (n))Q1(Z
−1(k + 1)⊗ Y −1(k + 1)Ψ−1(k))|

+

∞∑
k=n

|(Z(n)⊗Ψ(n)Y (n))Q2(Z
−1(k + 1)⊗ Y −1(k + 1)Ψ−1(k))| ≤ K.

(3.1)

Proof. Suppose that the equation (1.1) has at least one Ψ-bounded solution on

Z+ for every Ψ-bounded matrix function F : Z+ → Rm×m. Let F̂ : Z+ → Rm2

be Im ⊗ Ψ-bounded function on Z+. From Lemma 2.2, it follows that the matrix
function F (n) = V ec−1F̂ (n) is Ψ - bounded matrix function on Z+. From the
hypothesis, the system (1.1) has at least one Ψ - bounded solution X(n) on Z+.

From Lemma 2.2, it follows that the vector valued function X̂(n) = V ecX(n) is a
Im ⊗Ψ-bounded solution of (2.1) on Z+.

Thus, equation (2.1) has at least one Im ⊗Ψ-bounded solution on Z+ for every

Im ⊗ Ψ-bounded function F̂ on Z+. From Theorem 2.2, there exists a positive
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number K, the fundamental matrix U(n) of (2.2) satisfies

n−1∑
k=1

|(Im ⊗Ψ(n))U(n)Q1T
−1(k + 1)(Im ⊗Ψ(k))|

+

∞∑
k=n

|(Im ⊗Ψ(n))U(n)Q2T
−1(k + 1)(Im ⊗Ψ(k))| ≤ K

From Lemma 2.3, U(n) = Z(n) ⊗ Y (n) and using Kronecker product properties,
(3.1) holds. Conversely suppose that (3.1) holds for some K > 0.

Let F : Z+ → Rn×n be a Ψ-bounded matrix function on Z+. From Lemma 2.2,
it follows that the vector valued function F̂ (n) = V ecF (n) is a Im ⊗ Ψ-bounded
function on Z+.

Since A(n), B(n) are invertible, then G(n) = BT (n) ⊗ A(n) is also invertible.
Now from Theorem 2.2, the difference equation (2.1) has at least one Im ⊗ Ψ -
bounded solution on Z+. Let x(n) be this solution.

From Lemma 2.2, it follows that the matrix function X(n) = V ec−1x(n) is a

Ψ-bounded solution of the equation (1.1) on Z+ (because F (n) = V ec−1F̂ (n)).
Thus, the matrix difference equation (1.1) has at least one Ψ-bounded solution

on Z+ for every Ψ-bounded matrix function F on Z+. �

Finally, we give a result in which we will see that the asymptotic behavior of
solution of (1.1) is completely determined by the asymptotic behavior of F .

Theorem 3.2. Suppose that:
(1) The fundamental matrices Y (n) and Z(n) of (2.4) and (2.5) satisfies:

(a) |Ψ(n)Ψ−1(n+ 1)| ≤ M , where M is a positive constant
(b) condition (3.1), for some K > 0.

(2) The matrix function F : Z+ → Rm×m is Ψ-bounded on Z+ such that
lim

n→∞
|Ψ(n)F (n)| = 0.

Then, every Ψ-bounded solution X of (1.1) is such that

lim
n→∞

|Ψ(n)X(n)| = 0.

Proof. Let X(n) be a Ψ-bounded solution of (1.1). From Lemma 2.2, the function

X̂(n) = V ecX(n) is a Im ⊗Ψ- bounded solution of the difference equation (2.1) on

Z+. Also from hypothis (2), Lemma 2.2, the function F̂ (n) is Im ⊗Ψ-bounded on

Z+ and lim
n→∞

∥(Im ⊗Ψ(n))F̂ (n)| = 0 . From the Theorem 2.3, it follows that

lim
n→∞

∥∥∥(Im ⊗Ψ(n)) X̂(n)
∥∥∥ = 0.

Now, from the inequality (2.3) we have

|Ψ(n)X(n)| ≤ m
∥∥∥(Im ⊗Ψ(n)) X̂(n)

∥∥∥ , n ∈ Z+

and, then

lim
n→∞

|Ψ(n)X(n)| = 0.

�

The following examples illustrate the above theorems.
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Example 3.1. Consider the matrix difference equation (1.1) with

A(n) =

[
n+1
n 0
0 1

3

]
, B(n) =

[
1
2 0
0 1

]
and F (n) =

[
n(n+1)

6n 0

0 n2

2n

]
.

Then,

Y (n) =

[
n 0
0 31−n

]
and Z(n) =

[
21−n 0
0 1

]
are the fundamental matrices for (2.4) and (2.5) respectively. Consider

Ψ(n) =

[
3n

n+1 0

0 1

]
, for all n ∈ Z+.

If we take projections

Q1 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 and Q2 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


then condition (1) is satisfied with M = 1 and K = 7.5.

In addition, the hypothesis (2) of Theorem 3.2 is satisfied. Because

|Ψ(n)F (n)| = n

2n
≤ 1

2

and

lim
n→∞

|Ψ(n)F (n)| = lim
n→∞

n

2n
= 0.

From Theorems 3.1 and 3.2, the difference equation has at least one Ψ-bounded
solution and every Ψ-bounded solutionX of (1.1) is such that lim

n→∞
|Ψ(n)X(n)| = 0.

Remark 3.1. In Theorem 3.2, if we do not have lim
n→∞

|Ψ(n)F (n)| = 0, then the

solution X(n) of (1.1) may be such that lim
n→∞

|Ψ(n)X(n)| ̸= 0.

The following example illustrates Remark 3.1, that the Theorem 3.2 fail if the
matrix function F is Ψ-bounded and lim

n→∞
|Ψ(n)F (n)| ̸= 0.

Example 3.2. Consider the matrix difference equation (1.1) with

A(n) =

[
n3

(n+1)3 0

0 n
n+1

]
, B(n) =

[
(n+1)2

n2 0
0 n+1

n

]
and

F (n) =

[
2n

n+1
3−n

(n+1)2

6−n(n+ 1) 3−n

]
.

Then,

Y (n) =

[
1
n3 0
0 1

n

]
and Z(n) =

[
n2 0
0 n

]
are the fundamental matrices for (2.4) and (2.5) respectively. Consider

Ψ(n) =

[
(n+ 1)2−n 0

0 3n

n+1

]
, for all n ∈ Z+.
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If we take projections

Q1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 and Q2 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 ,

then condition (1) is satisfied with M = 2 and K = 2.5. Also |Ψ(n)F (n)| = 1, for
n ∈ Z+. Therefore, F is Ψ-bounded on Z+ and lim

n→∞
|Ψ(n)F (n)| = 1 ̸= 0.

The solutions of the equation (1.1) are

X(n) =

[
1
n (2

n − 2 + c1)
1

2n2 (1− 31−n + 2c2)
n
5 (1− 61−n + 5c3)

1
2 (1− 31−n + 2c4)

]
,

where c1, c2, c3 and c4 are arbitrary constants and

Ψ(n)X(n) =

[ n+1
n [1 + 2−n(c1 − 2)] n+1

2n2 [(2
−n(1 + 2c2)− 3(6−n)]

n
5(n+1) [3

n(1 + 5c3)− 6(2−n)] 1
2(n+1) [3

n(1 + 2c4)− 3]

]
.

It is easily seen that, there exist Ψ-bounded solutions of (1.1) for c3 = −1
5 and

c4 = −1
2 . But lim

n→∞
|Ψ(n)X(n)| ̸= 0.
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